A Parallel Computing System with Specialized
Coprocessors for Cryptanalytic Algorithms

Wolfgang Kastl
wolfgang.kastl@students.th-hagenberg.at

Thomas Loimayr
thomas.loimayr @students.th-hagenberg.at

Abstract: In this paper we present a scalable, parallel computing system consisting
of specialized processors primarily designed for the implementation of cryptanalytic
algorithms. Even though the system was developed in regard to solve cryptanalytic
problems, it is suitable for many other tasks which can benefit from the enormous
computing power of the system (e.g. malware analysis). In addition to the use of
multi-core CPUs, the computing system takes advantage of graphic cards (GPUs) and
FPGAs as specialized coprocessors. Thus, it gains an edge over other conventional
parallel computing systems.

1 Introduction

In the last decade, the clock frequency of traditional processors (CPUs) increased signifi-
cantly. Due to physical laws, such as thermal density, the increase of clock speed recently
hit a wall. Thus, the CPU vendors were forced to accelerate the computation power of
CPUs by integrating multiple cores onto a single die.

In recent years, GPUs and FPGAs became very popular as coprocessors in high perfor-
mance computing systems. These two types of specialized coprocessors can very often
achieve much better performance than multi-core CPUs for certain types of computations.
Modern GPUs provide a huge amount of massive parallel processing units and are there-
fore well-suited for high performance computing. Furthermore, they contain up to 4 GB
onboard memory and are capable to exceed 100 GB/sec of internal memory bandwidth. In
contrast to GPUs, the high performance capability of FPGAs for certain types of applica-
tions has been well-known for a long time. Since multi-core CPUs, GPUs and FPGAs are
different technologies, they achieve widely different performance on certain tasks. A com-
parison on different applications between the three technologies is presented in [Shu08].

Nowadays, a fair amount of high performance computing systems already take advan-
tage of coprocessors such as GPUs and FPGAs. Most of them use either GPUs or FPGAs
but rarely benefit from both types of coprocessors. In this paper we introduce a scalable,
parallel computing system, which takes advantage of GPUs as well as FPGAs as copro-
cessors. Furthermore, a lot of today’s most popular parallel computing systems with focus

74 A Parallel Computing System with Specialized Coprocessors

on cryptanalysis such as the COPACOBANA [Ruh06] or the PS3-Cluster [Lab] consist
of dedicated hardware especially built to solve a small range of specific problems. In
contrast to these systems, our cluster exclusively consists of standardized interfaces and
components and is freely scalable and configurable. Hence, it is not limited to a small
number of problems.

In the following section, an overview of works related to our cluster presented in this
paper is given. In Section 3, we present the hardware architecture of the cluster. Section 4
describes the software framework which is necessary to communicate between nodes and
to provide the capability of using GPUs and FPGAs as coprocessors. Section 5 explains
how the communication between different cluster nodes is handled. Section 6 covers suit-
able implementations of cryptographic and cryptanalytic algorithms on the cluster. The
last section concludes with the current status of the project and gives an outlook on future
tasks and improvements of the cluster.

2 Related Work

Obviously, a highly specialized system like COPACOBANA cannot be directly compared
to our cluster, as both are completely different systems. However, in recent years, various
COTS cluster systems were introduced, which take advantage of coprocessors like GPUs
and FPGAs. In 2009, a first prototype of the Quadro Plex (QP) cluster [Mic09] was intro-
duced by NCSA!. Each node of the prototype system is equipped with two AMD Opteron
CPUs, four NVIDIA G80GL GPUs and one Xilinx Virtex-4 LX100 FPGA. In 2010 the
heterogeneous cluster Axel [TL10] was introduced. The first prototype uses 16 nodes,
equipped with one AMD Phenom Quad-Core CPU, one NVIDIA Tesla C1060 and one
Xilinx Virtex-5 LX330 FPGA hosted on an ADM-XRC-5T?2 card.

