
Controlled Flexibility and Lifecycle Management of
Business Processes through Extensibility

Sören Balko1, Arthur H.M. ter Hofstede2, Alistair Barros3, Marcello La Rosa2, and
Michael Adams2

1 SAP AG, Walldorf, Germany
Soeren.Balko@sap.com

2 Queensland University of Technology, Brisbane, Australia
{a.terhofstede,m.larosa,mj.adams}@qut.edu.au

3 SAP Research, Brisbane, Australia
Alistair.Barros@sap.com

Abstract. Vendors provide reference process models as consolidated, off-the-
shelf solutions to capture best practices in a given industry domain. Customers
can then adapt these models to suit their specific requirements. Traditional pro-
cess flexibility approaches facilitate this operation, but do not fully address it
as they do not sufficiently take controlled change guided by vendors’ reference
models into account. This tension between the customer’s freedom of adapting
reference models, and the ability to incorporate with relatively low effort vendor-
initiated reference model changes, thus needs to be carefully balanced. This paper
introduces process extensibility as a new paradigm for customizing reference pro-
cesses and managing their evolution over time. Process extensibility mandates a
clear recognition of the different responsibilities and interests of reference model
vendors and consumers, and is concerned with keeping the effort of customer-
side reference model adaptations low while allowing sufficient room for model
change.

1 Introduction

In many industries, a company’s environment, such as customer demand, technolog-
ical innovations and regulatory conditions tend to change frequently and sometimes
rapidly. By being able to flexibly adapt their processes to changes, agile businesses
set themselves apart from their competitors. Naturally, Business process management
suites (BPMS) offerings need to facilitate flexibility at low costs. At the same time,
companies still wish to benefit from standardized best practices, represented through
vendor-provided reference processes. The business process community has come up
with numerous flexibility techniques to incorporate change into business processes, e.g.
[RA07,GAJVL08,RRKD05,AWG05,AHEA06,EKR95]. These approaches cover both
design time and runtime changes and provide formal frameworks for how to constrain
changes. However, many established process flexibility approaches suffer from short-
comings with respect to process lifecycle management in general, and to the costs as-
sociated with changing business processes, specifically. Some techniques propose that
BPMS customers alter reference processes “in place” in order to customize them to their

97



needs (patching use-case) [FLZ06]. Others suggest to use reference processes merely as
templates for developing company-specific processes (blueprinting use-case) [SN00].

Neither of these approaches can realistically succeed in large-scale software roll-
outs, involving hundreds of reference processes with an even higher number of cus-
tomer adaptations on top. This is because making changes to reference processes goes
along with substantial costs for carrying out these changes and later maintaining the re-
sulting processes. Whenever a BPMS vendor ships a new reference process version to
incorporate corrections or to address new requirements, existing customer adaptations
have to be re-applied at great cost. Similarly, multiple independently defined adapta-
tions have to be consolidated within a single process, for instance when two customer
departments change a cross-departmental reference process independently at different
points in time.

This paper introduces the concept of process extensibility as a new paradigm for
customizing reference processes and managing their evolution over time. Process Ex-
tensibility mandates a clear recognition of the different responsibilities and interests of
reference model vendors and reference model consumers, and is concerned with keep-
ing the effort of reference model adaptations at the customer side low while allowing
sufficient room for model adaptation. BPMS vendors own (i.e. define and maintain) ref-
erence process models, while BPMS customers own and run extensions thereof. These
extensions constitute separate customer-defined “delta improvements” which hook up
to a reference process through late binding mechanisms. When adhering to some plain
compatibility rules, both reference processes and extensions can be patched (i.e. main-
tained) by their respective owners without ever having to be “re-wired”. The vendor
remains in the “driver seat” to update reference content, letting customers easily ben-
efit from state-of-the-art best practices. By automatically applying existing customer
extensions to patched referenced processes, the cost of rolling out new BPMS releases
is greatly reduced.

The rest of this paper is organized as follows. Section 2 outlines the extensibility
approach and its benefits over existing flexibility approaches. Next, Section 3 provides
a taxonomy to classify flexibility approaches. Section 4 identifies extensibility patterns
that occur along a process’ control flow and data perspective, while Section 5 sets an
agenda for future research in this area. The paper concludes with a section on related
work and a summary.

