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Abstract: Recognizing patterns in conceptual models is useful for a number of
purposes, for example revealing syntactical errors, model comparison, and identifi-
cation of business process improvement potentials. In this contribution, we intro-
duce a formal approach for the specification and matching of structural patterns in
conceptual models. Unlike existing approaches, we do not focus on a certain appli-
cation problem or a specific modelling language. Instead, our approach is generic
making it applicable for any pattern matching purpose and any conceptual model-
ling language. In order to build sets representing structural model patterns, we de-
fine formal operations based on set theory, which can be applied to arbitrary mod-
els represented by sets. Besides a conceptual and formal specification of our ap-
proach, we present a prototypical modelling tool that shows its applicability
through a particular application scenario.

1 Introduction

The structural analysis of conceptual models has multiple applications. To support mod-
ellers in their analyses, applying structural patterns to conceptual models is an estab-
lished approach. Single conceptual models, for example, are analysed by use of typical
error patterns in order to check for syntactical failures [Me07]. In the domain of Busi-
ness Process Management (BPM), process models analysis helps identifying process
improvement potentials [VTM08]. For example, applying structural model patterns to
process models can help revealing changes of data medium during process execution
(e.g., printing and retyping a document), redundant execution of process activities or
application potentials of software systems. Whenever modelling is conducted in a dis-
tributed way, model integration is necessary to obtain a coherent view on the modelling
domain. To find corresponding fragments and to evaluate integration opportunities,
multiple models – generally of the same modelling language – can be compared with
each other applying structural model pattern matching [GMS05]. Different model struc-
tures that typically represent equal real-world issues are identified and specified as struc-
turally different, but semantically equal patterns. Counterparts of these patterns are
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searched via pattern matching in the models to be compared. If pattern counterparts are
found in different models, these are marked as candidates for equivalent model sections.
A subsequent comparison of their elements shows if their contents are equal as well.
This way, structural pattern matching provides decision support in model comparison
and integration. Model patterns have already been subject of research in the fields of
database schema integration and workflow management, to give some examples. How-
ever, a literature review reveals that existing pattern matching approaches are limited to
a specific domain or restricted to a single modelling language (cf. Section 2). We argue
that the modelling community would benefit from a more generic approach, which is not
restricted to particular modelling languages or application scenarios.

In this paper, we present a set theory-based model pattern matching approach, which is
generic and thus not restricted regarding its application domain or modelling language.
We base this approach on set theory as any model can be regarded as a set of objects and
relationships – regardless of the modelling language or application domain. Set opera-
tions are used to construct any structural model pattern for any purpose. Therefore, we
propose a collection of functions acting on sets of model elements and define set opera-
tors to combine the resulting sets of the functions (cf. Section 3). This way, we are able
to specify structural model patterns for a given modelling language in form of expres-
sions built of the proposed functions and operators. These pattern descriptions can be
matched against conceptual models of this language resulting in sets of model elements,
which represent particular pattern occurrences. As a specification basis, we use a generic
meta-meta model being able to instantiate any modelling language. Consequently, a
meta model-based specification of the modelling language the patterns are defined for is
necessary for the application of our approach. In this paper, we provide an application
example for Event-driven Process Chains (EPC) [Sc00] (cf. Section 4). Furthermore, we
present a prototypical modelling tool implementation that shows the applicability of the
approach. The example of Section 4 serves again as the application scenario (cf. Sec-
tion 5). Finally, we conclude our paper and outline further need for research (cf. Sec-
tion 6).

