Integrating Feature Modeling into UML

Valentino Vrani¢ and Jan Snirc
Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technology
Slovak University of Technology, Illkovicova 3, 84216 Bratislava 4, Slovakia
vranic@fiit.stuba.sk, jan.snirc@gmail.com

Abstract: Feature modeling is an important approach to dealing with variability at
an abstract level in a hierarchical manner extensively used in software product lines.
For its use in conjunction with other UML models and MDA approach, it is impor-
tant to correctly integrate feature modeling into UML. In this paper, we present an
approach to integrating feature modeling into UML that respects abstractness of fea-
ture modeling elements. This is achieved by deriving feature modeling elements from
the deeper levels of the UML metamodel. We applied this approach to the essential
elements of feature modeling in the cardinality-based Czarnecki-Eisenecker notation
and selected elements specific to other notations. Since UML modeling tools do not
support such modifications of the UML metatmodel, in order to facilitate experimen-
tation with combining elements from different notations, we implemented this feature
modeling extension as a UML profile (in Enterprise Architect and Omondo UML).

1 Introduction

With a growing interest in software product lines, a need to deal with variability in a clean
and abstract way becomes more obvious. Feature modeling enables this in a hierarchi-
cal manner. It aims at expressing concepts by their features taking into account feature
interdependencies and variability in order to capture the concept configurability [CEQ0].

Having UML as a standard modeling language, it is important to integrate feature mod-
eling into it to facilitate its use in conjunction with other modeling techniques in UML.
Some degree of usage for configuration of other models may be achieved using stereotypes
and tagged values with external feature models [CAOS] or those based on a lightweight
UML extension [CA05]. However, in order to be able to fully employ feature modeling
in conjunction with other UML models and MDA approach, it is important to integrate
it correctly into UML. Concepts and features in feature modeling abstract from solution
mechanisms needed for their implementation in order to enable developer to fully concen-
trate on variability. They often map well to classes, but also to methods and operations in
general sense, aspects or other constructs.

The abstractness of concepts and features rules out simple extensions of UML based on
stereotypes of classes and their relationships because they all bear semantics concepts and
features do not have. For example, if a feature is represented as a stereotyped class, it
would be possible to apply aggregation and generalization to it, which represent solution

mechanisms, which are undesired in feature models. Therefore, we must go deep into
the heart of the UML metamodel and derive concepts and features from more abstract
elements without unwanted semantics in order to achieve a correct integration of feature
modeling into it.

In the following sections, we provide a basis for such an integration of feature modeling
into UML by extending its metamodel focusing on abstractness of feature modeling el-
ements. First, Sect. 2 identifies feature modeling essentials. Next, Sect. 3 presents our
approach to integrating core feature modeling elements into UML. Subsequently, Sect. 4
presents integrating of notation specific feature modeling into UML. Section 5 presents
a UML profile we developed to facilitate experimenting with combining different feature
modeling notations. Section 6 compares our approach to other UML extensions for feature
modeling. Finally, Sect. 7 concludes the paper and points out some issues requiring further
work.

2 Feature Modeling Essentials

Feature modeling is based around the notions of concept and feature. A concept is an
understanding of a class or category of elements in a domain. Individual elements that
correspond to this understanding are called concept instances.

A feature is an important property of a concept [CEQ0]. A feature may be common, in
which case it is present in all concept instances, or variable, in which case it is present
only in some concept instances. The features connected directly to a concept or feature
are being denoted as its direct features; all other features are its indirect features [CE00].

Any feature may be isolated and modeled further as a concept. Hence, being a feature is
actually a relationship between two concepts [Vra04]. However, the concepts identified
only in the context of other concepts, i.e. as their features, will be referred to as features
exclusively in order to emphasize the main concepts in a domain.

There are many different feature modeling notations [Vra04]. Generally speaking, a fea-
ture model consists of a set of feature diagrams (one for each concept), additional infor-
mation on concepts and features, and constraints and default dependency rules (associated
with feature diagrams).

A feature diagram is commonly understood as a directed tree, although it may also be
considered to be a connected directed graph [Vra04, FNO5], whose root represents a con-
cept and the rest of the nodes represent its features. Feature diagrams constitute the most
important part of a feature model and we will further in the paper concentrate on this part
of the feature model.