2 Extensibility

The general concept of making processes more flexible by allowing deviation from
their hard-wired business semantics has been around for some time. Requirements like
customization, exception handling, re-use, etc. have led to different technological ap-
proaches, namely From-Scratch Design, Patching, Blueprinting, Ad-Hoc Changing, and
Runtime Settings.

2.1 Proposal

Extensibility is a new approach to support process flexibility which specifically ad-
dresses customization of reference content. Unlike existing approaches, extensibility

98



clearly designates responsibilities for the process and extensions thereof. Reference
processes may be patched (bugfixed, updated) by the vendor only. Customers receive
reference processes as read-only shipped content which is only updated as part of a
software release.

Customers then customize reference processes to their needs by independently
defining and deploying extensions which solely constitute “deltas” (process fragments).
Extensions exist alongside the (reference) processes. At runtime, an extensibility frame-
work dynamically invokes the defined extension(s) for a process. Multiple extensions
to a single process can be independently defined (e.g. by different customer depart-
ments) to be deployed in isolation (i.e. at different points in time). As the extensibility
framework automatically controls the interplay between multiple different extensions
and their target (reference) process, there is no need to statically integrate all extensions
upfront.

Both reference processes and extensions can be “patched”, thereby spawning new
versions. Patches to a reference process should adhere to some compatibility rules that
allow the new version to support, wherever possible, existing customer extensions. The
extensibility framework takes care of automatically incorporating all customer exten-
sions that were defined atop any old version of the patched reference process. Similarly,
extensions need to follow some compatibility rules. These rules constrain to what ex-
tent the business semantics of a reference process can be deviated from. Apart from
“safe” implicit compatibility rules, the BPMS vendor may define more relaxed explicit
constraints.

Figure 1 illustrates a vendor-shipped reference process (left) that is customized with
extensions of the customer’s HR and Sales departments. The initial reference process
is a sequence of three activities: “HR Task”, “Sales Task”, and “ERP Service”. The
first extension replaces “HR Task” with a subflow comprising the existing “HR Task”
followed by some organizational chart lookup (“OrgChart Service”).

As part of a new release, the vendor ships a patched reference process that condi-
tionally performs an automated “CRM Service” instead of the (manual) “Sales Task”.
The patched reference process is compatible with any extensions defined on its pre-
decessor version. The extension framework needs to automatically route the patched
reference process to existing extensions, where applicable (here “HR Task” → “HR
Extension”). Independently to the vendor shipment, the customer may have replaced
the manual “Sales Task” with an automated “Sales Service”. The earlier defined “HR
Extension” was also refined to introduce a four-eyes principle. That said, patches may
be applied to both the original reference process and a customer extension.

Extensibility is a prerequisite for proper process lifecycle management where the
reference content vendor and the customer represent distinct parties having different
requirements and obligations:

Vendor The vendor is responsible for (1) delivering correct reference processes
(“shipped content”) that represent generalized best practices. He also needs to (2)
maintain that content, i.e. ship patches when bugs are detected or requirements
change. Finally, (3) the vendor should provide the means to have its content “cus-
tomized” to a customer’s needs. From his perspective, it is vital to ensure that ref-
erence process change is controlled.

99



BPMS Vendor BPMS Customer

(initial reference process) (initial HR dept. extension)

(patched reference process) (customer-patched HR dept. extension) (initial sales dept. extension)

Fig. 1. Extensibility Example

Customer Customers engage their IT team to customize a BPMS release (they may
also hire contractors to do so). In regard to reference processes, that includes (1)
changing settings which deviate in the customer’s landscape, (2) reducing complex-
ity by removing functionality that is not needed, and (3) adding new functionality
for requirements which are not yet covered.
End users essentially run processes (i.e. start new instances or are involved in pro-
cess activities). There are often multiple end user roles that (1) interact with the
same process but (2) have their distinct customization requirements. For instance,
a legal department could ask for fine-grained logging within audit-sensitive pro-
cesses, whereas the IT department may be interested in getting notified of technical
process failures.

