Chokkathukalam et al. 153

Expression profiles of metabolic models to predict
compartmentation of enzymes in multi-compartmental
systems

Achuthanunni Chokkathukalam, Mark Poolman, Chiara Ferrazzi and David Fell

cbaunni @brookes.ac.uk

Abstract: Enzymes and other proteins coded by nuclear genes are targeted towards
various compartments in the plant cell. Here, we describe a method by which localisa-
tion of enzymes in a plant cell may be predicted based on their transcription profile in
conjunction with analysis of the structure of the metabolic network. This method uses
reaction correlation coefficients to identify reactions in a metabolic model that carry
similar flux.

First a correlation matrix for the expression of genes of interest is calculated and
the columns clustered hierarchically using the correlation coefficient. The rows clus-
tered using reaction correlation coefficients. In the resulting matrix, we show that the
genes in a particular compartment are clustered together and compartmental predic-
tions, with respect to a reference gene can be readily made.

1 Introduction

Spatial organisation of metabolism and other cellular functions is a well known feature of
plant cells. Enzymes and other proteins coded by nuclear genes are targeted towards var-
ious compartments in the plant cell with the help of the targeting information within their
amino acid sequence. Identifying the localisation of proteins is thus an important step
towards a broader understanding of the cellular function as a whole and may help in deter-
mining the role of thousands of uncharacterised proteins predicted by the genome sequenc-
ing projects. Modern organelle-focused experimental approaches can identify proteins in
a given compartment. However, reliable protein localisation requires that the technique
used must be able to distinguish between genuine organelle residents and contaminating
proteins [DDWLO04]. Although reasonably pure preparations of some organelles can be
achieved, there are many difficulties associated with measuring and characterising proteins
that are in a compartment [DHST06]. Nevertheless, a variety of experimental methods are
currently being used to identify protein localisation. Recently chimeric fusion proteins
(FPs) and mass spectrometry (MS) techniques have been successfully employed to deduce
the localisation of approximately 1100 and 2600 proteins, respectively [HVTFT06]. Al-
though these techniques have accelerated the flow of protein localisation information, the
subcellular location of the majority of proteins in a plant cell is still not known.

A relatively simple, low-cost and rapid means to tackle this issue is to employ bioinfor-
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matic targeting algorithms to predict protein localisation from amino acid sequence. A
number of software tools exists, including TargetP [EBVHNO7], Predotar [SPLL04], iP-
SORT [BTM'02], SubLoc [HS01], MitoProt II [CV96], MITOPRED [GFS04], PeroxiP
[EEVHCO3], and WoLF PSORT [HPO™07], which can predict proteins targeted towards
plastid, cytosol, nucleus, mitochondria, peroxisome or the endoplasmic reticulum. How-
ever, the output of such programs has been found to be somewhat inconsistent with each
other, or with experimentally determined results [HVTFMOS5], making them unreliable for
some analyses.

The advent of whole-system approaches such as microarrays and metabolomics and the
accumulation of such high-throughput data have created new opportunities for studying
how reactions are coordinated to meet cellular demands. Microarray experiments monitor
the expression of thousands of genes simultaneously. Grouping together genes of similar
expression pattern is a general starting point in the analysis of expression data. Similarity
between genes is measured by the correlation of their expression profiles and hierarchi-
cal clustering methods are used to partition data into clusters of genes exhibiting similar
expression patters [IBB04]. Numerous studies have shown that co-expression patterns of
gene expression across many microarray datasets form modules of genes that are function-
ally correlated [WPM ™06, MDO™08]. Recently this approach was successfully employed
in identifying new genes involved in cellulose synthesis in plants [PWM™05].

Here, we describe a method by which localisation of enzymes may be predicted based
on the co-expression profiles of genes coding for reactions in a structural model of plant
carbon metabolism. Structural models contain stoichiometries of reactions in a metabolic
system. Based on the correlation between these reactions, it can be represented hierarchi-
cally as a metabolic tree in which the root node represents the complete system, leaf nodes
represent individual reactions, and the intermediate nodes represent metabolic modules
capable of the net interconversion of metabolites common to reactions inside and outside
the module [PSPFO7]. Our technique uses reaction correlation profiles generated from
metabolic models together with expression correlation profiles obtained from the microar-
rray data to identify the distribution of enzymes in a particular compartment with respect
to the experimentally determined location of a protein representing that compartment.

