
Controlled Generation of Models with Defined Properties

Pit Pietsch, Hamed Shariat Yazdi, Udo Kelter

Software Engineering Group
University of Siegen

pietsch, shariatyazdi, kelter@informatik.uni-siegen.de

Abstract: Test models are required to evaluate and benchmark algorithms and tools
which support model driven development. In many cases, test models are not readily
available from real projects and they must be generated. Using existing model genera-
tors leads to test models of poor quality because they randomly apply graph operations
on graph representations of models. Some approaches do not even guarantee the basic
syntactic correctness of the created models. This paper presents the SiDiff Model Gen-
erator, which can generate models and model histories and which can modify existing
models. The resulting models are syntactically correct, contain complex structures,
and have specified statistical properties, e.g. the frequencies of model element types.

1 Introduction

Model-Driven Development (MDD) has become a central development paradigm in many
application domains. As a consequence, new tools and methods specifically tailored for
MDD are being developed and need to be evaluated with regard to aspects like quality,
efficiency and scalability. Examples of such tools are model transformation tools, testing,
validation and verification tools, model repositories, and difference and evolution analysis
tools.

Finding real test models for evaluation purposes is difficult because in many domains
real models are only scarcely available. Even when models from real projects are avail-
able their properties are often unknown, or they are not adequate for a particular testing
purpose. Different types of tools and MDD methods require significantly different test
models. Model comparison and history analysis algorithms need pairs, or sequences, of
models, where the evolution is precisely documented. Other algorithms just need very
large “realistic” models for scalability tests. As a solution to this challenge we present the
SiDiff Model Generator (SMG) [PSYK11].

The SMG can create or modify arbitrary model instances complying to EMF Ecore based
meta models. It has been developed in the context of the SiDiff system (s. [KWN05,
TBWK07]), a highly configurable framework for model comparison. While originally
intended for creating synthetic benchmarks for model comparison algorithms, the SMG
evolved into a highly configurable tool for test model generation.

The paper is structured as follows. Section 2 discusses in greater detail the requirements

95



on a highly versatile model generator. Section 3 presents an overview of the SiDiff Model
Generator and explains the main steps in the process of generating synthetic models. The
Stochastic Controller, which is responsible for implementing statistical properties of mod-
els, is explained in greater detail in Section 4. In Section 5 the runtime of the SMG and
the quality of the produced models are discussed. Section 6 discusses other approaches to
generate test models and the paper closes in Section 7 with a summary and an outlook.

2 Background and Requirements

Before discussing the requirements on a model generator some definitions that are used
throughout the paper are introduced.

We assume that models are typed and that each model type has a set of edit operations
which can be used to alter a model of this type. For example, state machines should have
an edit operation createState(name) which creates a new state with a given name.
An Invocation of an Edit Operation is an edit operation with concrete arguments.

An asymmetric difference1 (or Patch) is a sequence of invocations of edit operations. It
can be regarded as a linear sequential program, each statement being an edit operation. A
difference can be applied to, or executed on, a model which is called the base model in
this context. By executing the sequence of invocations on the base model, a new model is
created which can be regarded as a successor version.

Invocations of edit operations can refer to existing model elements and/or positions of
elements in a given model; this is one reason why an error can occur when an invocation
is executed on a model. A difference is applicable on a model if no error occurs when the
sequence of invocations is executed on this model.

Main Usage Scenarios. A model generators should be able to handle three main use
cases: (a) creating new models from scratch, (b) modifying existing models, i.e. create a
difference which is applicable to a given model, and apply this difference, and (c) creating
model histories. One might think that (c) is just the repeated application of (b) where the
last created model is the base model for the next iteration. However, this is not the case: A
model history in this context has properties that are connected to multiple revisions, e.g.
the life time of model elements.

Correctness of Generated Models. The generated models should be correct according
to their complete meta model, i.e. not only conform to the basic abstract syntax, but also
to additional constraints which are typically specified as OCL expressions.

Properties of Generated Differences. One should be able to specify properties of the
generated models and differences, for example the size of the difference(s), i.e. the number
of contained operation invocations. Another important property is the frequency of edit
operations which occur in the generated differences.

1There are also symmetric differences, but they are not relevant in this paper.

96



A model generator should support two interpretations of frequencies: literal and stochastic.
With literal interpretation, the generated differences will contain exactly the specified
number of edit operations. The literal interpretation imposes restrictions on the specified
values for the size of the difference and the frequencies: they must be nonnegative integers.