2 Related Work

Supporting the structural analysis of conceptual models, fundamental work is done in the
field of graph theory addressing the problem of graph pattern matching [GMS05; Fu95;
VVS06, VM97]. Based on a given graph, these approaches discuss the identification of
structurally equivalent (homomorphism) or synonymous (isomorphism) parts of the
given graph in other graphs. To identify such parts, several pattern matching algorithms
are proposed, which make use of a pattern definition as comparison criteria to find corre-
sponding parts in other graphs. The algorithms compute walks through the graphs in
order to analyze its nodes and its structure. As a result, they identify patterns represent-
ing corresponding parts of the compared graphs. Thus, a pattern is based on a particular
labelled graph section and is not predefined independently. Some approaches are limited
to specific types of graphs (e.g., the approaches of [Fu95; VaVS06] are restricted to
labelled directed graphs).
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In the context of process models, so-called behavioural approaches have been proposed
[Hi93; MAW08; Hi05]. Two process models are considered equivalent if they behave
identically during simulation. This implies that the respective modelling languages pos-
sess formal execution semantics. Therefore, the authors focus on Petri Nets and other
workflow modelling languages [DDM08]. Moreover, due to the requirement of model
simulation, these approaches generally consider process models as a whole. Patterns as
model subsets are only comparable if they are also executable. Hence, not every pattern
– even if provided with formal execution semantics – can be used for matching.

In the domain of database engineering, various approaches have been presented, which
address the problem of schema matching. Two input schemas (i.e., descriptions of data-
base structures) are taken and mappings between semantically corresponding elements
are produced [RB01]. These approaches operate on single elements only [LC00] or as-
sume that the schemas have a tree-like structure [MBR01]. Recently, the methods devel-
oped in the context of database schema matching have been applied in the field of ontol-
ogy matching as well [Au05]. Additionally, approaches explicitly dedicated to matching
ontologies have been presented. They usually utilize additional context information (e.g.,
a corresponding collection of documents [SM01]), which is not given in standard con-
ceptual modeling settings. Moreover, as schema-matching approaches operate on ap-
proximation-basis, similar structures – and not exact pattern occurrences – are addressed.
Consequently, these approaches lack the opportunity of including explicit structure de-
scriptions (e.g., paths of a given length or loops not containing given elements) in the
patterns.

Design patterns are used in systems analysis and design to describe best-practice solu-
tions for common recurring problems. Common design situations are identified, which
can be modelled in various ways. The most desirable solution is identified as a pattern
and recommended for further usage. The general idea originates from [AIS77], who
identified and described patterns in the field of architecture. [Ga95] and [Fo02] popular-
ized this idea in the domain of object-oriented systems design. Workflow patterns, that is
patterns applied to workflow models, is another dynamically developing research do-
main regarding patterns [Aa03]. However, the authors do not consider pattern matching.
Instead, the modeller is expected to adopt the patterns as best-practice and to apply them
intuitively whenever a common problem situation is met. A methodical pattern matching
support is not addressed.

Patterns are also proposed as an indicator for possible conflicts typically occurring in the
modelling and model integration process. [Ha94] proposes a set of general patterns for
Entity-Relationship Models (ERMs [Ch76]). On the one hand, these patterns depict
possible structural errors that may occur. For such error patterns corresponding patterns
are proposed, which provide correct structures. On the other hand, sets of model patterns
are discussed, which possibly lead to conflicts while integrating such models into a total
model. Similar work in the field of process modelling is done by [Me07]. Based on the
analysis of EPCs, he detects a set of general patterns, which depict syntactical errors in
EPCs. However, these two approaches focus on particular structural patterns for specific
modelling languages rather than a pattern definition and matching approach for arbitrary
modelling languages.
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3 Specification of Structural Model Patterns

3.1 Sets as a Basis for Pattern Matching

The idea of our approach is to regard a conceptual model as a set of model elements.
Here, we further distinguish between objects representing nodes and relationships repre-
senting edges interrelating objects. Starting from this set, pattern matches are searched
by performing set operations on this basic set. By combining different set operations, the
pattern is built up successively. Given a pattern definition, the matching process returns
a set of model subsets representing the pattern matches found. Every match found is put
into an own subset. The following example illustrates the general idea.

A pattern definition consists of three objects of different types that are interrelated with
each other by relationships. A pattern match within a model is represented as a set con-
taining three different objects and three relationships that connect them. To distinguish
multiple pattern matches, each match is represented as a separate subset. Thus, the result
of a pattern matching process is represented by a set of pattern matches (i.e., a set of sets,
cf. Fig. 1).