While these two systems provide a strong basis for developing any new applications, the
goal of our cluster is to additionally provide a library of cryptographic modules that can
be loaded into the cluster’s coprocessors. Hence, the system allows to freely develop new
applications or to use existing modules for e.g. cryptanalysis, which makes it easy to
configure and easy to use.

3 Physical Architecture

The cluster is composed of a head node that performs management tasks; input nodes
that distribute the data to be processed; compute nodes that execute the cryptanalytic al-
gorithms; and output nodes that collect the output from the compute nodes to aggregate
and concentrate it. The physical architecture of the cluster is depicted in Figure 1. Each
compute node as well as the head node can additionally act as input or output node or
both. It is also possible to define separate nodes as input or output nodes which do not

National Center for Supercomputing Applications at the University of Illinois

A Parallel Computing System with Specialized Coprocessors 75

act as compute nodes. The task of assigning different roles (input, output or compute) to
the nodes has to be done on the head node of the cluster. Thus we can see that the cluster
is freely configurable on the head node and does not have a predefined and fixed struc-
ture. As a result, the structure of the cluster can be configured to best fit to the underlying
cryptanalytic algorithm.

{Output

Management Network Data Network

<\\°\\\/

Compute Node n

Compute Node 2

L9

Head Node

Compute Node 1

{In;Iut}

Figure 1: Physical Architecture of the Cluster

3.1 Networks

The architecture of the cluster consists of two different networks - the data network and the
management network. The use of two separated networks allows performing management
tasks (e.g. monitoring the cluster nodes) over the management network while the actual
data throughput over the data network is not affected in any way. Each node in the cluster
is consistently connected to both networks. A simplified architecture of the networks is
depicted in Figure 1.

76 A Parallel Computing System with Specialized Coprocessors

Data Network. The data network represents the high-speed Infiniband network. A 24-
port Infiniband switch is used to enable a high-speed interconnection between the nodes.
The data network transmits data to input nodes, distribute data to compute nodes, eventu-
ally exchange data between compute nodes and finally hand over the result to the output
nodes. Depending on the type of computation an enormous amount of data might be trans-
mitted over the data network.

Management Network. The management network represents the Gigabit Ethernet net-
work where the nodes are connected through a 24-port Gigabit Ethernet switch. Data that
is transmitted over the management network contains status messages, error codes, debug
information and any other kind of information necessary for the management of the clus-
ter. Moreover, the management network is responsible for node development and node
updates.

3.2 Node Configuration

Each single compute node consists at least of the following standard hardware compo-
nents:

e Motherboard with at least four PCle slots which was a prerequisite for our cluster
architecture.

e Multi-core CPU and huge main memory: Each node is equipped with a quad-core
CPU and 16 GB of main memory.

o Gigabit Ethernet network card: Used to connect to the management network.

e Infiniband Host Channel Adapter (HCA): Used to connect to the data network.

Furthermore, each compute node consists of one or more of the following specialized
COpProcessors:

e NVIDIA GPUs: Nodes are (at the moment) equipped with NVIDIA graphic cards
which come with CUDA? support.

e FPGA boards: For current testing a Xilinx ML605 Evaluation Board with one single
Virtex-6 FPGA is used. In later versions of the cluster the evaluation board will be
replaced by an FPGA board equipped with several FPGAs working in parallel.

3.3 Architecture Constraints

At the moment, the cluster uses a 24-port Infiniband switch for the data network and a 24-
port Ethernet switch for the management network allowing to connect a maximum number

2Compute Unified Device Architecture

A Parallel Computing System with Specialized Coprocessors 77

of 24 nodes. This means, the current architecture of the cluster is capable of operating
23 compute nodes and one head node. Since the nodes are equipped with motherboards
consisting of 4 PCle slots, each node can be equipped with a maximum number of three
coprocessor boards (one PCle slot is already used for the Infiniband HCA). Thus, the
current cluster architecture is restricted to 69 (23 nodes each with 3 coprocessor boards)
coprocessor boards in total.

