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Abstract: Soccer simulation is an effort to motivate researchers to perform
artificial and robotic intelligence investigations in a multi-agent system framework.
In this paper, we propose a game theoric-based data mining approach to help the
coach agent select the best strategy for each soccer player agent in order to gain the
most probable payoffs.These payoffs are calculated both static and dynamic i.e. are
taken from experience results that are stored in a knowledge-base or is learned
knowledge during the game. In this work we have confined ourselves to a model in
which opponent strategy remains static. We take advantage of a learning algorithm
with a polynomial time complexity in the number of states of the opponent strategy
modeled by deterministic finite automata.

1 Introduction

Robotic soccer is a particularly good domain for studying multi-agent systems and has
been gaining popularity in recent years with international competitions like RoboCup
[Ki97]. Robotic soccer can be used as a standard testbed to evaluate different multi-agent
system techniques in a well-defined manner. Noda’s Soccer Server [No96], pictured in
Fig. 1 captures enough real-world complexities to be an indispensable tool for years in
RoboCup competitions. Fig. 2 shows the format of the communication message between
the server and a specific client.
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Since the client’s vision is limited to 45o on either side, not all objects are visible at each
sensory step. For example, at the beginning of the trace in Fig. 2 the client sees two
teammates (Nexus) and one opponent player (Aria), however, after dashing once, it is no
longer able to see the opponent. In this work we perform our research approach in the
mentioned platform of soccer simulation.

The structure of the paper is as follows. Section 2 describes an overview of some
previous researches and also data mining approaches for strategy making. An
investigation on game theory approach is declared in section 3, section 4 is dedicated to
skills hierarchy and strategy layer, learning in multi-agent systems, and finally section 5
presents our method.

Fig. 1. A partial view of
simulated environment

... (see 124 ((goal r) 20.1 34) ((flag r t)
47.5 -4) ((flag p r t) 30.3 -24) ((flag p r c)
10.1 -20)((ball) 11 0) ((player Nexus 2) 21 19)
((player Nexus 3) 21 -11) ((player Aria 1) 17
35) ((line r) 40 -26))**-> (dash 80) (see 129
((goal r) 16 43) ((flag r t) 42 -6) ((flag p r
t) 25 -30) ((flag p r c) 5 -40) ((ball) 6
1)((player Nexus 2) 16.3 24) ((player Nexus 3)
15.3 -17) ((line r) 32.8 -27))**-> (turn 1)**->
(dash 60) (see 134 ((flag r t) 40 -9) ((flag p
r t) 23.3 -35) ((ball) 3.7 2) ((player Nexus 2)
14.4 24)((player Nexus 3) 13.3 -22) ((line r)
28.2 -30)) **-> (turn 2)**-> (dash 30) (hear
138 18 shoot the ball)(see 139 ((flag r t) 38.1
-11) ((flag p r t) 22 -39) ((ball) 1.9 0)
((player Nexus 2) 12.8 27)((player Nexus 3)
11.6 -27) ((line r) 25.5 -31)) **-> (say
shooting now) **-> (kick 53 51) (hear 141 self
shooting now) ...

Fig. 2. A trace of the simulator’s input and output. The player
moves to the ball and then shoots it towards the goal.
Commands from the player are indicated with “**-> ”
preceding them.

2 Related Works

Data mining (DM), also known as Knowledge-Discovery in Databases (KDD), is the
process of automatically searching large volumes of data for patterns such as association
rules. DM has been defined as "the nontrivial extraction of implicit, previously
unknown, and potentially useful information from data" [Fr92] and "the science of
extracting useful information from large data sets or databases" [Ha01]. A data mining
process in the field of RoboCup soccer simulation involves gathering useful information
out of the game data and acquires useful knowledge about the game situation known as
game pattern or strategy.
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In competitive domains such as soccer games, any knowledge about the opponent may
help players design a strategy in order to win the game. This idea proposes an approach
for strategy making based on the observation of their input-output behaviors using a
classification task [Al00]. An extension of this approach to the RoboCup was presented
in [Le02]. The behavior of a player in the robosoccer can be understood in terms of its
inputs (sensors readings) and outputs (actions).

Tactics, formations, positioning, and player types, are common concepts in soccer.
CMUnited team brought the concepts of formation and positioning to RoboSoccer [St99,
St98] and used dynamic switching of formations depending on the result and time of the
game. FC Portugal [Lu00] extended this concept and introduced tactics, situations and
player types. FC Portugal team strategy definition is based on a set of player types (that
define player strategy, ball possession and ball recovery behaviors) and a set of tactics
that include several formations (4-3-3, 4-4-2, Open 4-3-3, 3-4-4, 5-3-2, etc.).