We will present the basic feature modeling notation by an example. Consider we are
developing a family of peer-to-peer chat systems (Fig. 1). An important concept in such a
system is a chat protocol. The chat protocol defines features available during a connection.
For the purpose of this study, we will assume a simplified version of such a protocol.

A user (Caller) sends a request for establishing a connection to another user (Connect).

P2P Connection

Priacy

‘ Encryption Algorithm ‘

>
RSA DES

‘ Hide Personeﬁ Information ‘

Callee

User®

Send Message
Sen File

‘ Terminate Connection ‘

Connect

User®

Encryt Files

‘ Encrypt Communication ‘

Figure 1: Peer-to-peer chat protocol in Czarnecki-Eisenecker notation.

This request has to be accepted by the user being called (Callee). Any of the two partic-
ipating sides may then send messages (Send Message) or terminate the connection (Ter-
minate Connection). These features are mandatory and are a part of any P2P Connection
concept instance.

The concept of user is modeled separately with the basic features relevant to peer-to-peer
chat systems (Fig. 2). This concept is referenced in the feature diagram of the P2P Con-
nection concept. Concept references from should be distinguished from other features in
a feature diagram. Here we use the R) mark put after the name of a concept reference for
this purpose. A concept reference is equivalent with the repetition of the whole feature
diagram of the referenced concept.

Picture

Figure 2: The concept of user referenced in the peer-to-peer chat protocol.

Optional features of the protocol include file transfer (Send File), encryption (Encrypt
Connection), as well as some privacy management (Privacy). These features don’t have to
be included in a concept instance, so we may have a communication system with restricted
functionality that doesn’t support file transfer.

Privacy support can be configured at finer level. A system can support hiding the user state
(Hide State) or personal information (Hide Personal Information), or both, but at least one
of these features has to be included if we include the (Privacy) feature. This is denoted by
grouping these two features as or-features, which is denoted by a filled arc. The privacy

management may also include an encryption algorithm to be used throughout a system to
encrypt messages and files.

The diagram in Fig. 1 is in original Czarnecki-Eisenecker notation, which is based on
FODA notation [KCH'90]. The same diagram in cardinality-based Czarnecki-Eisenecker
notation is depicted in Fig. 3. Cardinalities were first introduced to non-grouped features
based on practical experience [CBUEO2]. Later, the notation was extended to include
group cardinalities [CHEO5] as proposed by Riebisch [RBSP02].

P2P Connection

[1..1] Privacy

(1.1)

[1.1] 1.1
User® Connect

[1..1]

[0..1]

[0..1]

‘ Encryption Algorithm ‘

<0..1>
Hide State
ide State | mea] o

‘ Hide Personal Information ‘

0.1]

(1.1] Encrypt Files

Send Message [0..1]
[0..1]

‘ Encrypt Communication ‘
Send File

[1..1]

‘ Terminate Connection ‘

Figure 3: Peer-to-peer chat protocol in cardinality-based Czarnecki-Eisenecker notation.

In the contemporary version of this notation [CKO05], features in a group are considered to
have [0..1] cardinality (not shown in the diagram), but the cardinality may also be set
to [0..0] or [1..1] to denote features eliminated or selected, respectively, from the
group during specialization.

Figure 4 (adapted from [Vra04]) demonstrates the use of cardinalities to define features
that may be multiply included in a concept instance.! The concept being modeled is a
feature model itself. As we explained, a feature model consists of a set of feature dia-
grams (at least one), which is modeled by the Feature Diagram feature. We may also link
feature model to zero or more other artifacts, which is modeled by the Link feature. In
the original Czarnecki-Eisenecker notation, we would not be able to express cardinalities
in a such straightforward way and we would be forced either to model cardinality as a
feature [CEOO] or to use the idiom shown in Fig. 5 that can be generalized for a full sup-
port of cardinalities based on open feature groups, concept references, and parameterized

I'The original notation for optional and mandatory features, as well as for alternative and or-feature groups, is
also allowed and encouraged for its better readability in cardinality-based Czarnecki-Eisenecker notation, so it is
applied here, too.

concepts [Vra04].

Feature Model

\ ‘ New Feature Diagram

[1.4 [0..7] ‘ Delete Featu're Diagram ‘

Description

‘ Feature Diagram ‘ ‘Link ‘ ‘ Normalize ‘

Figure 4: Feature model concept (adapted from [Vra04]).