2 Materials and methods
2.1 Construction of the model of plant carbon metabolism

A structural model of plant carbon metabolism including plastid and cytosol compart-
ments was constructed (Figure 1). The model contains reactions of the Calvin cycle, light
reactions and glycolysis and is based, in part, on previous models of plant metabolism con-
structed in our group [PFRO3, Ass05]. Protons, COs, pyruvate and sucrose were made ex-
ternal (metabolites that are in constant exchange with the extracellular environment) yield-
ing a model with a total of 53 reactions and 49 metabolites. Reversibility of the reactions
was determined based on literature. All modelling and model analysis were performed
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Figure 1: Reaction schema of the model of plant carbon metabolism. For simplicity, the light re-
actions are depicted here as two separate reactions producing ATP and NADPH. Protons, CO2 and
sucrose are considered external. ‘_str’ and ‘_cyt’ represent the compartments stroma and cytosol,
respectively. Notice the transporters connecting reactions of the plastid and the cytosol.
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Figure 2: Metabolic tree constructed from the model showing four separate clusters containing reac-
tions capable of net interconversion of metabolites; A. Reactions of the Malate/Oxaloacetate shuttle.
B. Calvin cycle reactions. C. Reactions of glycolysis. D. Reactions involved in the regeneration of
cytosolic UDP. “_str’ and ‘_cyt’ represent the compartments chloroplast and cytosol, respectively.

using the metabolic modelling tool ScrumPy (http://mudshark.brookes.ac.uk) [Poo06].

The model represents the formation of sucrose and pyruvate from the Calvin cycle in-
termediates transported to the cytosol via specific transport proteins. It contains several
reactions such as phosphoglyceromutase, enolase, pyruvate kinase and malate dehydro-
genase that are active in both the chloroplast and cytosol. Presence of these reactions in
the model will enable us not only to identify their distribution between the compartments
but also to distinguish isoforms of genes that code for same reactions in both the com-
partments. This model is publically available as SBML or in the ScrumPy ‘.spy’ format
(http://mudshark.brookes.ac.uk/index.php/User:Cbaunni).

2.2 Expression data analysis of genes coding for reactions in the model

The gene to reaction associations describe the dependence of reactions on genes. The gene
to reaction associations in the model were mapped using the AraCyc [ZFT+05] database
(http://www.arabidopsis.org/biocyc/index.jsp). The result is a set of genes that potentially
code for all the reactions in the model.
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The expression data for analysing these genes were obtained from the Nottingham Ara-
bidopsis Stock Centre’s (NASC) microarray database (http://affymetrix.arabidopsis.info/).
The ‘super bulk gene’ file containing nearly 3500 hybridisations, each with expression
level measurements for over 22000 genes represented on the ATH1 array was downloaded
(http://affymetrix.arabidopsis.info/narrays/help/usefulfiles.html, March 2009). Expression
data from individual experiments were log-transformed; no further modification or scal-
ing was made on the data unless otherwise specified. All microarray data analysis was
performed using custom modules designed for ScrumPy.

Expression data for genes ultimately coding for reactions in the model were extracted and a
large-scale correlation analysis of expression values between these genes were performed
essentially as described by Causton et al. [CQBO03] by calculating the Pearson’s correlation
coefficient.

2.3 Clustering and analysis of the correlation matrix

A metabolic tree was generated from the model using the method described in [PSPF07]
(Figure 2). The order of the reactions in this tree was used to sort the genes along the rows
of the correlation matrix.

The columns of the matrix were hierarchically clustered based on the Pearson’s correlation
coefficient and an expression correlation tree was generated (Figure 3). Leaves of this tree
represent genes in the model and the intermediate nodes are clusters that represent genes
sharing similar functions. The columns of the correlation matrix were then sorted in the
order of the leaves of the expression correlation tree.