Extensibility offers controlled flexibility for the different parties that design, customize,
and run processes and is motivated by the specific concerns these parties typically have.

100



For instance, the vendor must be able to easily patch shipped content without intro-
ducing extra, per-customer development costs or significantly increasing the cost of
ownership at the customer. Last but not least, the vendor will want to disallow arbitrary
changes to this content to avoid mistakes on the customer that which are very difficult
to support. In turn, customers are essentially concerned with running their businesses
while keeping IT costs down. While flexibility does have its merits, customers also want
to build their business on best practices. Besides, customers have a vital interest in cor-
rect, law-conforming processes where customizations are guaranteed not to distort the
basic functionality.

2.2 Benefits

Technically, the vendor ships reference processes that incorporate “extension points”
which are pre-planned artifacts where customers can incorporate their extensions. Ex-
tension points apply to almost any dimension of modeling business processes, including
control flow, data flow, resources, rules, security, etc. We will give extensibility exam-
ples for some perspectives below. Extensibility comes with a number of significant
advantages over existing flexibility approaches, notably:

Extensibility (1) offers a lifecycle model for controlled flexibility taking into ac-
count obligations and concerns of different parties involved in designing, customizing
and using business processes. It helps avoiding errors at the customer side and reduces
maintenance costs (Controlled Change). Customers automatically (2) benefit from best
practices within shipped reference processes. In particular, the vendor can set exten-
sion points in a way that the basic business objective of the reference process cannot
be tampered with by customer-defined extensions (Best Practices Adoption). Reference
processes may be (3) subject to patching. Extensions defined on an old version of some
process transparently apply to any new version. Reference processes can thus be fixed
without losing (or having to manually re-apply) their extensions (Supportability).

Instead of using reference processes as templates for newly created processes, (4)
extensions consume fewer resources at runtime. This is because an extension solely
constitutes a small “delta”. As a side effect, this model is ideally suited for process
outsourcing where reference processes are remotely run at SaaS providers (Resource
Consumption). Extensibility allows multiple people (at the customer side) to (5) in-
dependently define “additive” extensions to the same reference process. This greatly
improves separation of concerns between different business departments. As a result,
multiple extensions can be independently defined at different points in time (Multiple
Extensions).

If desired, vendors may (6) ship their processes as “black boxes”, only exposing
interfaces and extension points. This may be desirable if details in the reference con-
tent constitute significant intellectual property which is not to be disclosed (Intellectual
Property). Reference processes may also be purely documentary models that are not
executed in a proper BPMS runtime but rather as a coded application. The customer
(7) may still want to extend these “application processes” with proper process models.
With some application instrumentation to add extension points, extensibility may even
help in bridging these platform and paradigm differences (Application Extension).

101



Finally, the (8) meta-process of defining extensions is of interest itself, as it reveals
how a customer deals with business change. Mining the logs of a meta-process could
help the customer optimizing its business by getting answers to questions like: Which
line of business is most often subject to change? Which user roles require most change
to reference processes? (Flexibility Mining)

3 Taxonomy

Common process flexibility approaches can be classified with respect to a number of
dimensions, the most important being (1) the primary use-case which outlines the main
purpose and most frequent usage, (2) the parties (vendor, customizer, end user) that are
affected, (3) the functional role descriptions of each participant, (4) the lifecycle stages
(design time, runtime) of the process, (5) the constraints that restrict what can be done,
and (6) the scope (process type, instance, version) within which the flexibility technique
operates. Existing flexibility techniques can be classified with this taxonomy, which
helps in understanding their differences. It also outlines the contribution of extensibil-
ity to the overall picture. We specifically discuss the differences between from-scratch
modeling of new processes, patching existing processes, re-using a vendor-provided
template to develop a new business process (blueprinting), performing ad-hoc changes
of process instances at runtime, modifying (technical) runtime settings, and extending
reference processes:

From-Scratch Modeling Modeling a business process “from scratch” is typically the
result of analyzing and documenting existing processes. Most importantly, there
is no pre-existing reference process to build upon. Instead, a new process is mod-
eled and then successively refined, following a top-down approach. Bottom-up ap-
proaches start with modeling detailed process fragments which are later aggregated
into larger end-to-end business processes.
Strictly speaking, this approach traditionally does not constitute a flexibility use-
case. However, modeling a (reference) process from scratch is a prerequisite for
any other flexibility technique. It is usually business analysts who start modeling
from scratch. Both the vendor and its customers may perform this use-case (for ref-
erence processes and customer processes, respectively). Newly modeled processes
are not subject to any constraints, except for the inherent restrictions of the chosen
modeling standard.