4 Software Framework

In this section we introduce the software framework which is necessary for the computa-
tion of algorithms on the cluster. The software framework provides functionality which
allow us to perform the following tasks:

o Configuring the cluster nodes including FPGAs and GPUs in a unitary way,
e assigning the data flow through the cluster and

e operating and monitoring the cluster.

4.1 Management Software

The management software which is running on the head node is responsible for managing
the entire cluster. It configures the nodes for the appropriate tasks, sets the data flow
within the cluster, initializes the nodes and requests status information regularly to provide
a detailed status overview over the whole cluster. Furthermore, the management software
is capable of collecting debugging information which is especially useful for the cluster
development.

Microsoft HPC Server. We decided to use Microsoft Windows Server 2008 with the
Windows High Performance Cluster (HPC) Extension [Mic08] as cluster management
software. It provides utile cluster management functions and fully integrates a Microsoft
release of the Message Passing Interface (MS-MPI). Due to the fact that the Microsoft
HPC Server does not support GPUs and FPGAs as coprocessors, we need additional man-
agement software to fully integrate the coprocessors into the cluster environment. The
additional management software is part of the MPI program and runs exclusively on the
head node.

4.2 Grid Software

The grid software is running on each compute node. It is a main element of the cluster
and receives commands from the management software of the head node to configure the

78 A Parallel Computing System with Specialized Coprocessors

High-Level API
Low-Level API Low-Level API
for FPGA for GPU
FPGA Driver
CUDA Framework
AES SHA1 RC4
Driver Driver Driver
PCle Driver

Figure 2: High- and Low-Level API

underlying specialized coprocessors.

The communication between the nodes is accomplished through MS-MPI which allows,
in combination with Infiniband, high speed data transfer using Remote Direct Memory
Access (RDMA) [LWPO08]. Since the Infiniband interface cannot be directly accessed by
the coprocessors, the communication has to be initialized by the grid software which has
full access to the operating system’s Infiniband interfaces.

4.3 Communication Layer

Figure 2 shows the different layers needed to communicate with the underlying coproces-
sors. As illustrated in Figure 2, the high-level API is situated on the top. The next layer
consists of the low-level API which is actually splitted into the FPGA part and the GPU
part. Underneath the low-level API, specific drivers required for FPGA development as
well as the CUDA framework used for GPU programming can be found. The following
two sections describe the high-level API and the low-level API in detail.

High-level API. The high-level API is implemented for abstraction purposes. It provides
unified functions for accessing both coprocessor types and is responsible for the following
tasks:

e Get the node’s hardware information,

e configure the coprocessors related to the given task,

initiate the coprocessors,

e get status information from the coprocessors and

get debug information from the coprocessors.

A Parallel Computing System with Specialized Coprocessors 79

Low-level API. The functions of the low-level API are invoked by the high-level API
functions and are directly accessing the drivers of the coprocessors. Basically, the low-
level API is divided into two parts to access either FPGAs or GPUs. The FPGA-part and
the GPU-part of the low-level API differ in several aspects.

The low-level API for FPGAs is smaller, as any algorithms are directly implemented onto
the FPGAs and can be loaded when they are used. The functions of the API are only used
for accessing them. Contrary, on the GPU side a library of usable algorithms exists where
the algorithms are fully implemented.

Driver Architecture. As illustrated in Figure 2, the low-level API on the side of the
GPUs is built on the general CUDA driver for Nvidia graphic cards, which does not need
to be modified for a proper use within the cluster.

In contrast, each configuration (actually each algorithm) on an FPGA differs in design,
input and output parameters. Thus, a core FPGA driver underneath the low-level API for
FPGA:s is responsible for loading the specific algorithm driver (e.g. driver for AES, SHA1
or RC4) corresponding to the algorithm. Only if the algorithm driver was initiated success-
fully, the low-level API is able to communicate with the underlying FPGA. The flexible
driver design (the core FPGA driver in combination with the algorithm drivers) enables to
run different algorithms or multiple instances of the same algorithm in parallel on a single
FPGA board.