The correlation matrix was imported into TM4-MeV (http://www.tm4.org/mev.html) for
visualisation as heatmap [ESBB98]. The metabolic trees were visualised using MEGA
phylogenetic tree editor (http://www.megasoftware.net/) [KNDTOS].

3 Results and Discussion

3.1 Identification of correlated genes sharing similar flux

Metabolic tree generated from the model contain four separate clusters, each representing
reactions capable of net interconversion of metabolites (Figure 2). It is notable that re-
actions of the Calvin cycle and glycolysis are represented as separate nodes on the tree.
Clustering the rows of the correlation matrix based on the genes coding for reactions rep-
resented in these nodes can rearrange the heatmap vertically based on the similarities in
flux. On the other hand, hierarchically clustering the columns of the correlation matrix
grouped genes horizontally depending on their levels of expression. Doing so resulted in
the formation of clusters in the heatmap representing genes that are expressed together and
code for enzymes that share a similar flux (Figure 4).
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Figure 3: Expression correlation tree generated by hierarchically clustering correlation coefficients
of genes coding for reactions in the model showing two separate clusters. A. Genes that predomi-
nantly code for reactions in the cytosol correlate with each other B. Genes coding for Calvin cycle

)

intermediates cluster together. ‘_

is used to separate genes from reactions and ‘&’ is used to distin-

guish reactions that the gene code for. ‘_str’ and ‘_cyt’ represent the compartments chloroplast and

cytosol, respectively.
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Figure 4: Correlation matrix generated from the expression values of genes coding for reactions in
the steady state model. The correlation coefficient ranges from -1 (green) for perfect anticorrelation
to +1 (red) for perfect correlation, with zero (black) indicating no relationship. Columns were sorted
based on the clustering expression correlation coefficient and rows sorted by clustering based on
reaction correlation coefficient. ‘A’ and ‘B’ represent two distinct clusters observed in the correlation
matrix (Figure 3). Correlated genes in cluster ‘A’ were found to be highly correlated with reference
genes known to be localised in the chloroplast. Whereas correlated genes in cluster ‘B’ showed
higher correlation with genes localised in the cytoplasm. 1, 2, 3 and 4 represent clusters in the
metabolic tree representing reactions capable of net interconversion of metabolites (Figure 2).
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We found that genes coding for reactions in the Calvin cycle are found to be tightly corre-
lated between each other and they cluster together. The same holds true for genes coding
for glycolysis reactions. Isoforms of some Calvin cycle genes anticorrelate with other
genes coding for reactions of the Calvin cycle. However, those genes that were anticorre-
lated with the genes of Calvin cycle reactions are found to be tightly correlated with genes
of the glycolysis reactions, and vice versa. Similar cases can also be observed in case of
the isoforms of glycolytic genes.

A previous study on the transcriptional coordination of metabolic network in Arabidopsis
suggested that genes coding for reactions in a pathway show tighter levels of correla-
tion [WPMT06]. Results from our study correlates with the above observation and also
suggests that the expression profiles of genes can be used to distinguish their compartmen-
tation.

3.2 Identifying compartmentation of genes

Though, this technique is efficient in clustering genes based on their compartmentation,
identification of the compartment itself requires a reference gene whose localisation is al-
ready known. For example, the plastidic ribulose biphosphate carboxylase (Rubisco) gene
ATCG00490 was used as the reference to identify genes localised in the chloroplast. Com-
partments are identified by filtering out genes that are highly correlated with the reference
gene.

The results were compared with the various bioinformatic tools described in Section 1.
Comparison with predictions made by bioinformatic tools as a whole was not possible as
many of these tools were directed towards particular compartments. Compartmentation of
genes that were predicted to be in the chloroplast showed good agreement with tools such
as TargetP and Predotar, whereas mitochondrial predictions correlated with MITOPRED
and MitoProt II predictions.

This approach was used to predict the localisation of the complete set of genes coding for
the reactions in a model containing reactions of the chloroplast, cytosol and mitochon-
dria. Given a good quality microarray expression data containing sufficient experiments
that allow reliable statistical analysis, this technique can be used more generically. With
the large number of publically available metabolic networks and expression data, this ap-
proach may significantly contribute to the identification of enzyme localisation in many
different eukaryotic systems.
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