Fig. 1. Representation of Pattern Matches through Sets of Elements

3.2 Definition of Basic Sets

Therefore, as a basis for the specification of structural model patterns, we use a generic
specification environment for conceptual modelling languages and models (cf. Fig. 2)
applying the Entity-Relationship notation with (min,max)-cardinalities [ISO82]. Model-
ling languages typically consist of modelling objects that are interrelated through rela-
tionships (e.g., nodes and edges). In some modelling languages, relationships can be
interrelated in turn (e.g., association classes in UML Class Diagrams [OMG09]).
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Fig. 2. Generic Specification Environment for Conceptual Modelling Languages and Models

Hence, modelling languages consist of element types, which are specialized into object
types (i.e., nodes) and relationship types (e.g., edges and links). In order to allow rela-
tionships between relationships, the relationship type is defined as a specialization of the
element type. Each relationship type has a source element type, from which it originates,
and a target element type, to which it leads. Relationship types are either directed or
undirected. Whenever the attribute directed is FALSE, the direction of the relationship
type is ignored. The instantiation of modelling languages leads to models, which consist
of particular elements. These are instantiated from their distinct element type. Elements
are specialized into objects and relationships. Each of the latter leads from a source
element to a target element. Objects can have values which are part of a distinct domain.
For example, the value of an object “name” contains the string of the name (e.g., “prod-
uct”). As a consequence, the domain of the object “name” has to be “string” in this case.
Thus, attributes are considered as objects.

For the specification of structural model patterns we define the following sets, elements,
and properties originating from the specification environment:

% E: set of all elements available; e!E is a particular element.
% $$(E): power set of E.
% O: set of all objects available; O"E; o!O is a particular object.
% R: set of all relationships available; R"E; r!R is a particular relationship.
% A: set of all element types available; a!A is a particular element type.
% B: set of all object types available; B"A; b!B is a particular object type.
% C: set of all relationship types available; C"A; c!C is a particular relationship type.
% I: set of all instantiations available; I"A/E; (a,e)!I is a particular instantiation.
% T: set of all relationship targets available; T"E/R; (e,r)!T is a particular target.
% S: set of all relationship sources available; S"E/R; (e,r)!S is a particular source.
% X: set of elements with x!X"E.
% Xk: sets of elements with Xk"E and k!..0
% xl: distinct elements with xl!E and l!..0
% Y: set of objects with y!Y"O.
% Z: set of relationships with z!Z"R.
% directed(c): property directed of a particular relationship type c.
% domain(o): property domain of a particular object o.
% value(o): property value of a particular object o.
% nx: positive natural number nx!N1
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% Rd: set of all directed relationships available;
Rd"R, ((cd,rd)!I(directed(cd)=TRUE(cd! C) 1rd! Rd

% Td: set of all directed relationship targets available; Td"T, (rd!Rd) 1(e,rd)!T
% Sd: set of all directed relationship sources available; Sd"S, (rd!Rd) 1(e,rd)!S
% Tu and Su are undirected counterparts; Tu=T\Td and Su=S\Sd

3.3 Definition of Set-modifying Functions

Building up structural model patterns successively requires performing set operations on
these basic sets. In the following, we introduce predefined functions on these sets in
order to provide a convenient specification environment for structural model patterns
dedicated to conceptual models. Each function has a defined number of input sets and
returns a resulting set. For every function, we specify the input and output sets and pro-
vide a formal specification based on predicate logic. In addition, we provide textual
explanations where necessary. First, since a goal of the approach is to specify any struc-
tural pattern, we must be able to reveal specific properties of model elements (e.g., type,
value, or value domain):

% ElementsOfType(X,a)" E is provided with a set of elements X and a distinct element
type a. It returns a set containing all elements of X that belong to the given type:
ElementsOfType(X,a)={x!X|(a,x)!I}

% ObjectsWithValue(Y,valueY)"O takes a set of objects Y and a distinct value valueY.
It returns a set containing all objects of Y whose values equal the given one:
ObjectsWithValue(Y,valueY)={y!Y|value(y)=valueY}

% ObjectsWithDomain(Y,domainY))"O takes a set of objects Y and a distinct domain
domainY. It returns a set with all objects of Y whose domains equal the given one:
ObjectsWithDomain(Y,domainY))={y!Y|domain(y)=domainY}

Second, relations between elements have to be revealed in order to assemble complex
pattern structures successively. Functions are required that combine elements and their
relationships and elements that are related respectively.