5 Inter-Node Communication

This section explains in detail how the communication between two nodes is handled.
No matter between which types of nodes (input, output, compute or head node) data is
transmitted, any communication is handled the same way via MPI calls. Thereby, MPI is
responsible for initiating nodes to send data and allowing nodes to receive data.

While management tasks are handled by the nodes’ CPUs, the actual calculations for the
cryptographic tasks are executed by the coprocessors. Due to the fact that the coprocessors
are not capable of disposing MPI calls, the communication between nodes over the data
network has to be triggered by the nodes’ CPUs.

The following steps illustrate the principle of node communication between two nodes
according to Figure 3.

Node 0. This node plays the role of the sender. It is assumed that the input buffer already
contains data and the output buffer is empty. Both memory addresses are known by the
coprocessor of the node. The following steps are executed:

1. The coprocessor fetches the input data and processes it.

2. After saving the result into the output buffer an interrupt is provoked.

80 A Parallel Computing System with Specialized Coprocessors

void *input;
void *output;

MPI_Init();

if (nodeID == 0)

//Coprocessor reads memory (input),
//performs the computation and finally
//writes result into memory (output)

Node 0 compute (input, output) Node 1

//CPU receives interrupt
if (mem_modified (output))
e Y //send to Node 1 e Y

MPI_Send (output, 1)

Y

If(nodeID == 1)
MPI_Recv (input, 0)
compute (input, output) ;

/
Trigger
MPI_Send Trigger

Interrupt MPI_Recv

Input Address

Infinibband———

Read Write

INPUT OUPUT

Figure 3: Inter-Node Communication

3. The CPU triggers an MPI call (MPI_Send()), which incites the HCAs to write the
content of the first node’s output buffer into the second node’s input buffer.

Node 1. This node receives data from Node 0. The following are executed:

1. The CPU has to call MPI_Recv() to make the node’s HCA ready to receive data.
2. The HCA stores the received data into the input buffer.

3. MPI_Recv() finishes, which indicates a successful data transmission.

4. The CPU sends the memory address of the filled input buffer to the coprocessor.

5. The coprocessor is now capable of processing the input data.

The white box between the nodes in Figure 3 shows a simplified pseudo-code example
of how MPI is being used to control the communication. The two basic MPI functions
MPI_Send and MPI _Receive are used to transmit data between the nodes depending on
their node IDs. Although the above example shows just one coprocessor per node, the

A Parallel Computing System with Specialized Coprocessors 81

Pwd: 3rrOr6 Pwd: xavier9
No. of Nodes | Time [s] | No. of Nodes | Time [s]
1 11 1 367
2 6 2 183
4 1 4 87

Table 1: Results from testing the distributed SHA-1 cracker.

communication principle is very similar for two or more coprocessors included in a single
node.

6 Implementations of Algorithms

The presented scalable and parallel computing system is capable of executing various types
of algorithms. As this system is developed with focus on cryptographic and cryptanalytic
issues, it will mainly deal with tasks of the following sections.

6.1 Brute Force Algorithms

Currently, a distributed SHA-1 cracking algorithm can be executed on the cluster, which
uses brute forcing to get the original plaintext from SHA-1 hashes. The algorithm is im-
plemented in CUDA for NVIDIA GPUs and runs in parallel on multiple compute nodes.
It generates plaintext strings by using a given character-set. These strings are hashed and
compared with the input hash. If both hashes are equal, the plaintext is found. The algo-
rithm requires a SHA-1 hash as input, the length of the plaintext, a character-set and an
input-offset for each cluster node. The input-offset defines the partitioning of the input
data, which are the generated plaintext strings. The partitioning is carried out by dividing
the generated strings by their beginning letter. If a character-set a-z would be used for two
nodes, the first node would generate strings with the beginning letters a-m and the second
node with the beginning letters m-z. According to that, the input-offset would be I for the
first node and 2 for the second node, which would divide the input strings into two halfs.