With stochastic interpretation, the specified frequencies of edit operations are interpreted
as the probabilities of each operation. The generated differences will contain only approxi-
mately the specified frequencies. Stochastic interpretation is useful when large models are
required for random testing and when the set of edit operations is large and the distribution
of frequencies is skewed.

Complex Edit Operations. A model generator should be able to create all correct mod-
els, including those containing complicated structures which are not accidentally created
by elementary operations. As a consequence, a model generator should offer means to
define such complex non-atomic edit operations.

All existing approaches to generate models do not meet several of the above requirements,
s. Section 6.

3 The SiDiff Model Generator

Figure 1 gives an overview of the four different main components of the SiDiff Model
Generator (SMG), as well as the input and output documents. The meta model and the
operation set are dependent on the model type. Further OCL constraints can be specified
to disallow unwanted properties in the output model.

Figure 1: The SiDiff Model Generator - Overview

The Operation Interpreter applies selected edit operations to the base model which is pro-
vided as input. The Stochastic Controller (SC) is configured by an XML-file and ensures
that operations are generated in a controlled manner. The Validator checks the correct-
ness of the modified model. The Model Generator is the central communication interface
between the different components.

97



For each pair of a base and an output model two additional documents are generated: the
difference, i.e. the applied operations, and a matching, i.e. a table with corresponding
elements of the two models.

The SMG generates only differences which are applicable to the base model without er-
rors. If such a difference cannot be created the whole creation process fails and no output
(other than error messages) is created. Any generated differences are, of course, not guar-
anteed to a applicable to other models which differ from the specified base model.

The SMG covers the all three main usage scenarios mentioned above. Use case (b) is
implemented by repeatedly generating an operation invocation which is applicable to the
current state of the model being constructed. Use case (a), creating a new model, is imple-
mented by generating a difference which is applicable to an empty model. Use case (c),
creating a history, is implemented by creating one large difference which is partitioned into
smaller, consecutive parts. In all three cases, the primary product of the SMG is a differ-
ence; the new or modified model is a by-product, although this may be the most important
result from a user’s point of view. The two different interpretation modes for frequencies
of operations always refer to this difference; they are further refined as follows.

Literal Interpretation Mode: Here the user specifies exactly the number of invoca-
tions for each edit operation. For example, if the edit operation createClass is specified
to be executed five times, the difference will contain five invocations of createClass and
the modified model will have five classes more than the base model. The configuration is
regarded as a literal specification of both the number and the kind of invoked edit opera-
tions, thus allowing the user to define quantitative properties of the generated models in
great detail. All other aspects, e.g. where an operation is applied, are still selected with the
help of the Stochastic Controller. This mode is, for instance, suited to recreate an observed
modification process, e.g. based on data gathered from real model repositories.

Stochastic Interpretation Mode: In the stochastic interpretation mode Probability Mass
Functions (PMF) of edit operations are used to configure the SMG. In this mode, the
frequencies of edit operations are interpreted as probabilities. In case the specified prob-
abilities do not sum up to 100%, the SC internally normalizes them by dividing them to
the sum. The size of the difference has to be explicitly specified (whereas in literal inter-
pretation mode, the size is implicitly defined by the sum of the number of edit operation
invocations). The behavior of this mode is highly dependent on the size of the difference
and on the shape of the PMFs: the generated difference will only approximately exhibit
these frequencies. For skewed distributions with heavy tails a higher number of invoca-
tions will give better approximations. The stochastic interpretation mode can be used,
for example, to create differences of varying size, but similar properties, with very low
specification effort.

3.1 Model Modification Process and Index Maps

The model modification process has several consecutive steps: (1) A ContextType, i.e. a
meta class which represents a model element type from the given meta model, is selected.

98



(2) A concrete instance of this meta class and the edit operation are selected. (3) The
parameters required for the execution of the operation are selected or created. (4) The
created operation is executed.

In the described model modification process situations may arise where it is not possible
to complete the creation of an operation: For example, after the selection of ContextType,
Context and edit operation, a parameter value which is a reference to a model element
might be required, but no suitable model element exists in the model. To avoid expensive
backtracking algorithms in these cases, we devised the concept of index maps: Based on
the meta model, the operation set and the base model a set of maps is initialized. These
maps essentially preserve the knowledge which operations can be successfully created at
the current state of the model modification process. In each of the four selection steps
mentioned above, the Stochastic Controller filters choices for which it would be impos-
sible to create an applicable operation. The maps are automatically updated after each
successful creation of an operation invocation.