% ElementsWithRelations(X,Z)"$$(E) is provided with a set of elements X and a set of
relationships Z. It returns a set of sets containing all elements of X and all relation-
ships of Z, which are connected. Each occurrence is represented by an inner set:
EWR(x1,Z)={z!Z|(x1,z)!T'(x1,z)!S}){x1}, x1!E
ElementsWithRelations(X,Z)={EWR(x,Z)}, x!X

% ElementsWithOutRelations(X,Zd)"$$(E) is provided with a set of elements X and a set
of relationships Z. It returns a set of sets containing all elements of X that are con-
nected to outgoing relationships of Z, including these relationships. Each occurrence
is represented by an inner set:
EWOR(x1,Zd)={zd!Zd|(x1,zd)!Sd}){x1}, x1!E
ElementsWithOutRelations(X,Zd)={EWOR(x,Zd)}, x!X
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% ElementsWithInRelations(X,Z)"$$(E) is defined analogously:
EWIR(x1,Z)={zd!Zd|(x1,zd)!Td}){x1}, x1!E
ElementsWithInRelations(X,Zd)={EWIR(x,Zd)}, x!X

% ElementsDirectlyRelatedInclRelations(X1,X2)"$$(E) is provided with two sets of
elements X1 and X2. It returns a set of sets containing all elements of X1 and X2 that
are connected directly via relationships of R, including these relationships. The direc-
tions of the relationships given by their “Source” or “Target” assignment are ignored.
Furthermore, the attribute “directed” of the according relationship types has to be
FALSE. Each occurrence is represented by an inner set:
EDRIR(x1,X2)={x2!X2,z!Ru|(x1,z)!Su((x2,z)!Tu'(x2,z)!Su((x1,z)!Tu}){x1}
ElementsDirectlyRelatedInclRelations(X1,X2)={EDRIR(x1,X2)}, x1!X1

% DirectSuccessorsInclRelations(X1,X2)"$$(E) is provided with two sets of elements X1
and X2. It returns a set of sets containing all elements of X1 and X2 that are connected
directly via relationships of R, including these relationships. The directions of the re-
lationships are predefined, this is only relationships from elements of X1 to elements
of X2 are considered. Each occurrence is represented by an inner set:
DSIR(x1,X2)={x2!X2,z!Rd|(x2,z)!Sd((x1,z)!Td}){x1}
DirectSuccessorsInclRelations(X1,X2)={DSIR(x1,X2)}, x1!X1

Third, in order to construct model patterns representing recursive structures (e.g., a path
of an arbitrary length consisting of alternating elements and relationships) the following
functions are defined. For the specification of recursive structures, we make use of
mathematical sequences that have to be transformed into sets. Therefore, we define an
auxiliary function Set((xi))={xi!E|xi!(xi)}"E.

% Paths(X1,Xn)"$$(E) takes two sets of elements as input and returns a set of sets con-
taining all sequences, which lead from any element of X1 to any element of Xn. The
directions of the relationships, which are part of the paths, are ignored. Furthermore,
the attribute “directed” of the according relationship types has to be FALSE. The
elements being part of the paths do not necessarily have to be elements of X1 or Xn,
but can also be of E\X1\Xn. Each path found is represented by an inner set:
PX(x1,xn)={Set((x1,x2,…,xn))|x2,…,xn-1!E(((xi,xi+1)!Su'(xi,xi+1)!Tu))11+i,n}
Paths(X1,Xn)=$ PX(x1,xn)x1!X1,xn!Xn