Situation based strategic positioning mechanism [Lu00] is used for strategic situations.
For active situations, the agent position on the pitch is defined by specific ball
possession, ball recovery or stopped game decision mechanisms. The agent analyses
which is the tactic and formation in use and its positioning (and corresponding player
type) and calculates its base strategic position in the field. This position is then adjusted
with regard to the ball position and velocity, situation (attack, defense, scoring
opportunity, etc.) and player type strategic information. Player strategic characteristics
include admissible regions in the field, ball attraction, specific positional characteristics
for some regions in the field, alignment in the offside line, tendency to stay behind the
ball, and attraction by specific points in the field.

Dynamic positioning and role exchange is based on previous work from Peter Stone et
al. [St99, St98] that suggested the use of flexible agent roles with protocols for switching
among them. In FCPortugal team, players may exchange not only their positioning but
also their player types in the current formation. Positioning exchanges are performed
only if the utility of that exchange is positive for the team. Utilities are calculated using
the distances from the player’s positions to their strategic positions. Positioning
importance depends on the formation and ball position.

3 Learning in multi-agent systems

Multi-agent systems learning techniques mainly involve machine learning algorithms,
game theory, utility theory, and complex systems. [Mi97]. That is, we assume the
existence of a large, sometimes infinite, set of examples E. Each example e ∈ E is a pair
e = {a, b} where a ∈ A represents the input the agent receives and b ∈ B is the output the
agent should produce when receiving this input. The agent must find a function f which
maps A → B for as many examples of A as possible. The set E is usually first divided
into a training set which is used for training the agent, and a testing set which is used for
testing the performance of the agent. In a multi-agent scenario the agent is no longer
learning to extrapolate from the examples it has seen of fixed set E, instead its changing
target concept makes a moving target function problem [Vi98].
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Game theory provides us with the mathematical tools to understand the possible
strategies that utility-maximizing agents might use when making a choice. It is mostly
concerned with modeling the decision process of rational humans, a fact that should be
kept in mind as we consider its applicability to multi-agent systems. The simplest type of
game considered in game theory is the single-shot simultaneous-move game. In this
game all agents must take one action. All actions are effectively simultaneous. Each
agent receives a utility that is a function of the combined set of actions. A single-shot
game is a good model for the types of situations often faced by agents in a multi-agent
system where the encounters mostly require coordination [Vi03].

In the one-shot simultaneous-move game we say that each agent i chooses a strategy si ∈
Si, where Si is the set of all strategies for agent i. These strategies represent the actions
the agent can take. When we say that i chooses strategy si we mean that it chooses to
take action si. The set of all strategies chosen by all the agents is the strategy profile for
that game and it is denoted by s ∈ S ≡ I

i 1=× Si. Once all the agents make their choices and
form the strategy profile s then each agent i receives a utility which is given by the
function ui(s). Notice that a player’s utility depends on the choices made by all the
agents. A Game [Ne85] is a 3-tuple G = {N, α,Π} Where:

• N is the number of players,

• α = {αi}i =1…N; αi = {αi1,… αiMi} is the set of actions available to player i, and

• Π: i× αi→ RN is the Payoff function, i.e. Π assigns each player a real number
payoff for any combination of all players actions.

Two player games involve only two players, i and j. They are often represented using a
game matrix such as the one shown in Fig. 4. In that matrix we see that if agent 1 (the
one who chooses from the rows) chooses action A and agent 2 chooses action B then
agent 1 will receive a utility of 3 while agent 2 receives a utility of 4.

A B

A 1,2 3,4

B 3,2 2,1

Fig. 4. A sample two player game matrix

It is possible that a player will choose randomly between its action choices, using
different prior probabilities for each choice. These types of strategies are called mixed
strategies and they are a probability distribution over an agent’s actions. We say that a
mixed strategy for agent i is σi ∈ Σi ≡ P(Si) where P(Si) is the set of all probability
distributions over the set of pure strategies Si [Vi03].

57



The Nash equilibrium in an n-player game is a set of strategies, Σ = {σ1, …,σn}; such
that, given that for all I player i plays σi, no player j can get a higher payoff by playing a
strategy other then σj. [Mo96] It has been shown that every game has at least one Nash
equilibrium, as long as mixed strategies are allowed. If the system is in equilibrium then
no agent will be tempted to take a different action. In a 2 player game, consider player A
chooses a strategy and plays by it. Player B tries to learn A's strategy and design his
strategy as a best response to it. We assume A restricts itself to strategies realizable by
Deterministic Finite State Automata (DFA). This is due to DFS strategies have been
accepted widely as a model of bounded rationality [Ru85, Ne85], and also learning the
structure of an automaton has been shown to be a very hard problem [Ke94].