Patching Occasionally, process models that have been previously deployed to a BPMS
runtime engine, may need to be altered. The vendor may have to patch reference
processes to fix bugs or simply to address new requirements. Customers may want
to patch their processes to incorporate various changes in their business. Patching
is closely related to versioning where the affected process will be labeled with a
new version number.
Both IT (process developer) and business (domain expert) users may want to patch
a process. Patching is a design time operation but will only take effect after deploy-
ing the patched process version into the BPMS runtime engine. There are some
constraints that limit what can be changed when patching a process. Firstly, inter-
face compatibility must be preserved such that client processes do not have to be

102



adapted to cope with the change. Secondly, existing extension points must be re-
tained in the patched version such that extensions transparently apply to the patch.

Blueprinting Vendor-delivered reference processes often constitute best practices
rather than ready-to-run processes. Blueprinting uses reference processes as a
“master” for newly modeled processes. Technically, the reference process is physi-
cally copied to a blank process model where it is further refined. While being fully
flexible in what changes can be done from there on, BPMS vendors will not be able
to support those changes. That is, customers will have to manually apply all changes
in a new reference process version in their derived processes (copies). Altogether,
blueprinting is a design time operation where customers adapt vendor-delivered
reference processes to their needs (as opposed to extensibility which relies on late
binding mechanisms). Unlike patching, customers perform modifications on phys-
ically separate copies of the template and rather create new variations that are in-
dependent from (and do not overwrite) the original process.

Ad-hoc Changing Sometimes, end users have to deviate from the behavior of the pro-
cess instances they are involved in. Actually, human-driven processes often run into
exceptional situations. End users then need to (implicitly) alter the process model
for their specific instance, thus deviating from its original business semantics.

There are some constraints around ad-hoc changes, mostly affected with role-
related restrictions and instance migration issues. That is, ad-hoc changes alter the
models of running process instances. Consequently, ad-hoc changes must allow for
automatically migrating the instance state to the altered model. Typically ad-hoc
changes affect only a single process instance. The altered process model is kept
temporarily, i.e. for the life time of that instance.

Runtime Settings Some environmental settings globally hold for all processes and,
when changed, need to immediately apply to both all running processes and newly
started instances. Those settings include modifications to organizational charts, se-
curity settings and other technical configurations. In most cases, these settings are
not even part of any process model such that there is essentially no design time
aspect here. Those changes are typically done by system administrators.

Extensibility constitutes a separate flexibility approach where customers define process
extensions as deltas (process fragments) on top of reference processes. The primary use-
case behind extensibility is customization where the customer adapts a given reference
process to its business needs. Various customer roles may define process extensions,
each with different objectives. Domain experts from specific organizational lines (e.g.
Sales, Procurement, Manufacturing, etc.) may independently define extensions to adjust
a cross-organizational process to their needs. A customer typically defines extensions
in a design time environment, even though that does not rule out the option of having a
runtime user interface to let end users specify extensions in an ad-hoc fashion. Extensi-
bility is subject to some constraints, either originating from implicit compatibility rules
or explicitly from modelled extension points within reference processes. Table 1 classi-
fies existing flexibility techniques according to the dimensions introduced and positions
extensibility as a new approach.