% DirectedPaths(X1,Xn)"$$(E) is the directed counterpart of Paths. It returns only paths
containing directed relationships of the same direction. Each such path found is rep-
resented by an inner set:
DPX(x1,xn)={Set((x1,x2,…,xn))|x2,…,xn-1!E((((x2i-1,x2i)!Sd((x2i+1,x2i)!Td11+i+ &n/2-)
'((x2i,x2i-1)!Td((x2i,x2i+1)!Sd11+i+ &n/2-)
'((x2i-1,x2i)!Sd((x2i+1,x2i)!Td((xn-1,xn)!Sd11+i+ &n/2--1)
'((x2i,x2i-1)!Td((x2i,x2i+1)!Sd((xn,xn-1)!Td11+i+ &n/2--1))11+i,n}
DirectedPaths(X1,Xn)=$ DPX(x1,xn)x1!X1,xn!Xn

% Loops(X)"$$(E) takes a set of elements as input and returns a set of sets containing all
sequences, which lead from any element of X to itself. The direction of relations and
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path elements are handled analogously to Paths. Each loop found is represented by
an inner set:
Loops(X)=$ PX(x,x)x!X

% DirectedLoops(X)"$$(E) is defined analogously:
DirectedLoops(X)=$ DPX(x,x)x!X

In order to provide a convenient specification environment for structural model patterns,
we define some additional functions that are derived from those already introduced:

% ElementsWithRelationsOfType(X,Zd,cd)"$$(E) is provided with a set of elements X, a
set of relationships Zd and a distinct relationship type cd. It returns a set of sets con-
taining all elements of X and relationships of Zd of the type cd, which are connected.
Each occurrence is represented by an inner set:
ElementsWithRelationsOfType(X,Zd,cd)=
ElementsWithRelations(X,ElementsOfType(Zd,cd))

% ElementsWithOutRelationsOfType(X,Zd,cd)"$$(E) is provided with a set of elements
X, a set of relationships Zd and a distinct relationship type cd. It returns a set of sets
containing all elements of X that are connected to outgoing relationships of Zd of the
type cd, including these relationships. Each occurrence is represented by an inner set:
ElementsWithOutRelationsOfType(X,Zd,cd)=
ElementsWithOutRelations(X,ElementsOfType(Zd,cd))

% ElementsWithInRelationsOfType(X,Zd,cd)"$$(E) is defined analogously to Elements-
WithOutRelationsOfType:
ElementsWithInRelationsOfType(X,Zd,cd)=
ElementsWithInRelations(X,ElementsOfType(Zd,cd))

% ElementsWithNumberOfRelations(X,nx)"$$(E) is provided with a set of elements X
and a distinct number nx. It returns a set of sets containing all elements of X, which
are connected to the given number of relationships of R, including these relation-
ships. Each occurrence is represented by an inner set:
EWNR(x)={r!R|(x,r)!T'(x,r)!S}){x}
ElementsWithNumberOfRelations(X,nx)={EWNR(x)| |EWNR(x)|=nx+1}

% ElementsWithNumberOfOutRelations(X,nx)"$$(E) and
ElementsWithNumberOfInRelations(X,nx)"$$(E) are defined analogously:
o EWNIR(x)={r!Rd|(x,r)!Td}){x}

ElementsWithNumberOfInRelations(X,nx)={EWNIR(x)| |EWNIR(x)|=nx+1}
o EWNOR(x)={r!Rd|(x,r)!Sd}){x}

ElementsWithNumberOfOutRelations(X,nx)={EWNOR(x)| |EWNOR(x)|=nx+1}
% ElementsWithNumberOfRelationsOfType(X,c,nx)"$$(E) is provided with a set of
elements X, a distinct relationship type c and a distinct number nx. It returns a set of
sets containing all elements of X, which are connected to the given number of rela-
tionships of R of the type c, including these relationships. Each occurrence is repre-
sented by an inner set:
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EWNRT(x,c)={r!R|(c,r)!I(((x,r)!T'(x,r)!S)}){x}
ElementsWithNumberOfRelationsOfType(X,c,nx)=
{EWNRT(x,c)| |EWNRT(x,c)|=nx+1}