The number of states in the automata is considered as a measure of their complexity. A
series of "folk theorems" have shown that if the players are restricted to automata of size
sub-exponential in the game length (i.e. the number of rounds or in our paper number of
cycles in a simulated soccer game) then cooperative behavior can be achieved at
equilibrium. Consider two players, A, and B, playing this game. Each player's strategy,
σi, i ∈ {A, B}, is a sequence of actions taken by player i. Strategy i can be represented
by a DFA where i's actions are given in every state of the automaton and the transitions
are determined by the actions taken by i's opponent. For example if the automaton in Fig.
5 represents A's strategy in the famous Prisoner’s Dilemma (PD) then, both players will
stay in the initial state if both perform cooperate. A will move to the other state if he
performs cooperate and B performs defect [Mo96]. This shows that in the repeated PD
game, if all players are rational, the only equilibrium is mutual defection. However
Neyman [Ne85] and Rubinstein [Ru85] have shown that even if only one player is
restricted to an Automaton with a limited number of states, any payoff pair in the
Individually Rational Region (Fig. 6) can be accomplished as an equilibrium payoff.

D C

D 1,1 0,4

C 4,0 3,3

Fig. 5. A's strategy – example

Fig. 6. Payoffs of the PD game
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We denote the automaton that represent i's strategy (i∈{A, B}), and have n states by An
i.

When playing against an automaton, the game history is eventually cyclic. If player A is
an automaton, and B is indeed trying to maximize his payoff, it is enough for him to
consider only simple cycle in A i.e. cycle in which every state is passed only once. Thus,
when considering the possible payoffs included by an automaton, it is sufficient to
examine its simple cycles [Mo96].

Four types of states in an automaton for the PD game were defined. We will group the
states of the automaton into chunks of connected (in the automaton graph) states of the
same type. Let NA be the number of states in A automaton, and NCA be the number of
chunks of equi-type states. Let the complexity relation between two automata denotes by
A <c A' if NA < NA’, or NA = NA’ & NCA < NCA’. The class of simple automata is defined
as: Csimp ≡ A : ∃<α ,β> s.t. A supports <α ,β> and ∀A': A' supports <α ,β> ⇒ A <c A'.

Mor et al., in [Mo96] proved that Csimp class is learnable by a polynomial time algorithm
of O(n) to construct the appropriate automaton against learned strategy. Suppose player
A designs an automaton that is "tuned" towards a certain payoff vector, and player B tries
to learn that automaton and play accordingly. It is reasonable that A will choose an
automaton that gives B a payoff of 1 (or 1+ε) to maximize his own payoff. However, we
might want to allow more complex situations, emerging from various possible beliefs of
the players. Consider, for instance a setting in which B can opt out of the game, and be
matched with a different partner. If both players believe B can receive an expected
payoff of θ if he opts out, then A will construct his automaton such that award B at least
θ in equilibrium. Let us assume that A restricts himself to strategies that grant B a payoff
of at least β at equilibrium. Still, among all these strategies, A will choose that which
maximizes his own payoff. Consider again the prisoner's dilemma. Given that A
maximizes his payoff for a certain minimal payoff he attributes to B, the only possible
payoffs to be received by both players can be represented in the upper and rightmost
boundaries.

An example of a polynomial learning algorithm for PD problem was explained in
[Mo96]. Assume player B knows that A's automaton is simple, i.e., A's automaton is in
Csimp, the learning algorithm for B is shown in Fig. 7. Notice that B does not know how
many states there are in A's automaton (n). In the algorithm Learn0-3(n), B could have
played C all the time in order to play according to A's automaton (a chunk of states 0
connected to a chunk of states 4). But, if B would have played so, A could have taken
advantage of that and play D forever. Hence a step where B will play D to prevent A
from abusing him was added in B's learning algorithm. B will discover the size of n in
polynomial time since he will know it after log2 number of steps [Ne85]. Kp denotes the
number of states in An

i in which player A gets payoff p.
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High-Level Skills

Intermediate Skills

Low-Level Skills

Soccer Server Commands

4 Skills hierarchy and strategy layer

Soccer agents' skills includes turning towards a point, kicking the ball to a desired
position, dribbling, intercepting the ball, marking opponents, etc. These skills can be
divided into different layers which together form a hierarchy of skills. Fig. 7 shows this
hierarchy which consists of three layers which skills of each layer use skills from the
layer below to generate the desired behavior. The bottom layer contains low-level player
skills which can be directly specified in terms of basic action commands known to the
soccer server.

At this abstraction level the skills correspond to simple actions such as turning towards a
point. The middle layer contains intermediate skills which are based on low-level skills.
The skills in this layer do not deal with the exact format of server messages anymore but
can be specified in terms of the skills from the layer below. Finally, the skills at the
highest level are based on intermediate skills. The way in which a skill is executed
depends on the arguments which are supplied to it.