103



Use-Case Party Role Lifecycle Constraints Scope
Designing Business Vendor, Business analyst Design – new
from process Customer Process Time process
Scratch analysis architect
Patching Changing Vendor, Process Design Extension/ new

requirements, Customer developer, Time interface version
Bugfixing Domain expert compatibility

Blueprinting Customization, Customer Process Design – new
Adoption of (Vendor) developer, Time process
best practices Domain expert

Ad-Hoc Handling of Customer Task owner, Runtime Instance single
Changing exceptional Process migration, instance

cases administrator Role
Runtime System-wide Customer System Runtime – all
Settings settings administrator running

instances
Extensi- Customization, Customer Domain Design Extension all
bility Adoption of expert, Time point future

best practices IT department (Runtime) versions

Table 1. Process Flexibility Taxonomy

4 Extensibility Patterns

Conceptually, extensibility is open to different process perspectives. This section iden-
tifies some frequent extensibility patterns in the control flow and data flow perspectives.
Without loss of generality, we use a BPMN-like notation to illustrate these use-cases.

4.1 Control Flow Perspective

Many extensibility use-cases do in some way alter the control flow by adding or re-
placing process fragments by customer extensions. Extensions may also skip or even
re-arrange existing reference process branches. Multiple variants exist, most notably
for how to spawn (conditionally, (a)synchronously, etc.) and merge back extension flow
(with or without synchronization).

In this paper, we solely consider Usage Extensibility which is the most straightfor-
ward way of creating control flow extensions. Usage extensibility applies to activities,
denoting atomic tasks (either performed automatically or by a human actor) or refer-
encing nested subflows. The idea is to have an extension replacing an activity A of the
reference flow by another activity A′. Technically, the to-be-replaced and replacing ac-
tivities A and A′ need to expose compatible interfaces (for the data flow) to have the
extensibility framework seamlessly perform the replacement without human interven-
tion at runtime.

Figure 2 depicts a “Make to Order” reference process derived from a public SAP
Solution Composer4 business scenario map. Make to Order specifies a vendor-side pro-

4 http://www.sap.com/solutions/businessmaps/composer/index.epx

104



Fig. 2. “Make to Order” Reference Process

cess in discrete industries where a good is manufactured upon an incoming order from
a customer. On the vendor side, activities are performed by three different roles: (1)
sales department, (2) manufacturing, and (3) quality assurance. After negotiating deliv-
ery dates and completing the production planning, manufacturing ultimately produces
the good with interleaved quality checks for the production process and final checks for
the good itself. At customization, this process is extended to optionally modify those
quality gates depending on the order volume. That is, for high-volume orders a four-
eyes quality check applies as part of the final checks. For this purpose, the extension
replaces the “Final Quality Checks” task by the subflow depicted in Figure 3 (left).

Usage Extensibility captures a wide range of customization use-cases and can be
applied in a straightforward way. In fact, by substituting atomic activities through sub-
flows, it allows the incorporation of structurally complex customer extensions into ref-
erence flows.

4.2 Data Flow Perspective

Unlike control flow, data flow is implicitly incorporated into process models. It af-
fects the process’ data context, activity interfaces, data mappings, decision gateways,
and message correlations. One frequently observed requirement revolves around Field
Extensibility which deals with (compatibly) complementing data interfaces both from
a service provisioning and consumption perspective. That is, customers may wish to
customize the reference process in a way that it receives (passes on) additional param-
eters from inbound (outbound) messages (services). New clients may interact with the
process through the field-extended interface. In turn, compatibility to existing clients
(provisioning) and services (consumption) must be preserved.

Figure 3 (right) depicts a plain BPMN flow where the start/end events represent
the inbound case, providing the process as a service has a well-defined interface. A
new process instance is spawned upon receiving an inbound “request” message on that
interface. In turn, the end event terminates the instance and crafts the corresponding
outbound “response” message. When compatibly extending that interface to accommo-
date additional fields, clients (including “parent” processes) may pass on extra data to

105



Fig. 3. Usage Extensibility (left) and Field Extensibility (right) Examples

the process. The process may then make use of this data in usage-extended activities.
Existing clients remain unaffected, thus, passing (receiving) their inbound (outbound)
messages to (from) an extensibility framework which adds (strips off) the extra fields.

Vice versa, the subflow activity constitutes the consumption case where the activ-
ity’s interface may be field extended in the same manner. Altogether, Field Extensibility
is concerned with preserving compatibility despite interface changes. When used in iso-
lation, it does not specify the means to take advantage of additional data fields.