Feature Diagrams

Feature Diagram 1 Feature Diagram 2

Feature Diagram Feature Diagram

Figure 5: The plural form of the Feature diagram concept.

While we may expect further development of the notation, having cardinalities as a ba-
sis for expressing feature cardinality is unlikely to change. Moreover, we may imagine a
family of notations based on cardinalities. Therefore, further in this paper we will concen-
trate on the core elements of the feature modeling and show how some notation-specific
elements may be added.

3 Extending UML Metamodel with Core Feature Modeling Elements

The UML metamodel has been extended by adding new metaclasses and metarelation-
ships that represent feature modeling elements. Since a feature model doesn’t bear any
implementation connotation, the extension is based on the most abstract metaclasses. The
extension preserves relationships of existing elements. Thus, a model based on the origi-
nal UML metamodel will be correct in terms of the extended metamodel, too. The feature
modeling extension is enclosed in its package denoted as FMConstructs. This package
is merged into the Kernel UML package to assure its propagation throughout the language
(see Fig. 6).

The basis for all feature modeling elements is the FMElement abstract metaclass (see
Fig. 7). By deriving it from the Element metaclass we avoid including any underlying
semantics. Features constitute a subclass of FMElement. Each feature has to be named.
The same feature name may be used across one feature diagram. Even siblings may share
the same name which enables feature cloning as proposed in cardinality-based Czarnecki-
Eisenecker notation [CHEO5].

Kernel
- - ‘ RN
- - / \ N
«merge» «meP’ e» « rge» \(rge»
merg erge» «nerg egrge
- / \ ~.
-~ / AN =~
- -~ - / ~
FMConstructs Association Dependencies PowerTypes
Classes
A

«m%rge»
I

Interfaces

Figure 6: Merging package FMConstructs into Kernel [Obj05].

Using this extension, one can model feature diagrams as graphs. However, a common
understanding is that strictly hierarchical organization of feature diagrams as directed trees
each of which represents one concept is more beneficial than limiting. In our extension,
this can be achieved by introducing a stereotype <<concept>> for the feature diagram
root (sometimes called root feature).

The relationship between a feature and its subfeatures is modeled by the Subfeature-
Relationship metaclass as depicted in Fig. 8. To enable the use of feature cardi-
nalities, the SubfeatureRelationship is based also onthe MultiplicityEle—
ment.

Feature group membership is defined as a relationship between the base feature and two
or more subfeature relationships that belong to the group (see Fig. 9). To enable the use of

Element
(from Kernel)

T

FMElement
Name[0..1]: String

T

FMFeature
Name: String

Figure 7: FMElement metaclass.

Relationship MultiplicityElement
(from Kernel) (from Kernel)

SubfeatureRelationship | * Fbase feature {SUDSeTs source; 4

FMFeature

1 Fsubfeature {subsets target; 4

Figure 8: SubfeatureRelationship metaclass.

group cardinalities, the GroupRelationship is based also on the Multiplicity—
Element, as it was the case with SubfeatureRelationship. This is different from
the cardinality-based Czarnecki-Eisenecker notation in allowing features in groups to have
cardinalities, too. For pure cardinality-based Czarnecki-Eisenecker notation, cardinality 1
should be used.

We find representing feature groups as sets of subfeature relationships (edges) to be a
more appropriate solution than to represent them as sets of features (nodes), which is the
solution we considered originally [Sni05]. This corresponds to understanding features as
relationships between concepts as explained in Sect. 2.

Relationship MultiplicityElement

(from Kernel) (from Kernel)
GroupRelationship

+grouping featu
1

y 2
FMFeature SubfeatureRelationship

{subsets source} +grouped featurésubsets source}

Figure 9: GroupRelationship metaclass.

A mandatory feature could be defined as a stereotype of this relationship with cardinal-
ity <1..1>, and optional features with cardinality <0. .1> along with their common
graphical representation. Similarly, the most commonly used group cardinalities can be
stereotyped as alternative (<0 . . 1>) and or-features (<1. . x>).

4 Notation Specific Feature Modeling Elements

There are many notation specific extensions to feature modeling. Some approaches to
feature modeling (e.g. FODA and FORM) use a layered representation of feature models.

In such approaches, each feature belongs to some layer according to its type. To facilitate
this, we introduce the FMLayer metaclass derived from the FMElement metaclass. This
class serves as a container of feature modeling elements. Number of layers is considered
a method issue, so it is not prescribed in any way by the feature modeling extension.

