An Aspect-based Environment for COTS Component
Testing

Macario Polo

Escuela Superior de Informatica
Universidad de Castilla-La Mancha
Paseo de la Universidad 4
13071 Ciudad Real, Spain
macario.polo@uclm.es

Alejandra Cechich

Departamento de Ciencias de la Computacion
Universidad Nacional del Comahue
Buenos Aires 1400
8300 Neuquén, Argentina
acechich@uncoma.edu.ar

Abstract: Component qualification is one of the major steps in the development of
component-based applications. Several techniques are wused to enrich
documentation by structuring and classifying components’ metadata. In that line,
aspect information has been used to help implement better component interfaces
and to encode knowledge of components’ capabilities. In this paper, we describe
an environment to generate and execute aspect-dependent test cases, which is
based on an aspect-based categorisation of information for testing.

1 Introduction

Several authors add metadata to components to describe their static and dynamic aspects,
what is useful for dealing with several software engineering tasks: in [SW99],
annotations are used to perform dependence analysis over both the static and dynamic
descriptions; in [HaOl] and [Or00], metadata are added to components to provide
generic usage information about a component (class and methods names, for example),
as well as information for testing. The common idea in these approaches is to add the
component a set of information to help the component user during its use, composition,
testing, etc.

Our proposal includes the addition of some aspect-based metadata to facilitate the
component testing. In our approach [CP02], we have extended the notion of using
metadata for testing COTS components by classifying testing information using aspects.
A number of meta-procedures for black box testing have been introduced to allow us to
reason about completeness of data supplied for testing, and eventually facilitate the use
of test cases along with automated tools for black box testing. Following this approach,

17

we have developed a tool to add testing metadata to Enterprise Java Beans (EJB)
components, additionally generating aspect-depending test cases.

Many techniques for generating test cases take as input the source code of the program
and/or a set of formal specifications [DF94][CTCO1][Ed01][Of03]. For example, the
work in [Of03] generate test data from state-based specifications of systems that must be
formally described. The use of symbolic execution has been also widespread used to
generate test data, mainly to reach different coverage criteria [Me01][La98][BOP00].

To generate test cases automatically, most of the afore-mentioned approaches require the
existence of a separated algebraic specification of the class under test, which must
include the functional description of the behaviour of the class operations. However, it is
also possible to extract the structure of a class under testing using Reflection, a
characteristic of many interpreted programming languages that makes possible to obtain
the structure of the class under test, what includes the complete description of its public
services, parameter types, return types, visibility, superclasses or implemented
interfaces, etc.

In this paper, we propose a method that allows us to generate test cases from Java
compiled bytecode. In section 2, we briefly introduce our approach to include aspect-
based metadata for testing. Section 3 presents a Java environment that supports and
automates our method. Finally, conclusions and future works are addressed in section 4.

2 Modelling aspect-based metadata for testing

A key feature of an aspect-based categorisation of component characteristics is the idea
that some components provide certain aspect-related services for other components (or
end users) to use, while other components require certain aspect-related services from
other components. Each component aspect has a number of aspect details that are used to
describe component characteristics relating to the aspect. These details aim to increase
developers and end users knowledge about components by providing a more effective
categorisation and codification mechanism for the component services.

Therefore, when reasoning about operations of components, we analyse them in terms of
particular aspects. For example, developers can describe interfaces in terms of a
collaborative work aspect, persistency-related aspect, or user interface aspect. Note that
some aspect categorisations may overlap (a service might be considered a user interface
aspect as well as a collaborative work aspect). Figure 1 illustrates how some aspects map
onto some services. The Accounting View component has only services described in
terms of user interface aspects, meanwhile the Editing Balance component has services
described in terms of one aspect as well as overlaps between the user interface aspect
and the collaborative work aspect, and the collaborative work aspect and the persistency
aspect.

18

2.1 Meta-Procedures for Aspect-based Testing

Metadata and aspects can extend the documentation of a component to define and
validate its test cases. For example, in our approach documentation to define test cases is
grouped into a meta-object used as a descriptor of a base-object.