5 Open Research Challenges

In this paper, we introduce the idea of process extensibility but do not yet cover the
whole topic exhaustively. In fact, we believe extensibility constitutes a whole new area
of BPM research. In this section, we present a research agenda that gives indications
for future research on conceptual and technical follow-up topics. Most topics revolve
around (1) fully understanding the applicability and limitations of process extensibility
and (2) laying its formal and technical foundations:

Extensibility Patterns To set the scene for follow-up research, it is important to gain
a comprehensive overview on relevant extensibility use-cases. These use-cases
should preferably constitute real-world customization requirements which need to
be classified and mapped to extensibility patterns.

Reference Process Conformance Extensions alter the behavior of reference processes
which are, in turn, supposed to represent best practices. It is thus necessary to pre-
serve some core characteristics of an extended process. Future work in this area
could result in an explicit constraint model for defining extensions for reference
processes.

Reference Process Patchability After shipment, a reference process p is solely main-
tained through patching (cf. Fig. 4, left). The vendor may ship a new version p′ that
all existing extensions transparently apply. Hence, existing extensions (e1) implic-
itly impose compatibility rules which constrain to what extent a patched reference
process p′ can differ from the predecessor version p.
Future research should formulate compatibility rules for reference process patch-
ing. That includes providing migration instructions to autmatically handle “dan-
gling extensions” that no longer match a patched reference process.

106



vendor customer

p

p′

e1

e2

vendor ISV customer

e1

p e3

e2

e4

Fig. 4. Reference Process Patchability (left) and Stacked Extensions (right)

Extension Mining Deviations from reference processes may initially not be specified
as proper extensions. Instead, end users may also make use of costly ad-hoc changes
to gain the required flexibility. To liberate end users from tedious ad-hoc changes,
and thus, essentially saving costs, process log mining may be employed to (1) detect
“manual” deviations from a reference process original behavior and (2) automati-
cally derive extension definitions.

Extension Point Extension points are part of a reference process and expose its exten-
sible aspects. Future work should develop a concept for specifying extension points,
capturing all extension patterns. That may include additional constraints on the ex-
tensions that are “plugged in”. Finally, extension points should be self-sufficient
such that reference processes could also be shipped as “black box” content, omit-
ting implementation details.

Stacked Extensions In large software rollouts, 3rd party contractors may be involved.
For instance, a contractor may be responsible for customizing reference processes
through some baseline extensions. The customer itself may further refine these
contractor-defined extensions by providing other extensions on top of it. In this
way, a transitive extension chain may emerge. Figure 4 (right) depicts a scenario
where both a contractor and the customer define extensions atop a reference pro-
cess p. Customer extensions (e3 and e4) can both refer to a contractor extension
(e1) or the reference process directly. Future work needs to devise an extensibility
framework architecture that supports these scenarios.

Business Process Outsourcing Both Software-as-a-Service and Cloud Computing
promise significant cost savings through scaling effects. In this regard, Business
Process Outsourcing has become the corresponding catchphrase for the BPM
realm. The idea is to externalize execution of processes to 3rd party hosting
providers. In terms of extensibility, one might host the reference process at the ven-
dor side, making invocations to extensions which run on the customer side. Future
work should yield an extensibility framework architecture supporting distributed
execution environments that tackle challenges like performance, availability, trans-
actionality, failover, authorization, etc.

Authorization Issues Role awareness is a key differentiator of extensibility, as op-
posed to other process flexibility approaches. Consequently, authorization becomes
an issue inasmuch as certain operations (like view, patch, extend, run) may be con-
strained to certain roles. For instance, the reference process may solely be patched
by the vendor, but may be extended on the customer side. More finely grained au-
thorization schemes may be invoked to further constrain the roles that may define

107



extensions for specific extension points. Altogether, future research should define a
comprehensive authorization concept, supporting the fore-mentioned use cases.

