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Abstract: A concept for identification of candidates for outliers is presented, with
a focus on nominal variables. The database concerned is searched for rules that are
almost universally valid, with rare exceptions. In statistical terms, for these rules, the
hypothesis that the rule is universally valid except for random faults cannot be rejected.
Outlier candidates are those values that violate these rules.

1 Introduction

Detecting faulty data items, or ,,outliers” in large data sets is a task of considerable interest.
Of particular importance is the detection if the data are automatically processed. Since the
outliers take on exceptional and unpredictable values, their effect may overshadow all
genuine regularities in the data and prevent the algorithms from disclosing meaningful
results.

On the other hand, it is virtually impossible to distinguish the outliers from the variations
of the genuine data with ultimate certainty. An elegant way is with help of explicit sto-
chastic models of correct data, or, in a complementary manner, explicit stochastic models
of outliers. These models can then be analyzed, for example, in case of continuous varia-
bles by the methods of blind source separation (see e.g, [Ca00]). However, this approach
is difficult to follow in the context of Data Mining tasks because of the lack of any prior
information about the data.

Another challenge is the appropriate definition of the granularity at which numerical va-
riables are analyzed and set into relationship with nominal variables. Theoretically, all
information is captured in the joint probability distribution of all values. However, the
joint probability distribution may be arbitrarily complex (in many cases, it is substantially
different from Gaussian), and its approximation (e.g., by an expansion with help of high
order moments) would be a computationally infeasible task. So it may be more appropriate
to define discrete states of numerical variables and analyze their co-occurrence with the
states of discrete variables by means of discrete statistics.

For data analysis, discarding ,,suspicious” data may lead to a bias in results of the analysis.
However, in practice, it is usually not disastrous to discard a small fraction of data records.
By contrast, working with unrecognized outliers may completely invalidate the results. So
the usual procedure is to view the data and determine the data values that are candidates for
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outliers. If their total number or proportion is not critical, they may be simply discarded. If
the proportion of outliers is excessive, the whole data set may become useless unless the
outliers are corrected.

Evaluation, discarding or correction of the outliers can also be done manually with help
of expert understanding of the data. This step is relatively inexpensive if good candidates
are available. By contrast, the candidate generation is a laborious task for which machine
support is helpful. Such support is the main motivation for the work presented here.

2 Definition of atomic propositions

In this section, we define atomic propositions whose co-occurrence with others within
the same record of a table may be of interest. For such atomic propositions, rules can be
formulated, and outliers searched for.

Suppose there is a database table with a set of column variables with defined types. For
simplicity, let us consider only the following types of variables: char/varchar (for nominal
variables), int (for integer variables) and float/double (for floating point variables). While
variables with few values constitute atomic proposition in a trivial way (by a variable
having a particular value), the granularity on which real valued variables are investigated
may (and must, for computational reasons) below the individual value level. So the discrete
states to be analyzed can be defined, for example, as var = value for nominal or integer
variables with a limited number of distinct values (e.g., below 10), as well as var < 0,
var > 0 and var = 0 for integer variables with many distinct values and floating point
variables. Another state of interest may be the equality or nonequality of two numeric
variables, formally var1 < var2, var1 > var2, var1 = var2.

Every such state represents an atomic proposition whose co-occurrence with others can be
investigated (for example the co-occurrence of atomic proposition A defined as color =
red with B defined as price > residual value.

3 Outlier identification

As stated in Section 1, outliers can be separated from random data variations only sta-
tistically, with help of some prior knowledge or assumption about the correct data. For
continuous variables, maximum entropy priors [O’94] can be assumed in the absence of
any knowledge. Examples for such maximum entropy priors are Gaussian distribution for
unbounded random variables with a given mean and variance, exponential distribution for
positive random variables with a given mean and uniform distribution for random variables
from a finite interval

For discrete states, the maximum entropy prior is the distribution with equal probabilities
of all values. However, this assumption is so unrealistic that most variable from real data
bases would violate it even without outliers.

This is why we decided to follow another approach. We will look for regularities that apply
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at ,,almost all” cases with as few exceptions that it can be expected they are random faults.
This amounts to the assumption that outliers are rare, thence the ,,rareness assumption” in
the title of this work. Of course, in this way, we can find only the candidates for outliers
since they cannot be safely distinguished from very scarce, but correct occurrences.

The simplest case is that of a single atomic proposition. Suppose an atomic proposition
A, of some of the types given in Section 2, were universally valid in a ,,clean” data base.
Suppose further, in a real, partially erroneous database, this proposition is violated with
probability p. For example, the variable price would be nonnegative in a clean database (A
corresponding to price ≥ 0), but be erroneously assigned a negative value with probability
p.

Then the occurrences of the fault ¬A are binomially distributed, and the probability that
¬A occurs in k¬A out of n data records is

(
n

k¬A

)
pk
¬A(1 − p)n−k¬A (1)

If the number of occurrences is k¬A and the cumulative probability
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n∑
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i

)
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)
pi(1 − p)n−i (2)

is below the given significance level α, then the hypothesis that this number of occurrences
of ¬A can be explained by the fault process of the described type can be rejected on this
significance level [SOA99]. Then, we can assume that A is not universally valid, and ¬A
may be correct values.