The algorithm was tested for selected passwords on multiple cluster nodes. Two exam-
ples are illustrated in Table 1. The character-set a-z0-9 is used. As the required time
shows, the algorithm scales quite well with the amount of nodes. A doubling of the num-
ber of nodes, halves the duration on average until the algorithm finishes. In case of the
password 3rrOr6 the jump from 2 to 4 nodes decreases the time even to a sixth part of the
required time. The reason, why this may happen is illustrated in figure 4, which represents
the used character-set. The beginning letter of 3rr0r6 is located in the last half of the
specified set. This half pictures the beginning letters that the second node uses for string
generation. The node has to generate strings with 11 different beginning letters, before it

82 A Parallel Computing System with Specialized Coprocessors

Bl ricis
B ricis s
Pesda 3

B recase s

Figure 4: Partitioning of the beginning letters for the cluster nodes.

reaches the ”3”. Using four nodes, the fourth node only has to generate strings with two
different beginning letters until it reaches the ”3”. Hence, using four equal nodes, cracking
the hashed password 3rrOr6 causes a relatively high decrease of required cracking time,
which is a stroke of luck. In average, the speed-up is linear meaning that the calculation
time halves, when the amount of nodes is doubled.

6.2 Cryptanalytic Algorithms

Cryptanalytic tasks can be very complex and vary extremely in structure, execution time,
required resources, and their capability of parallelization. Only a multi-purpose system
that allows free configuration is capable of executing various cryptanalytic algorithms in
an efficient way.

7 Future Work

The cluster is still in an early state of development. Recently, we encountered problems
concerning the FPGA configuration. At the moment it is not possible to load images
onto an FPGA board and use them for calculations within the cluster. The current sample
application allows to bruteforce SHA-1 hashes by using only NVIDIA GPUs. Until now,
only one algorithm module can be loaded onto the GPUs. In future, multiple crypto-
modules shall be developed, which may be used with GPUs and/or FPGAs. Additionally,
a graphical user interface shall provide a more intuitive handling of the cluster. The goal of
our cluster is to provide a scalable and comprehensive cluster system, which allows easy
handling, by the use of prepared and configurable modules.

A Parallel Computing System with Specialized Coprocessors 83

References

[Lab]

Laboratory for cryptologic algorithms. PlayStation 3 computing breaks 2°° barrier. URL,
http://lacal.epfl.ch/page81774.html.

[LWPOS] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda. High Performance RDMA-

[Mic08]

[Mic09]

[Ruh06]

[Shu08]

[TL10]

Based MPI Implementation over InfiniBand. Computer and Information Science, The
Ohio State University, June 2008. URL, http://nowlab.cse.ohio-state.edu/
publications/journal-papers/2004/1iuj—-ijpp04.pdf.

Microsoft. Windows HPC Server 2008: Technical Overview of Windows HPC Server,
June 2008. URL, www.clustervision.com/Windows_HPC_Server_2008_
Technical_Overview.pdf.

Micheal Showerman et al. QP: A Heterogeneous Multi-Accelerator Cluster. Univer-
sity of Illinois at Urbana-Champaign, Urbana, March 2009. URL, web-test.ncsa.
illinois.edu/~kindr/papers/1ci09_paper.pdf.

Ruhr University of Bochum and University of Kiel. COPACOBANA: A Codebreaker
for DES and other Ciphers, October 2006. URL, http://www.copacobana.org/
paper/copacobana_CHES2006.pdf.

Shuai Che, Jie Li et al. Accelerating Compute-Intensive Applications with GPUs and FP-
GAs. Departments of Electrical and Computer Engineering and Computer Science, Univer-
sity of Virginia, May 2008. URL, http://www.nvidia.com/docs/I0/67189/
che_sasp08.pdf.

Kuen Hung Tsoi and Wayne Luk. Axel: A Heterogeneous Cluster with FPGAs and GPUs.
Department of Computing, Imperial College London, UK, February 2010. URL, www.
doc.ic.ac.uk/~wl/papers/10/fpgalObt.pdf.