Design Time Usability The extensibility approach promises great cost savings over
other flexibility approaches. As a prerequisite, BPMS need to include modelling
tools to define extensions. These tools need to visualize relevant aspects of the to-
be-extended reference process and to define and “wire up” extensions in an easy to
comprehend fashion such that the impact of those changes becomes unambiguously
evident.

This agenda is by no means complete: our focus is to lay the foundations for practically-
oriented extensibility support as part of a BPMS.

6 Related Work

In this paper, business process extensibility is positioned as a new area of research in
the well-explored field of process flexibility. A recent taxonomy in process flexibil-
ity [SMR+08] identified four approaches to achieving flexibility:

– flexibility by design – where a number of alternative pathways are explicitly speci-
fied in the process model at design time.

– flexibility by deviation – where at run-time an alternative course of action can be
taken which differs from the course of action prescribed by the process model.

– flexiblity by underspecification – where detailed specification of (parts of) the pro-
cess model is avoided. As mentioned in [SMR+08], this category covers both late
modelling and late binding.

– flexibility by change – where a process model can be modified after deployment.

BPM systems such as ADEPT1 [RRD03], YAWL [AtH05] (including its Worklet
service [AHEA06]), FLOWer [AWG05] and DECLARE [PSSA07] are classified
in [SMR+08] according to this taxonomy.

Patterns are a useful means to compare the capabilities of different lan-
guages/systems and there are two pattern collections in the area of process flexibility
that have recently been developed for this purpose. On the one hand, so-called change
patterns and change support features are documented in [WRRM08], while on the other
hand the flexibility taxonomy gave rise to a collection of flexibility patterns [MAR08].
In [MAR08] it is claimed that the “majority of” the change patterns can be “mapped
on” the flexibility patterns. Neither pattern collection addresses the issue of managing
the evolution of (reference) process models by vendors and of their counterparts by
customers. However, they can be used as a mechanism to operationalize our ideas.

A well-researched problem in the area of dynamic/adaptive workflow is the migra-
tion of process instances across different versions of a process model. Consider e.g.
early work by Ellis et al. [EKR95] or van der Aalst [Aal01] dealing with changed
control-flow dependencies. A comparative overview of correctness criteria used by var-
ious approaches is presented in [RRD04]. More recently, Rinderle et al [RMRW08]
investigated new, more relaxed, correctness criteria for process migration, taking not
only the control flow perspective but also the data perspective into account. Work in

108



this area could be exploited and extended to deal with (controlled) changes by the ven-
dor, the customer, or both. The last case in particular poses a challenge.

Reference models are models for targeted application domains that incorporate
“best practice” [KKR06] methods in these domains. Reference process models serve to
capture the procedural aspects of best practices. In the SAP R/3 environment many such
models are made available using the Event-driven Process Chain (EPC) notation. As a
reference process model may be quite large in order to capture all possible pathways
in the various settings in which it may be used, the notion of a configurable reference
process models was introduced [RA07]. Customizing a configurable reference process
model to a particular setting may lead to a model in which many of the pathways were
eliminated as they are simply not applicable. Process configuration typically is a one-
off activity where there is no provision for further adaptation of the configured model.
Additionally, evolution of configurable reference process models has not yet been in-
vestigated or even identified as a topic worthy of research.

An approach to tackling challenges dealing with a collection of so-called “process
variants” is documented in [HBR08]. It is proposed that for a process variant the change
operations that need to be applied to derive it from a base process model are explicitly
stored, rather than keeping only the results of these operations. This is an idea that is
valuable to the area of business process extensibility as well. The mixture of design-time
and run-time considerations as well as the requirement of supporting restricted changes
and the propagation of such changes, position the field of business process extensibility
uniquely with respect to process flexibility and process configuration.

7 Summary

This paper introduced the notion of process extensibility as a new paradigm for cus-
tomizing reference process models and managing their evolution over time. The main
difference with traditional process flexibility approaches arises from the clear separa-
tion of concerns between the reference process owner (vendor) and the owner of ex-
tensions thereof (customer). The tension between customer freedom, when it comes
to reference model adaptation, and the ability to incorporate with relatively low effort
vendor-initiated reference model changes, needs to be carefully balanced. This paper
provided an overview of, and motivation for, the notion of business process extensibil-
ity, positioned this area with respect to related areas such as process configuration and
process flexibility, and identified some of the main unresolved challenges in this area.
The limitation of controlled flexibility presented in this paper is related to the ability
of the vendor to foresee where extensions to a reference model could be needed in fu-
ture. In fact once extension points are set, they should not be changed to avoid losing
synchronization with the customers’ derived models.