To introduce the approach, a number of concepts must be defined. We firstly define the
notion of aspect scope of a method as the set of all aspects that influence a particular
component's method. For the example introduced previously, the aspect scope of all the
methods in Editing Balance is the following:

Accounting view

User Interface
Aspects
Collaborative Work
Aspects
gdButton()

storeBalance() i'].
VA

display()
o

Persistency
Aspects

Figure 1. Illustration of component aspects

ASc = {(show(), {User Interface, Collaborative Work}), (addButton(), {User Interface,
Collaborative Work}), (storeBalance(), {Collaborative Work, Persistency}), (replay(),
{Collaborative Work, Persistency})}

Identifying and creating test cases relevant for a component involve analysing test cases
for a single method as well as test cases for multiple-methods. Defining test cases
depends on several factors such as the component's state, the invariants on the
functionality associated to the component, and preconditions and post conditions of each
method. These factors are extended when we consider aspects by including the aspect
scope as we defined previously.

Then, a single-method treatment for aspect-oriented generation of test cases can be
enunciated'. For example, the method show() in Figure 1 is affected by two aspects —
“User Interface” and “Collaborative Work™”. We firstly select the pre/post conditions
relevant to the aspect “User Interface” and find test cases by using traditional techniques
for black box testing. After that, we proceed doing the same for the aspect
“Collaborative Work”. Once all aspects have been considered, we analyse all test cases

! We refer the reader to [CP02] for a detailed specification of treatments.

19

to identify incompatibility or inconsistency among them generating a new set of test
cases, where tests are compatible. Finally, several analyses of properties of test cases can
be done. In particular, a completeness analysis that checks that all aspects have been
considered and hence all domains have been consolidated could be useful for identifying
a wider spectrum of test cases.

A more complete selection of test cases also involves analysing valid ranges from a
combined view of methods, so aspects affecting methods can be used as a way of
partitioning the testing space. Then, we have defined the notion of relevant methods as
the set of all methods affected by a particular aspect. For the example, relevant methods
of all the aspects are defined as follows:

RM = {(User Interface, {show(), addButton()}), (Collaborative Work, {show(),
addButton(), storeBalance(), replay()}), (Persistency, {storeBalance()})}

Finally, methods are relating each other by sharing a set of aspects that influence their
behaviour. This situation leads to an “aspect overlap”™ meaning that methods tested
according to previous procedures are also influenced by compatibility of common
ranges. To clarify this point, just consider our example of Figure 1. Firstly, we produced
test cases for show() from the point of view of “User Interface”, addButton() from the
point of view of “User Interface”, show() from the point of view of “Collaborative
Work”, and so on. Then, we continued evaluating methods from the same point of view,
such as show() and addButton() from the point of view of “User Interface”. But show()
and addButton() should also be analysed considering that both methods share different
points of view or aspects (“User Interface” and “Collaborative Work™), which could
constrain our test case domain.

Then, we have defined the notion of common aspects as the set of relations between all
methods affected by a particular set of aspects. For the example, common aspects are
defined as follows:

CA = {({User Interface, Collaborative Work}, {show(), addButton()}), ({Persistency,
Collaborative Work}, {storeBalance()})}

2.3 Main data structures for testing

Following the ideas of [DF94] and [CTCO1], a test case will be composed by a sequence
of calls to methods in the component under test. Each method in the sequence will take
the adequate values to be compiled and executed. After the test case execution, it is
important to compare the obtained component’s state with the expected one; so, the
methods in the component will be annotated with a set of postconditions that could be
used to check both states. Obviously, depending on the granularity of these annotations,
the result and goodness of the comparison can be more or less effective. However, it is
always important to add the adequate constraints in order to automate the comparison
stage.

20

From the set of methods in both interfaces of the component under test, a simple
algorithm can be used to generate all the possible combinations of call to methods.
Afterwards, each combination will be applied to a new algorithm that generate the test
cases depending on the parameters’ types. Following the testing terminology [FG99], we
call Test script to each of these combinations.

Since Java is the platform where EJBs run, we have used some of the classes included in
the java.lang.reflect package to have a suitable representation of the data structures
involved in the testing process, that makes possible the easy manipulation of interfaces,
methods, types, etc. So, we have reused the TClass (Testing Class) defined in a previous
work [PPRO1][JPP03] to manage the component under test. 7Class knows a
java.lang.Class object, from which the tool can recover the set of methods in both
interfaces. TClass also includes the getTestScripts(int maxLength, String
regularExpression) method, that generates all the possible combinations of calls to
methods in the interface (i.e., test scripts): the first parameter represents the maximum
number of calls in the test script, and the second one is a regular expression that avoids
the generation of undesired combinations (for example: if we are testing a banking
account, maybe we do not want to test the sequences of calls starting with a withdrawal).