Fig. 7: The skills hierarchy consisting of three layers.
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Learn(n):
Play C
If payoff = 0 then Learn0-3(n)
else Learn3-4(n)

Learn0-3(n):
For i=1 to ∞∞ {

Play C for 2i times
Play D for 4i times

}

Learn3-4(n):
K3=0
Repeat {

Play C for K3 times
Play D
Play D
If payoff = 1 then K3 ←← K3 + 1
else braek

}
KS = 0
While (payoff = 4) {

Play D
K0 ←← K0 + 1

}
Repeat {

Play C for K3 times
Play D for K0 times

}

Fig. 8. The PD Learning algorithm

Which skill is to be selected in a certain situation depends on the team strategy. It is
important to realize that the execution of each skill eventually leads to a basic soccer
server action command. In this model a player that starts with the ball dribbles until it
sees an opponent at a predetermined distance. However, a more flexible and powerful
approach would include allowing the dribbling player to learn at the time of dribbling,
passing, and shooting.

Having introduced adversarial behaviors, some additional issues must be considered.
First, if the adversaries are permitted to continually adjust to each other, they may evolve
increasingly complex behaviors with. This potential stumbling block in competitive co-
evolution has been investigated by several researches with genetic algorithms [Gr96,
Ha96, Ro95]. Second, since a robotic soccer team is supposed to play against many
different opponents, often for only a single match, it must be able to adapt quickly to
opponent behaviors.
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5 The proposed method

Nexus soccer simulation team of Ferdowsi University of Mashhad [Sal05] is based on a
layered architecture. This kind of architecture allows each layer to get information from
the lower layer, and provides higher level services for the upper layer. The Strategy layer
shown in Fig. 9, is a high level layer that usesWorld Model information and basic skills
to play a soccer game. This layer is actually designed for the coach agent; however,
other players can also use this layer to cooperate with other players.

Fig. 9. Team architecture

Coach agent in soccer simulation environment is a privileged client used to provide
assistance to the players [Ch02]. There are two kinds of coaches, the online coach and
the trainer. The trainer can exercise more control over the game and may be used only in
the development stage, whereas the online coach connects to server during the game and
provides additional advice and information to the players. The coach agent can control
the play-mode, broadcast audio messages containing information, and getting noise-free
information about the movable objects. The online coach is thus a good tool for
opponent modeling, game analysis, and giving strategic tips to its team mates.

In our proposed model, the coach agent constructs a knowledge-base of the game in the
main memory containing 11 game matrixes for each 11 soccer player agents and
assumes opponent's strategy realizable by a DFA. The number of states in that DFA is a
complexity measure. The coach would then apply the polynomial time learning
algorithm of O(n) in which n is the number of states of the opponent automaton for all
11 game matrixes with respect to the payoffs assigned by the game knowledge-base as
shown in Fig. 10. A team strategy is mostly made using a knowledge-base or a set of
<state, action> pairs. Using a special formation is another way in which each player has
some predefined duties. These predefined duties are divided into static and dynamic.

Intercept Outplay Pass Shoot Dribble ...

Intercept 1,1 0,3 0,4 0,4 0,3 ...

Outplay 3,0 0,2 3,0 3,0 2,1 ...

Pass 4,0 0,3 0,1 0,2 0,2

Strategy Layer

Skills Layer (Action Selection)

World Model

Soccer Server Commands
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Shoot 4,0 0,3 0,1 0,1 0,2

Dribble 3,0 1,2 0,2 0,2 0,1

... ... ... ... ... ... ...

Fig. 10. A sample agent game matrix

The static duties are knowledge-base of the strategy, with set of rules which are
generally based on the real soccer rules and ideas and also the environment of the server.
On the other hand the dynamic duties are where the strategy decisions are made with
respect to the dynamic parameters such as game status, opponent's behavior and some
statistics of the game.

A team's success is directly influenced by each agent’s actions. To determine team’s
efficiency, average results within 10 matches of three teams were set up accordingly.
Nexus2005 [Sa06] was a fuzzy improvement of Nexus2003 [Sa05] action section
mechanism and Nexus2006 take advantage of a probabilistic action evaluation method.

Average within 10 gamesGames

1.7 - 1.6StrategicNexus vs. Nexus2006

1.9 - 1.6StrategicNexus vs. Nexus2005

2.6 – 1.4StrategicNexus vs. Nexus2003

Table. 1. Results of competition within 10 matches

6 Conclusion and future work

In this paper an effective learning mechanism was introduced in order to be used on the
strategy making method of the coach agent in a polynomial time. The coach agent
creates a set of 11 game matrixes for each 11 soccer player agents and then applies the
learning mechanism algorithm with respect to the payoffs. These payoffs are calculated
both static and dynamic i.e. are taken from an experience in the knowledge-base or an
acquired knowledge during the game. In this work we confined ourselves to a model in
which opponent strategy remains static. A more general model in which players have to
learn non-fixed strategies by mutual learning will be considered in our future work.
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