FMElement
Namel0..1]: String

N

+owned

+owner

FMLayer

Figure 10: Layers in feature models.

While design spaces approach to feature modeling offers a quite different graphical no-
tation, it essentially enables to model a feature diagram in a FODA-style [Gey00]. This
approach introduces a notion of feature correlation that represents a form of expressing
additional constraints between features. A correlation may be weak or hard. A weak
correlation constitutes a recommendation to combining features in the form of a floating
point number in the range [-1, 11]. A hard correlation is represented as a boolean value
(combine or do not combine). Similarly as feature groups, a correlation is based upon
subfeature relationships rather than features themselves.

Relationship
(from Kernel) FMElement

N

Correlation N correlated feature 5 SubfeatureRelationship
WeakCorrelation HardCorrelation
value: Real value: Boolean

Figure 11: Correlation between features.

5 Feature Modeling Profile for UML

Contemporary UML modeling tools do not enable to modify the UML metamodel. It is
possible only to extend UML using profiles as stereotyped packages. Profiles represent

10

so-called lightweight extensions and may employ stereotypes, tagged definitions and con-
straints as extension mechanisms [Obj05].

We created a UML 2.0 profile? to facilitate experimenting with combining different feature
modeling notations. With this profile, we are not trying to mimic a correct integration
of feature modeling into UML, which we presented in the metamodel we proposed in
previous sections.

In our profile feature models are represented as trees, which is a common practice. Thus,
each diagram has a root node which represents a concept. A concept is modeled as a
stereotype of the Art i fact metaclass (see Fig. 12). A feature is modeled as a component
(see Fig. 13).

Deployments::Artifact

«extends» “dextgrids» ~ xextends» ~ ~«extends»
=" - / b ~ h —
— ~ - —

«stereotype» «stereotype» «stereotype» «stereotype»
Concept AlternativeVariationPoint OrVariationPoint GroupDependency

Figure 12: Elements based on Artifact.

Components::Component

«exé&:\nds»
|

«stereotype»
Feature

Figure 13: Feature.

Subfeature relationships (mandatory, optional, and a general cardinality-based relation-
ship) are modeled as Dependency metaclass stereotypes (see Fig. 14). Mandatory and
optional relationships are separate from the features as such (nodes), while in cardinality-
based relationship two tagged values at a feature are used to denote its cardinality <n, k>
as in cardinality-based Czarnecki-Eisenecker notation.

Since it n-ary relationships are not supported by modeling tools, feature groups are mod-
eled as variation points. They are based on Artifact metaclass (see again Fig. 12).
Three types of feature groups are defined in the profile. AlternativeVariation-
Point enables to define an alternative feature group with the possibility to set the mini-
mal number of features to be selected as a tagged value. Similarly, OrvVariationPoint
enables to define an or-feature group with the possibility to set the maximal number of fea-
tures to be selected as a tagged value. Finally, GroupDependency enables full control

2Feature modeling profiles for Enterprise Architect and Omondo UML are available at http://fiit.
stuba.sk/~vranic/fm/.

11

over the group cardinality <n, k> with tagged values as specified by the cardinality-
based Czarnecki-Eisenecker notation.

Core::Dependency

P
«extendss «exténds» ~ xextends»

- ~
— ~ -
-~ | ~
~

«stereotype» «stereotype» «stereotype»
Mandatory Optional SubfeatureDependency

Figure 14: Subfeature relationships.

The profile also embraces the two notation-specific extensions embraced in the metamodel
extension (see Sect. 3): layered feature models (as in FODA or FORM) and correlation
relationship (see Fig. 15). A layer is modeled as a package stereotype. Only a weak
correlation from design spaces notation is included and it is modeled as an association
stereotype with the tagged value in the range [-1, 1].

Core::Package Core::Association
«exét:\nds» «exée:\nds»
I I
«stereotype» «stereotype»
Layer Correlation

Figure 15: Notation-specific extensions in the UML feature modeling profile.

6 Related Work

There are several known UML extensions for feature modeling, but all represent light-
weight extensions like our UML profile presented in the previous section, which inevitably
adds undesired semantics to feature modeling elements. Such approaches have been char-
acterized as “diagram hacking” by Czarnecki and Eisenecker [CE00], but may serve well
as a solution at hand for feature modeling using UML modeling tools. On the other hand,
we are not aware of any attempt to provide a unifying basis for different feature modeling
notations.