Therefore, there is also a TestScript class in our system, that includes the
getTestCases(String valuesFileName) to generate test cases. Its only parameter
represents the path to a file containing the values to be used to generate the test cases,
although it can be null if the user desires to provide the testing values by hand. The
method generates test cases making all the possible combinations of testing values with
methods in the corresponding test script. Therefore, the number of test cases can be
easily huge and, if we generate a testing method for each test case, the testing file could
not be manageable, readable and, even, compileable by a powerful computer.
Fortunately, as all the test cases proceeding from the same test script will only differ in
the parameter values, it is possible to group all of them in a single method that has so
many arrays of values as parameters in all the methods. The assignment of values to
parameters is controlled by a set of loops.

The TestCase class is in charge of constructing the testing methods, that are saved to a
standard Java file. Besides the calls to the methods in the interfaces of the component
under test, each test method contains also the code corresponding to the pre and
postconditions of the method.

In [DF94] and [CTCO1], “test cases consist of a pair of sequences along with a tag”, that
can be “equivalent” or “non-equivalent”. Both sequences of the test case are applied to
the same object; so the tag is “equivalent” or “non-equivalent” depending on the state of
the objects. For us, a test case will be composed by a message sequence that will be
checked against the possible set of pre and post conditions annotating each method in the
sequence according to its influencing aspects. In this way, there is no a single expected
value for the test case, but a set of possible right values, whose cardinality depends on
the amplitude of the constraints being tested.

21

3 An aspect-based environment for testing

Following our approach, we have developed a tool to add metadata for testing EJB
components. Using two predefined interfaces (EntityBean and SessionBean), developers
can build three types of EJBs:

e Stateless beans receive requests from client applications, process them and send
them a response. They do not maintain information about the connection with the
client.

e Stateful beans maintain information about the connection and can then receive
multiple related requests at different moments and provide a set of also-related
responses.

e Entity beans maintain information about the connection but, moreover, their
instances represent persistent objects that are saved in some kind of secondary
storage.

Stateless and stateful EJBs must implement the SessionBean interface, whereas entity
EJBs implement the EntityBean one. EJBs are managed by a component container,
which receives client requests through the Remote interface of the component.
Previously, the client must have located the desired component via its Home interface.
So, the Remote interface includes the declaration of the business methods, which are
those used by the clients to make use of the component functionalities. The Home
interface also includes the header of some methods to find instances and to provide
persistence to instances (in Entity EJBs). In practice, the component must implement the
methods defined in both the Remote and the Home interface, although this point is later
checked at runtime by the component container since there is no direct implementation
relationship from the component to its interfaces, that is, the compiler does not detect
whether a method in either the Remote or the Home interface is not implemented by the
component (even, the names of the methods in the Home interface are not equal in the
component).

This fact is illustrated in Figure 2, which shows in the right side the indirect nature of the
implementation relationship among the AccountEJB component and its two interfaces.
Both interfaces are actually exposed by the container as a mean to communicate the
component with clients: in fact, the client application uses the component functionality
by using the Account interface (the Remote one), being the component container in
charge of linking the interface with the component.

22

AccountHote

-%)\- EnmyBean
Client """"_—-_--’- Q

]
\ Account I
V AccoumtEIB

+deposit{float)
+iithdraw({float)

+open() EJB Contamer

Figure 2. Client and server sides in a generic EJB application

3.1 Description of the tool

Figure 3 shows the main screen of the tool: from here, the user can select the EJB to be
tested and sets the Remote and the Home interfaces. Then, the tool extracts the set of
locally defined methods of each interface and shows their signatures under each interface
name. Through the Aspects group of widgets, the user assigns method from both the
remote and the home interface: in the figure, the getBalance, withdraw, deposit and
findAll methods are being assigned to the Business aspect. The different groupings in
aspects can be seen in a single Aspect editor (accessible via the “Aspect explorer”
button), that allows to see what methods in each aspect are, as well as the addition or
removing of methods in each aspect.