References

[Aal01] W.M.P. van der Aalst. Exterminating the dynamic change bug: A concrete approach
to support workflow change. Inf. Systems Frontiers, 3(3):297–317, 2001.

109



[AHEA06] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Worklets:
A service-oriented implementation of dynamic flexibility in workflows. In Proc. of
the 14th Int. Conf. on Cooperative Inf. Systems (CoopIS’06), volume 4275 of LNCS,
pages 291–308. Springer, 2006.

[AtH05] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

[AWG05] W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case handling: A new paradigm
for business process support. DKE, 53(2):129–162, 2005.

[EKR95] C. A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow sys-
tems. In Proc. of the Conf. on Organizational Computing Systems, COOCS 1995,
Milpitas, California, USA, August 13-16, 1995, pages 10–21. ACM, 1995.

[FLZ06] P. Fettke, P. Loos, and J. Zwicker. Business process reference models: Survey and
classification. In BPM Workshops, volume 3812 of LNCS. Springer, 2006.

[GAJVL08] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa. Config-
urable Workflow Models. Int. Journal of Coop. Information Systems, 17(2):177–221,
2008.

[HBR08] A. Hallerbach, T. Bauer, and M. Reichert. Managing process variants in the process
life cycle. In ICEIS 2008 - Proc. of the Tenth Int. Conf. on Enterprise Information
Systems, Volume ISAS-2, pages 154–161, 2008.

[KKR06] J. M. Küster, J. Koehler, and K. Ryndina. Improving business process models with
reference models in business-driven development. In BPM 2006 Workshops, volume
4103 of LNCS, pages 35–44. Springer, 2006.

[MAR08] N. Mulyar, W.M.P. van der Aalst, and N. Russell. Process flexi-
bility patterns. BETA Working Paper Series, WP 251, Eindhoven
University of Technology, the Netherlands, 2008. Available at
http://fp.tm.tue.nl/beta/publications/working%20papers/Beta wp251.pdf.

[PSSA07] M. Pesic, M. H. Schonenberg, N. Sidorova, and W.M.P. van der Aalst. Constraint-
based workflow models: Change made easy. In CoopIS, DOA, ODBASE, GADA, and
IS, OTM Confederated Int. Conf. Proc., Part I, volume 4803 of LNCS, pages 77–94.
Springer, 2007.

[RA07] M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling Lan-
guage. Information Systems, 32(1):1–23, 2007.

[RMRW08] S. Rinderle-Ma, M. Reichert, and B. Weber. Relaxed compliance notions in adaptive
process management systems. In Conceptual Modeling - ER 2008, 27th Int. Conf.
on Conceptual Modeling, volume 5231 of LNCS, pages 232–247. Springer, 2008.

[RRD03] M. Reichert, S. Rinderle, and P. Dadam. Adept workflow management system:. In
BPM 2003, volume 2678 of LNCS, pages 370–379. Springer, 2003.

[RRD04] S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dynamic changes in
workflow systems - a survey. DKE, 50(1):9–34, 2004.

[RRKD05] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive process management
with ADEPT2. In ICDE 2005, volume 3716, pages 1113–1114. IEEE Computer
Society, 2005.

[SMR+08] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W.M.P. van der Aalst. Towards
a taxonomy of process flexibility. In CAiSE Forum, pages 81–84, 2008.

[SN00] A.-W. Scheer and M. Nüttgens. Business Process Management, volume 1806 of
LNCS, chapter ARIS Architecture and Reference Models for BPM. Springer, 2000.

[WRRM08] B. Weber, M. Reichert, and S. Rinderle-Ma. Change patterns and change sup-
port features - Enhancing flexibility in process-aware information systems. DKE,
66(3):438–466, 2008.

110