Clauf employs a straightforward solution to extending UML with feature modeling by
representing a concept and feature as class stereotypes [ClaO1]. Features themselves bear
the information on variability expressed by three different stereotypes: <<mandatory>>,
optional>>,and alternative>>.

The most significant problem with Clau3’s approach lies in modeling feature relationships
using aggregation and generalization, which forces to make design decisions during do-

12

main analysis phase in which feature models are being created. Furthermore, alternative
features actually represent or-features®, while real alternative features (xor) are achieved
by applying {xor} constraint to the respective edges.

These constraints may be used to partition subfeatures of a feature into several groups of
alternative features, but there is no way to denote several independent or-groups at one
feature. This may be bypassed using the mechanism of an explicit variation point, which
is also a class stereotypes. Variation points enable to set the maximal number of features
to be selected, similarly to the solution we used in our profile (see Sect. 5).

In his approach to designing software product lines with UML [Gom05], Gomaa proposes
to model features as use case packages or as stereotyped classes, depending on intended
use of the model. Stereotyped classes approach, with feature groups modeled with aggre-
gation, suffers from the problems pointed to above. The use case representation brings an
interesting perspective. However, it is useful mainly in the context of the elaboration of
mapping of features to use cases, which is an important point of Gomaa’s approach.

In approach of Griss et al., class stereotypes are used to express features, too, but there is
no separate notion of concepts [GFd98]. Thus, it is possible to have a feature model as
a general graph. The character of the feature—along with its variability—is modeled by
class attributes. One of the attributes enables to set a feature to act as a variation point
of alternative features, which brings again the limitation of having only one subfeature
group per feature. The subfeature relationships are modeled as dependencies with the
<<consists_of>> stereotype.

Dolog’s approach is also based on class stereotypes representation of features [DNO4,
Dol06], but it employs a thorough treatment of feature groups through variation points.
This approach actually supports feature diagrams in the form of directed acyclic graphs,
but the information on variability is still inadequately built into the features themselves.

7 Conclusions and Further Work

Feature modeling is gaining more popularity along with rising awareness of the impor-
tance of software product lines. This is mainly due to its ability of dealing abstractly
with configurability. Having UML as a de-facto standard modeling language, it becomes
necessary to have feature modeling as part of it.

In this paper we presented an approach to integrate feature modeling into UML by extend-
ing its metamodel. We focused on making a basis for further development of the feature
modeling extension. For this, it was crucial to assure abstractness of feature modeling
elements.

With our feature modeling extension, based on the cardinality-based Czarnecki-Eisenecker
notation, we were also addressing the objective of providing a basis for different notation-
specific feature modeling extensions. To facilitate experimenting with combination of
different feature modeling notations in UML modeling tools, we developed a UML profile.

3They are denoted as “non-exclusive alternatives,” contrary to the meaning of the word alternative.

13

While we are aware it is not possible to achieve abstractness of feature modeling elements
this way, our profile’s advantage is modeling feature variability as relationships between
features which we consider to be a more correct solution compared to having this infor-
mation as part of the nodes that represent features.

The metamodel we presented in this paper forms a basis for feature modeling in UML. Fur-
ther work will include introducing concept references and covering additional information
on concepts and features, such as including description and binding time information.

It is also inevitable to treat constraints and default dependency rules. This issue has al-
ready being explored and it seems quite reasonable to represent additional constraints as
logical expressions [Vra05, Vra04], which in the context of UML may be successfully
implemented in OCL [CKO05, SRP03]. Also, we will continue to experiment with other
notation-specific extensions in our feature modeling UML profile.

Acknowledgements The work was supported by Slovak Science Grant Agency VEGA,
project No. 1/3102/06, and Science and Technology Assistance Agency of Slovak Repub-
lic under the contract No. APVT-20-007104.

References

[CAO05] Krzysztof Czarnecki and Michal Antkiewicz. Mapping Features to Models: A Template
Approach Based on Superimposed Variants. In Robert Gliick and Michael R. Lowry,
editors, Proc. of Generative Programming and Component Engineering, 4th Interna-
tional Conference, GPCE 2005, LNCS 3676, pages 422437, Tallinn, Estonia, October
2005. Springer.