% ElementsWithNumberOfOutRelationsOfType(X,cd,nx)"$$(E) and
ElementsWithNumberOfInRelationsOfType(X,cd,nx)"$$(E) are defined analogously:
o EWNIRT(x,cd)={r!Rd|(cd,r)!I((x,r)!Td}){x}

ElementsWithNumberOfInRelationsOfType(X,cd,nx)=
{EWNIRT(x,cd)| |EWNIRT(x,cd)|=nx+1}

o EWNORT(x,cd)={r!Rd|(cd,r)!I((x,r)!Sd}){x}
ElementsWithNumberOfOutRelationsOfType(X,cd,nx)=
{EWNORT(x,cd)| |EWNORT(x,cd)|=nx+1}

% PathsContainingElements(X1,Xn,Xc)"$$(E) is provided with three sets of elements
X1,Xn, and Xc. It returns a set of sets containing elements that represent all paths from
elements of X1 to elements of Xn, which each contain at least one element of Xc. The
direction of relations and path elements are handled analogously to Paths. Each path
found is represented by an inner set:
PCE(x1,xn,Xc)={Set((x1,x2,…,xn))|x2,…,xn-1!E(0xc!{x2,…,xn-1}(
((xi,xi+1)!Su'(xi,xi+1)!Tu)11+i,n}
PathsContainingElements(X1,Xn,Xc)=$ PCE(x1,xn,Xc#x1!X1,xn!Xn

% DirectedPathsContainingElements(X1,Xn,Xc)"$$(E),
PathsNotContainingElements(X1,Xn,Xc)"$$(E), and
DirectedPathsNotContainingElements(X1,Xn,Xc)"$$(E) are defined analogously:
o DPCE(x1,xn,Xc)={Set((x1,x2,…,xn))|x2,…,xn-1!E(0xc!{x2,…,xn-1}(

(((x2i-1,x2i)!Sd((x2i+1,x2i)!Td11+i+ &n/2-)
'((x2i,x2i-1)!Td((x2i,x2i+1)!Sd11+i+ &n/2-)
'((x2i-1,x2i)!Sd((x2i+1,x2i)!Td((xn-1,xn)!Sd11+i+ &n/2--1)
'((x2i,x2i-1)!Td((x2i,x2i+1)!Sd((xn,xn-1)!Td11+i+ &n/2--1))11+i,n}
DirectedPathsContainingElements(X1,Xn,Xc)=$ DPCE(x1,xn,Xc)x1!X1,xn!Xn

o PNCE(x1,xn,Xc)={Set((x1,x2,…,xn))|x2,…,xn-

1!E\Xc(((xi,xi+1)!Su'(xi,xi+1)!Tu)11+i,n}
PathsNotContainingElements(X1,Xn,Xc)=$ PNCE(x1,xn,Xc)x1!X1,xn!Xn

o DPNCE(x1,xn,Xc)={Set((x1,x2,…,xn))|x2,…,xn-1!E\Xc
((((x2i-1,x2i)!Sd((x2i+1,x2i)!Td11+i+ &n/2-)
'((x2i,x2i-1)!Td((x2i,x2i+1)!Sd11+i+ &n/2-)
'((x2i-1,x2i)!Sd((x2i+1,x2i)!Td((xn-1,xn)!Sd11+i+ &n/2--1)
'((x2i,x2i-1)!Td((x2i,x2i+1)!Sd((xn,xn-1)!Td11+i+ &n/2--1))11+i,n}
DirectedPathsNotContainingElements(X1,Xn,Xc)=$ DPNCE(x1,xn,Xc)x1!X1,xn!Xn