The SMG comes with a custom tailored operation model (for more details see [PSYK11])
that allows users to specify simple operations, i.e. creating, deleting, moving and editing
attribute values of single model elements, as well as to define complex operations that
consist of two or more simple ones.

The SMG is open to the integration of other model transformation engines integrated with
EMF Refactor2. However, the index maps mentioned above are not supported when EMF
Refactor is used since they are tightly coupled to the operation model of the SMG.

4 Stochastic Controller

One very important requirement for a model generator is that the generated differences
resemble real, user driven modification processes as much as possible. Common examples
of such modification processes may be adding new model elements in close proximity to
each other to resemble the implementation of a new subsystem or applying few scattered
changes mimicking a debug process. As briefly discussed in Section 3, the Stochastic Con-
troller (SC) is responsible for the controlled stochastic selection and application of edit
operations to a given base model. In this section we first introduce qualitative properties
of models. After this other concepts used in the SC, such as Decision Tables and Selection
Policies, are discussed in detail.

4.1 Qualitative Properties of Differences and Fitness Values

In addition to the measurable properties of differences, i.e. size and frequency of edit
operations (s. Section 2), qualitative properties affecting the resulting models exist, too.
As mentioned in Section 3.1, the invocation of an edit operation consists of four selec-

2http://www.eclipse.org/modeling/emft/refactor/

99



tion steps. The properties of an individual that are used in selection processes are called
effective properties. These properties mainly depend on the model type and the applica-
tion domain. For instance, effective properties for the selection of UML classes could be
the metric Number of Methods or the count of applied modifications. Because effective
properties are often not precisely known and complex correlations between them exist,
it is necessary to discuss two cases: When enough knowledge of effective properties is
available and when they are mostly unknown. For both cases solutions are outlined after
the concept of Fitness Values is introduced.

A Fitness Value (FV) is a value that describes the aptness of an individual for a definite
goal, i.e. selection in our case. For instance, the number of modifications already applied
to a model element can be used as a FV to decide whether it is more or less likely that the
element in question is selected for further modification. Generally any function that maps
all (or some) of the effective properties of individuals to their selection likelihood can be
considered as a generator of FVs and we may obtain or construct a cumulative distribution
function (CDF) based on them. The case that the range of FVs is finite is a special case
in which we may obtain the PMF of individuals by calculating their frequencies. All
model elements are annotated with their FVs. Additionally, FVs of individuals can be kept
fixed during the model modification process or they can be updated after each successful
execution of an edit operation (s. Section 4.2). Since the selection process is altered by
this decision, it has a direct effect on the quality of the produced models.

For example, when benchmarking model comparison algorithms, FVs are used to explic-
itly prevent the application of redundant operations, e.g. renaming an element twice, or
operations that cancel each other out, e.g. deleting a newly created element. Since such
differences cannot be traced by model comparison algorithms, they would skew the eval-
uation results.

When the effective properties for selection and their corresponding PMFs are known the
SC can simply be adjusted accordingly. In cases where such data is not available, a domain
expert still has various options to configure the SC to her best knowledge. One solution is
to perform the selection process randomly based on an uniform distribution. Because this
is an oversimplification in most cases, more complex methods based on FVs, called Selec-
tion Policies, were devised. These policies give users the ability to control the selection
process quite precisely (s. Section 4.2).

In the case of creating a model history additional effective properties connected to the
life cycle of model elements exist, which cannot be considered when simply applying n

consecutive differences to a base model. One example of effective properties connected to
a history of models are the number of modifications a model element undergoes through
its life cycle and the distributions of these modifications over different revisions of the
history. Another example are different life time expectations of model elements based on
their type. The SC is also capable of handling such complex behaviors.

100



4.2 Decision Tables and Selection Policies

Suppose that we are going to model the evolution of a given model M to M ′. A Decision
Table (DT) is, roughly speaking, a mapping that tells the system how to modify M in order
to eventuate in M ′. This concept can be extended to handle model histories: Let m be the
number of revisions and 1 ≤ i < m, DTi is a map between the model in revision i and its
successor revision i + 1. DTis are highly configurable and are defined in a configuration
file for the system.

Selection Policies (SP) are statistical tools that can be used in the DTs. They select indi-
viduals in a controlled stochastic manner based on FVs.