[CBUEQO2] Kirzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ulrich W. Eisenecker. Gener-
ative Programming for Embedded Software: An Industrial Experience Report. In Don
Batory et al., editors, Generative Programming and Component Engineering: ACM
SIGPLAN/SIGSOFT Conference, GPCE 2002, LNCS 2487, pages 156—-172, Pitts-
burgh, PA, USA, October 2002.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programing: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[CHEOS5] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged Configuration
Through Specialization and Multi-Level Configuration of Feature Models. Software
Process: Improvement and Practice, 10:143-169, April/June 2005.

[CKO5] Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-Based Feature Modeling
and Constraints: A Progress Report. In International Workshop on Software Factories,
OOPSLA 2005, San Diego, USA, October 2005.

[Cla01] Matthias Clau. Modeling Variability with UML. In Proc. of Net.ObjectDays 2001,
Young Researchers Workshop on Generative and Component-Based Software Engineer-
ing, pages 226-230, Erfurt, Germany, September 2001. tranSIT.

[DNO4] Peter Dolog and Wolfgang Nejdl. Using UML-Based Feature Models and UML Col-
laboration Diagrams to Information Modelling for Web-Based Applications. In Thomas

14

[Dol06]
[FNO5]

[Gey00]

[GFd98]

[GomO05]
[KCH190]

[Sni05]

[Obj05]

[RBSP02]

[SRPO3]

[Vra04]

[Vra05]

Baar Alfred Strohmeier Ana Moreira and Stephen J. Mellor, editors, Proc. of Seventh In-
ternational Conference on the Unified Modeling Language: Modeling Languages and
Applications (UML 2004), LNCS 3273, pages 122-137, Lisabon, Portugal, October
2004. Springer.

Peter Dolog. Engineering Adaptive Web Applications. PhD thesis, University of Han-
nover, Germany, 2006.

Roman Filkorn and Pavol Navrat. An Approach for Integrating Analysis Patterns and
Feature Diagrams into Model Driven Architecture. In SOFSEM, pages 372-375, 2005.

Lars Geyer. Feature Modelling Using Design Spaces. In Proc. of the 1st German Prod-
uct Line Workshop (1. Deutscher Software-Produktlinien Workshop, DSPL-1), Kaiser-
slautern, Germany, November 2000. IESE.

Martin L. Griss, John Favaro, and Massimo d’ Alessandro. Integrating Feature Modeling
with the RSEB. In P. Devanbu and J. Poulin, editors, Proc. of 5th International Con-
ference on Software Reuse, pages 76-85, Vicoria, B.C., Canada, 1998. IEEE Computer
Society Press.

Hassan Gomaa. Designing Software Product Lines with UML. Addison-Wesley, 2005.

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA): A Feasibility Study. Technical
Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, USA, November 1990.

Jan Snirc. Integrating Feature Modeling into UML. Master’s thesis, Slovak University
of Technology in Bratislava, 2005. In Slovak. Available at http://fiit.stuba.
sk/~vranic/.

Object Management Group. UML 2.0 Superstructure Specification. Technical report,
August 2005. Available athttp://www.uml.org/, last accessed in February 2006.

Matthias Riebisch, Kai Bollert, Detlef Streitferdt, and Ilka Philippow. Extending Fea-
ture Diagrams with UML Multiplicities. In Proc. of the 6th Conference on Integrated
Design and Process Technology (IDPT 2002), Pasadena, California, USA, June 2002.
Society for Design and Process Science.

Detlef Streitferdt, Matthias Riebisch, and Ilka Philippow. Details of Formalized Re-
lations in Feature Models Using OCL. In Proc. of the 10th IEEE Symposium and
Workshops on Engineering of Computer-Based Systems (ECBS’03), pages 297-304,
Pasadena, California, USA, April 2003. IEEE Computer Society.

Valentino Vranié. Reconciling Feature Modeling: A Feature Modeling Metamodel. In
Matias Weske and Peter Liggsmeyer, editors, Proc. of 5th Annual International Confer-
ence on Object-Oriented and Internet-Based Technologies, Concepts, and Applications
for a Networked World (Net.ObjectDays 2004), LNCS 3263, pages 122-137, Erfurt,
Germany, September 2004. Springer.

Valentino Vrani¢. Multi-Paradigm Design with Feature Modeling. Computer Science
and Information Systems Journal (ComSIS), 2(1):79, June 2005.

15