% LoopsContainingElements(X,Xc)"$$(E),
DirectedLoopsContainingElements(X,Xc)"$$(E),
LoopsNotContainingElements(X,Xc)"$$(E), and
DirectedLoopsNotContainingElements(X,Xc)"$$(E) are defined analogously:
o LoopsContainingElements(X,Xc)=$ PCE(x,x,Xc#x!X
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o DirectedLoopsContainingElements(X,Xc)=$ DPCE(x,x,Xc#x!X

o LoopsNotContainingElements(X,Xc)=$ PNCE(x,x,Xc#x!X

o DirectedLoopsNotContainingElements(X,Xc)=$ DPNCE(x,x,Xc#x!X

3.4 Definition of Set Operators for Sets of Sets

By nesting the functions introduced above, it is possible to build up structural model
patterns successively. The results of each function can be reused adopting them as an
input for other functions. In order to combine different results, the basic set operators
union ()), intersection (*), and complement (\) can be used generally. Since it should be
possible to combine not only sets of pattern matches (i.e., sets of sets) but also the pat-
tern matches themselves, this is the inner sets, we define additional set operators. These
operate on the inner sets of two sets of sets respectively (cf. Table 1).

Basic Sets Operator Definition Operator Symbol

F,G"$$(E), f!F, g!G Join(F,G)={f)g|0e!E:e!f(e!g} F G
F,G"$$(E), f!F, g!G InnerIntersection(F,G)={f*g} F G
F,G"$$(E), f!F, g!G InnerComplement(F,G)={f\g|0e!E:e!f(e!g} F G
F"$$(E), f!F SelfUnion(F)=$ ff!F F
F"$$(E), f!F SelfIntersection(F)=% ff!F F

Table 1. Set Operators for Sets of Sets

The Join operator performs a Union operation on each inner set of the first set with each
inner set of the second set. Since we regard patterns as cohesive, only inner sets that
have at least one element in common are considered. The InnerIntersection operator
intersects each inner set of the first set with each inner set of the second set. The Inner-
Complement operator applies a complement operation to each inner set of the first outer
set combined with each inner set of the second outer set. Only inner sets that have at
least one element in common are considered.

As most of the functions introduced in Section 3.3 expect simple sets of elements as
inputs, we introduce further operators that turn sets of sets into simple sets. The Self-
Union operator merges all inner sets of one set of sets into a single set performing a
union operation on all inner sets. The SelfIntersection operator performs an intersection
operation on all inner sets of a set of sets successively. The result is a set containing
elements that each occur in all inner sets of the original outer set.

4 Application of Structural Model Patterns

To illustrate the usage of the set functions, we apply our approach to an EPC application
scenario. In the scenario, the approach is applied to complex syntax verification in EPCs.
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Therefore, we regard a simplified modelling language of EPCs. Models of this language
consist of the object types function, event, AND connector, OR connector, and XOR
connector (i.e., B={function, event, AND, OR, XOR}). Furthermore, EPCs consist of
different relationship types that lead from any object type to any other object type, ex-
cept from function to function and from event to event. All these relationship types are
directed, (i.e., c.directed=TRUE 1 c!C).

A common error in EPCs is that decisions (i.e., XOR or OR splits) are modelled succes-
sively to an event. Since events are passive element types of an EPC, they are not able to
make a decision [Sc00]. Hence, any directed path in an EPC that reaches from an event
to a function and contains no further events or functions but an XOR or OR split is a
syntax error. In order to reveal such errors, we specify the following exemplary struc-
tural model pattern:

DirectedPathsNotContainingElements (
ElementsOfType (O, 'Event'),
ElementsOfType (O, 'Function'),
(ElementsOfType (O, 'Event') UNION ElementsOfType (O, 'Function') ) )

1

INTERSECTION
DirectedPathsContainingElements (
ElementsOfType (O, 'Event'),
ElementsOfType (O, 'Function'),