Roughly each DTi contains the followings:

(C-I) A list of ContextTypes each accompanied with predefined probabilities of selec-
tion as well as a SP for selecting one of them.

(C-II) SPs that choose a Context (instance) for each ContextType.

(C-III) A list of defined Operations on each ContextType that are also accompanied with
selection probabilities as well as a SP for selecting one operation out of the list.
These probabilities can be given from the observed frequencies of edit opera-
tions or from PMFs of edit operations. They are only effective in the stochastic
interpretation mode.

(C-IV) Each Operation is additionally accompanied with the Number of Frequency which
states how often each one will be applied to the model. This configuration data is
only relevant when the literal interpretation mode is used.

(C-V) SPs for selecting Parameter values.

Currently five different types of SPs known from Genetic Algorithms [Mic96, Poh06,
RR02, SD08] are implemented in the SMG. From now on we suppose that the set of
FVs is bounded and their values are nonnegative. This will be a consistent assumption
throughout our application scenarios.

As its name implies, the Random Selection Policy (RSP) is the obvious case of an uniform
random selection method. In Roulette Wheel Selection Policy (RWSP) the selection prob-
ability of an element is proportional to its FV. This causes better fitted elements to have a
higher chance of being selected. If the FVs of selected elements are increased after each
operation execution there is a risk that the most fitted elements eventually overwhelm the
selection procedure. To avoid this situation, elements can be sorted according to their FVs
in a non-decreasing order and the indexes can be used as new FVs. This selection policy
is called Simple Ranking Selection Policy (SRSP). When there are many individuals, the
ones with the lowest FVs will only have a very low chance of being selected. To address
this shortcoming either the Linear Ranking Selection Policy (LRSP) or the Non-Linear
Ranking Selection Policy (NLRSP) can be used. Both work based on the extended concept
of the SRSP and the rankings are done in a configurable way. Let n be the number of

101



individuals participating in the selection process, and also let the individuals be already
sorted according to their FVs in non-decreasing form, then according to LRSP the new FV
for the i th individual is defined as:

rl(i, n) =
1

n

(
α+ 2 (1− α)

i− 1

n− 1

)
where 1 ≤ i ≤ n and α ∈ [0, 2], α ∈ R is the selection pressure. When α is less than 1 the
slope is positive, if α = 1 then the line will be horizontal causing all individuals to have
equal probability for being selected and when α is greater than 1 we have a negative slope
in which most fitted individuals have a lower chance of selection (s. Figure 2).

With previous assumptions, the NLRSP can be obtained by:

rnl(i, n) =
n xi−1∑n

j=1
xj−1

where x is the positive root of the following equation which can be solved using Bisection
or Newton-Raphson methods [BF00], [KK08]:

(β − n) xn−1 + β xn−2 + · · ·+ β x+ β = 0

In the above equation, β ∈ [1, n− 2] is the selection pressure and we suppose that n ≥ 3.
By the linear transform β = (n − 3) α + 1 where α ∈ [0, 1], α ∈ R, then we have a
suitable handy representation of NLRSP in which α will be the selection pressure. When
α tends to zero the slope of the line will tend to 0 as well so we will have a uniform
random selection. When α tends to 1 then the selection pressure increases in a non-linear
manner (s. Figure 2). Additionally, due to non-linear characteristic of the NLRSP, when
the number of participating individuals are big, even moderate selection pressures have
strong impacts, i.e. the very few of individuals at the end of the sorted list will get most of

Figure 2: (a) LRSP vs RWSP (b) NLRSP vs RWSP. For a sample of n = 6 individuals and selection
pressure α = 0.7, X-Axis shows the individuals and Y-Axis shows the selection probabilities. Pie
charts show the corresponding chance of selection in these two methods.

102



selection probabilities. Therefore in such situations smaller selection pressures might be
more favorable.

Since during the modification process the size and structure of a model is changed dynam-
ically, the SPs can be used to control this process in a subtle way and they have qualitative
effects on the results (s. Section 4.1). A small part of a simplified conceptual decision
table3 in the XML format is shown here:

<DT>
<SPCT Name=“RWSP” UpdateMode=“Dynamic” />
<CT Name=“UMLPackage” p̂=“20”>

<SPC Name=“NLRSP” α =“0.7” />
<SPO Name=“RWSP” UpdateMode=“Fix” />
<O Name=“createClass” p̂=“20” f̃=“3” />
<O Name=“createInterface” p̂=“1” f̃=“2” />

...
</DT>

Considering the DTs specifications (s. 4.2), the above XML file is interpreted as: C-I
corresponds to the <SPCT> tag as well as <CT> tags. Each <CT> tag contains a
<SPC> (C-II) and a <SPO> (C-III) as well as at least one <O> (C-III).