A widespread (and probably computationally the fastest) hypothesis test for the binomially
distributed number of occurrences consists of an approximation by the binomial distributi-
on by the Gaussian with the same mean and standard deviation, that is, N(np,

√
np(1 − p)).

The number of occurrences k¬A would then be compared with np + qα

√
np(1 − p) with

qα being the α-quantile of the standard normal distribution. However, this approximation
is justified only for relatively high values of p, which can hardly be expected in our ca-
se where p is the probability of a single data fault. So it is advisable to perform the test
with help of the original formula (2). An efficient way of computation is with help of the
recursive formula

P (n, 0) = (1 − p)n

P (n, k) = P (n, k − 1)n−k+1
k

p
1−p

(3)

If the hypothesis cannot be rejected, we still cannot confirm the opposite, that is, that the
occurrences of ¬A are faults. However, they are obviously justified candidates for faults.
To confirm this hypothesis by statistical means, we would have to evaluate the probability
β of the fault of the second kind (accepting an invalid hypothesis), which is substantially
more complex, and requires further assumptions [SOA99]. But the generating justified
candidates is sufficient for our aim.
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We can proceed by looking for nonatomic expressions such as rules of the form X → A
with X being a logical expression made of atomic propositions. In practice, X will typi-
cally consist of a single atomic proposition or a conjunction of two to three propositions.
The co-occurrences of X and A are characterized by the quadruple

(n, nX , nA, nX∧A) (4)

The cumulative probability is then received by substituting nX for n and kX∧¬A for k¬A

in (2), and tested for excess of α.

So every rule can be, with help of its corresponding tuple (4), determined to belong to one
of the following classes:

• (A) those that are universally valid, recognized by equality nX = nX∧A,

• (B) those for which the hypothesis of universal validity can be rejected, that is, those
for which (2) is below the significance level α, and

• (C) those that are not universally valid, but whose hypothesis of universal validity
cannot be rejected, that is, (2) exceeds the significance level α; in other words, it is
not inconsistent to assume that the rule is violated only be faulty records, or outliers

The procedure for outlier detection consists of the following steps

1. Generating rules (i.e., atomic or nonatomic expressions)

2. Assigning the rules to one of the above three classes

3. Retaining the rules of class C

The values of fault probability p and significance level α are to be a priori specified. While
for significance level some of the standard values such as 0.01 or 0.001 can be taken, the
fault probability has to be deliberately set. Fortunately, its effect is monotone - a low p will
produce less outlier candidates, a high p more candidates.

4 Computing considerations, experience, and future work

The presented concept has been implemented as a PERL script with an access to a MySql-
database. The atomic propositions have the form of character strings which, in turn, can
be directly used for the construction of SQL queries to receive the counts (4).

The process of rule generation is computationally intensive. For Nn nominal variable ha-
ving on average M distinct values and Nr numeric variables, there are P = NnM+3Nr+
3Nr(Nr −1)/2 = NnM +1.5Nr +1.5N2

r atomic propositions. So there are P (P −1)/2
simple rules of the mentioned type, which can easily amount to several millions (e.g., for
Nr = 50, the number of rules exceeds seven millions). For search of larger rules, frequent
itemset algorithms are efficient, as long as minimum support (i.e., lower bound for NX∧A)
can be specified. (Specifying the minimum support may be a serious obstacle since the
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,,appropriate” minimum support is difficult to determine. By contrast to, for example, the
significance level or fault probability, which hardly depend on the domains of the varia-
bles, the support for a atomic proposition of the type < variable >=< value > decreases
with increasing number of distinct values of < variable >.)

A typical mode of use of the algorithm consists of (1) setting up the table to be analyzed
(possibly as a join of several tables), (2) determining the rules violated by potential outliers
and (3) listing the records violating the rules.

The algorithm has been applied to several real data bases, containing data sets from the
fields of quality insurance and fleet car management. The parameters of the algorithm have
been set to p = 0.001 and α = 0.001. The following example illustrates the output: all
rules are shown that concern the variable Migr and that are violated by some outliers. (The
value ’Yes’ of variable Migr identifies the records which were migrated from a previous
system and are thus particularly error-prone.)

ValR=0 → Migr=’Yes’, 1 exception
IntR<0 → Migr=’Yes’, 1 exception
CapR<0 → Migr=’Yes’, 1 exception
Migr=NULL → NOT(StatVRw=’Stock’) 6 exceptions

For example, the first rule says that all records in which the variable ValR is zero are
migrated records, with a single exception, which is suspect of being an outlier.

Viewing the outlier records (,,exceptions”) enabled their correction or removal from the
data base in order to improve the quality of the subsequent Data Mining analysis.

Our next step will be the thorough evaluation of the basic approach on several data bases
from different domains. Furthermore we plan to investigate whether the results improve
by allowing rules to contain a conjunction of two or even more atomic propositions in
the antecedent. Due this extension implying increasing complexity we plan to address the
problem of efficient rule generation by means of frequent itemset generation, e.g.[AS94,
HGN00]. Although we are aware of the fact that the (necessary) introduction of minimum
support restricts the set of rules discovered we expect that this may bring about valuable
results.
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