2

( ( ElementsOfType (O, 'OR') UNION ElementsOfType(O, 'XOR') ) 3
COMPLEMENT
( O INNER_INTERSECTION ( ElementsWithNumberOfOutRelations (
( ElementsOfType (O, 'XOR') UNION ElementsOfType (O, 'OR') ), 1)
UNION ElementsWithNumberOfOutRelations (
( ElementsOfType (O, 'XOR') UNION ElementsOfType (O, 'OR') ), 0) ) ) ) )

4

The first expression (cf. 1st block) determines all paths that start with an event and end
with a function and do not contain any further functions or events. The result is inter-
sected with all paths starting with an event and ending with a function (cf. 2nd block) that
contain OR and/or XOR connectors (cf. 3rd block), but only those that are connected to 2
or more outgoing relationships. Thus, these XORs and ORs are subtracted by XORs and
ORs that are only connected to one or less relationship(s) (cf. 4th block). Summarizing,
all paths are returned that lead from an event to a function not containing any further
events and functions, and that contain splitting XOR and/or OR connectors (cf. Section 5
for implementation issues and exemplary results). This way, any syntax error pattern can
be specified and applied to any model base.

5 Tool Support

In order to show the feasibility of the approach, we have implemented a plug-in for a
meta modelling tool that was available from a former research project. The tool consists
of a meta modelling environment that is based on the generic specification approach for
modelling languages shown in Fig. 2.
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The plug-in provides a specification environment for structural model patterns, which is
integrated into the meta modelling environment of the tool, since the patterns are de-
pendent on the respective modelling language. All basic sets, functions, and set operators
introduced in Section 3 are provided and can be used to build up structural model pat-
terns successively. In order to gain a better overview over the patterns, they are dis-
played and edited in a tree structure. The tree-structure is built up through drag-and-drop
of the basic sets, functions and set operators. Whenever special characteristics of an
according modelling language (function, event etc.) or variables such as numeric values
or names are used for the specification, this is expressed by using a “variable” element.
The variable element, in turn, is instantiated by selecting a language-specific characteris-
tic from a menu or by entering a particular value (such as “2”).

Navigation Modeling Language Editor Perspective Editor Administration Shape Management Plug-in Manager

Edit

Save

Close Model

Select Connect Zoom in Zoom out

Width Page

Show shapes Print

Connection points

Grid

Page setup

Pattern:

Model selection:

Matches:

New search Model Selection

Pattern selection

[em] Structural Pattern Matching

Search Cancel

Connection

Model Modeling View Modeling Environment Pattern Matching

Language: EPC

Language: EPC

Language: EPC

Language: EPC

Search

Fig. 3. Result of the Pattern Matching Process of “Decision split after event...”

The patterns specified can be applied to any model that is available within the model
base and that was developed with the according modelling language. Fig. 3 shows an
exemplary model that was developed with the modelling language of EPCs and that
contains a syntax error consisting of a decision split following an event. The structural
model pattern matching process is started by selecting the appropriate pattern to search
for. Every match found is displayed by marking the according model section. The user
can switch between different matches. In our example, two matches are found, as the
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decision split following the event leads to two different paths (the second match is
shown in the lower right corner of Fig. 3).

6 Conclusion and Outlook

Supporting model analysis by a generic pattern matching approach is promising, as it is
not restricted to a particular problem area or modelling language. A first rudimentary
evaluation through implementation and exemplary application of the approach has
shown its general feasibility. Nevertheless, there still remains need for further research.

In the short term, we will focus on completing the evaluation of the presented approach.
Although our current prototypical implementation already shows its general feasibility,
further evaluation of our approach is necessary. We will conduct a series of with-without
experiments in real-world scenarios. They will show if the presented function set is
complete, if the ease of use is satisfactory for users not involved in the development of
the approach, and if the application of the approach actually leads to an improved model
analysis support. Although we strongly believe that our tool-implemented approach will
inevitably support modellers in the task of model analysis and integration, this needs to
be objectively proven.

Medium-term research will address further applications for the structural model pattern
matching approach presented here. For instance, we will question if modelling conven-
tions on the basis of structural model patterns that are provided prior to modelling are
able to increase the comparability of conceptual models.
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