Selection probabilities (p̂ values), which are defined in C-I and C-III, can also be used as
FVs for SPs since they have the required characteristics. To make things more organized,
when SP=RWSP then the values of p̂ are used as they are for selecting the individuals
(they are automatically normalized), when SP=SRSP, LRSP, NLRSP these values are used
as FVs and the selection is done based on the specified SP (in this case normalization is
not necessary).

The parameter UpdateMode decides whether or not the effective FVs in the selection pro-
cess are dynamically updated after each successful edit operation execution or stay fixed
through the whole the modification process. In the end, the f̂ values are frequencies that
are used in the literal interpretation mode (C-IV).

5 Evaluation

To evaluate the SMG the runtime for creating and modifying models was measured. The
results of five executions were averaged and show a good performance of the tool. Using a
configuration file containing just create edit operations, 4 models (class diagrams) with the
sizes of 100, 1000, 5000 and 10000 were first created and then modified. The execution
times on an MacBook Pro 2010 with an 2.66 GHz Intel Core i7 processor and 4 GB RAM
are shown in Table 1.

In order to evaluate the runtime for modifications of models, a configuration that randomly

3In this DT we use the following abbreviation: SP=Selection Policy, CT=ContextType, SPCT=SP for Con-
textType, SPC=SP for Contexts, SPO=SP for Operations, O=Operation, p̂=Selection Probabilities (PMFs),
f̃=Frequency of an Edit Operation, α=Selection Pressure for a SP.

103



No. Elements in the base model (NEBM) 100 1000 5000 10000
Creation times 0.03s 0.52s 10.77s 55.47s

Modification times, with the
No. Edit Opr. in % of NEBM

25% 0.02s 0.36s 9.43s 50.31s
50% 0.03s 0.70s 19.95s 117.21s
75% 0.02s 1.04s 35.76s 249.59s

Table 1: Runtime for creation and modification of models. The times do not include the times for
loading and serialization of the models.

selects and executes edit operations was used. The size of the difference was chosen as
25%, 50%, and 75% of the number of elements in the base model. For example, for
the model with 1000 elements and the case of 50%, 500 edit operations were created
and executed. Obviously, the runtimes required by the SMG are good and acceptable in
practice.

Edit Operation Spec.freq. 100 1000 5000 10000
create Package 0.64% 3.33% 0.42% 0.84% 0.50%
create Class 4.20% 5.56% 3.85% 4.27% 4.19%
create Interface 0.60% 0.00% 0.73% 0.49% 0.59%
create Attribute 11.50% 12.22% 12.50% 11.64% 11.25%
create Method 28.83% 11.11% 25.46% 27.96% 29.54%
create Parameter 51.83% 62.22% 55.00% 51.97% 51.68%
create Association 2.40% 5.56 % 2.08% 2.83% 2.25%

Table 2: Observed frequencies of elements in the created models vs the specified frequencies.

We also checked how well specified frequencies of operations are actually implemented
in the newly generated models for one of the five executions. The frequencies used in
our evaluation are shown in column “Spec.freq.” in Table 2; they were observed on the
software repository of a real project4.

Not surprisingly, actual frequencies in small differences can diverge substantially from the
specified frequencies. Generally such behaviors are intrinsic to probabilities and statistics
due to their stochastic nature. Specially in this case, it is caused by the uneven skewed
shape of the specified distribution. The actual frequencies of larger difference tend to
show better approximations. In our example with the size of 1000 and above our observed
frequencies are reasonably close to the specified ones.

6 Related Work

Brottier et al. [BFS+06] present a generator for models, which is used in the context of
model transformation testing. The input of the tool consists of an arbitrary meta model and
a set of fragments, which are manually or automatically created object structures of inter-

4the ASM project, s. http://asm.ow2.org/.

104



est. [BFS+06] does not discuss how correct fragments are created. The algorithm creates
a model by randomly choosing and connecting fragments. None of our requirements is
fully met by this approach.

Mougenot et al. [MDBS09] propose a generator specifically aimed at creating large model
instances. The algorithm works on a tree representation of models. Therefore the meta
model of the model type must be transformed into a tree specification; however, this trans-
formation does not preserve all information. The generation process randomly performs
tree edit operations with a uniform distribution. An adaption of the algorithm to realistic
statistical distributions is labeled as work in progress. None of our requirements is met by
this approach.

Ehrig et al. [EKTW06] use graph grammars to systematically generate instances of ar-
bitrary meta models. The set of rules is organized in three layers: Layer 1 rules create
instances of meta model classes, Layer 2 and 3 rules establish relationships between cre-
ated elements. The rules are automatically deduced from the meta model and applied
randomly. This approach meets our correctness requirement, but cannot control properties
of the generated models.

The Ecore Mutator developed in the AMOR5 project is a tool which can modify Ecore-
based models. The generator offers a set basic of operations, called mutations, to modify a
given base model; additional operations can be implemented if necessary. The operations
are performed randomly; the created output model is not checked for validity. None of our
requirements are fully met by this approach.

To sum up, the main weakness of existing tools for test model generation is that the re-
sulting models might be syntactically incorrect, might not contain typical constructs, and
might have characteristics which differ substantially from realistic models or sets of mod-
els.

7 Summary

The SiDiff Model Generator presented in this paper is a versatile tool for creating test mod-
els for various purposes and in various usage scenarios. It overcomes several limitations of
other current state-of-the-art approaches for test model generation. Most notably, it creates
only correct models, it can modify existing models, and it enables users to control the size
and many other properties of the created models and differences.

The SMG is generic in the sense that it can create models of arbitrary type. The primary
requirement to support a new model type is a meta model and an associated set of edit
operation, most of which can be generated from the meta model. Complex operations
such as refactorings can be added manually with limited effort.

The SMG is being used in our own projects, a large set of generated models is available
from our web site6.

5http://www.modelversioning.org/
6http://pi.informatik.uni-siegen.de/qudimo/smg

105



Acknowledgments

This work was supported by Deutsche Forschungsgemeinschaft under grant KE499/5-1.
The authors would like to thank Tim Sollbach and Michaela Rindt as student members of
the SMG development team for their help.

References

[BF00] Richard L. Burden and J. Douglas Faires. Numerical Analysis. Brooks Cole, 7th edi-
tion, 2000.

[BFS+06] Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry, and Yves Le Traon.
Metamodel-based Test Generation for Model Transformations: an Algorithm and a
Tool. In Proceedings of ISSRE’06, Raleigh, NC, USA, 2006.

[EKTW06] Karsten Ehrig, Jochen Malte Küster, Gabriele Taentzer, and Jessica Winkelmann. Gen-
erating Instance Models from Meta Models. In FMOODS, pages 156–170, 2006.

[KK08] Autar Kaw and Egwu Eric Kalu. Numerical Methods with Applications. 1st edition,
2008.

[KWN05] Udo Kelter, Juergen Wehren, and Joerg Niere. A Generic Difference Algorithm
for UML Models. In Software Engineering 2005. Fachtagung des GI-Fachbereichs
Softwaretechnik, 2005.

[MDBS09] Alix Mougenot, Alexis Darrasse, Xavier Blanc, and Michèle Soria. Uniform Ran-
dom Generation of Huge Metamodel Instances. In Proceedings of the 5th European
Conference on Model Driven Architecture - Foundations and Applications, ECMDA-
FA ’09, pages 130–145, Berlin, Heidelberg, 2009. Springer-Verlag.

[Mic96] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, 3 edition, 1996.

[Poh06] Hartmut Pohlheim. Geatbx: Genetic and evolutionary algorithm toolbox for use with
matlab documentation, version 3.80 edition, December 2006.

[PSYK11] Pit Pietsch, Hamed Shariat Yazdi, and Udo Kelter. Generating Realistic Test Models
for Model Processing Tools. In Proceedings of the 26th IEEE and ACM International
Conference on Automated Software Engineering (ASE 2011), Lawrence, KA, USA,
Nov 2011.

[RR02] Colin R. Reeves and Jonathan E. Rowe. Genetic Algorithms Principles and
Presentation, A Guide to GA Theory. Kluwer Academic Publisher, 2002.

[SD08] S. N. Sivanandam and S. N. Deepa. Introduction to genetic algorithms. Springer, 2008.

[TBWK07] Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter. Difference Computa-
tion of Large Models. In ESEC-FSE ’07: Proceedings of the the 6th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 295–304, New York, NY, USA, 2007.
ACM.

106