& Metadata addition

Component's JMDI name: |ejbs.ElankingAccountE.JEl Load |

Remaote interface | |91bs BankingAccount AspectslUser interface |

public void setAccountMumber(jawa lang String =17, Uszer interface
public void sethalanceldoukle 17,
ubllc: ava lang Strln toHTMLTabIeRDWStnng(),

#esign selected methods to selectad aspect]

hublic ebs Bankingdcoount create(iava landg String x1, ¢

public ejbs ElanklnAc:c:ount flndElyPrlmar\,-'Key(EJbs Biank Rernote constraints

public javal ang.Strlng getHTMLTabIeHeader();

Haorme canstraints

Aspect explarer |
Testcase generator |

| I

=10l]

Figure 3. Main screen of the tool

23

The addition of pre and postconditions to methods is made on screen shown in Figure 4.
As it is seen, these constraints are directly written in Java, since they will be later
included in the file containing the testing program. In the example, the user has written
two preconditions for the withdraw operation (actually, two pieces of code to be
computed before the call to the method): the first one is a typical precondition to check
the validity of an argument; the second one saves in a variable the value of the account
balance before executing the method. This variable (balancePre) is used in the
postcondition code to test whether the account balance has been adequately updated. Pre
and postconditions can be saved into a file to be reused in later test cases generations.

& Constraint file

Methods

Preconditions for public double withdraw{douhle x1);

muhblic java.lang. Btring getAccounthumberd;
public double gethalanced;

if1==0.000 throw new lllegalArgumentException{"The amount
double balancePre=o.gethalanced;

public void setdccountMumberjava.lang. Stri
public void sethalance{double x1);

public douhle deposit{double x13; l |

Postconditions for public double withdraw(double x1);
if (o.gethalancedl=halancePre+x13 {0 o.sethalancelbalancePr

i

4 |

Constraint code

|

=

if (0 .getbalance])l=balancePre+x1) {
o .zetbalancethalancePrel,
throw newy Exception("There has been an error in the operation'™);

i

Addtupustl

i

Kl

4 | B

|| Save constraints |

Open file Add to pre

Figure 4. Screen to add pre and postconditions to methods

When pre and postconditions have been added to the operations, the user can go to the
test case generation stage. Figure 5 shows the sreen in charge of this task: it shows the
signatures of the set of operations in the Remote and Home interfaces of the component
under test. The user can fix the maximum number of methods in each test script and
build a regular expression to limit the set of test scripts to be generated using the
operators | (alternative), * (zero or more elements), + (one or more elements), .
(concatenation) and parenthesis. In the figure, the user desires to generate test cases with
a maximum length of five methods starting by calls to create and deposit, followed by
any combination of calls to withdraw and deposit. Pressing the “Get sequences” button,
the tool obtains all the test scripts fulfilling these conditions. Each test script receives a
unique name. The methods composing each test script can be seen clicking on the
corresponding node in the test script tree.

24

Test cases are generated either for the all the test scripts or only for the selected test
script by pressing the “Generate test cases” button. As we said, a test case consists of
calls to the methods in its corresponding test script with actual values passed as
parameters. Before the generation, the tool prompts the user to introduce test values by
hand to each parameter, or to use those saved in a file.

& Testcase generator - |E| LI

Remote interface Regular expression

T cresteljavs lang String doukle) deposit(double). ;I Get
[covithcirawdouble)deposittdouble]): el sequentes

Max length |5

[0 getace ountrurmber)

[getbalance

D sethccounttlumber{java lang String)
D sethalance(douhle)

[toHTMLTableRowStringg

[y withdraw(doutle)

[depositidouble) E —
a Dl | .|—|

Home interface

7 ejbs.BankingAccountHome ~| |23 Test scripts puhblic ejns.BankingAccount create(java.lang. Stri
© [Methods [tesiTs_65 7| |punlic double depositidaouble x1);
) . hublic double deposit{double x1);
[create(iava.lang String,double) [testrs_1081 public double withd rawidouble ¥13;
[findByPrimarykey(eibs. Bankin gAccountP! [testTs_1052
Y fincaiig [tesiTs_11567
D getHTMLTableHeader) D testTS_11568
(Y testTs_11578
1 [testTa_11578 -
4 | KT I
=z
Remave | Generate test cases

Figure 5. Screen for test case generation

In our example, test cases are written into a BankingAccountTestCases Java class. Each
test case is written into a method whose name contains the number of test script it
proceeds from, and a test case number. Figure 6 shows the test case number 1 for the test
script 11568. It contains a call to the create method with “1234567890” and 50.0 as
parameter values; a call to deposit passing 10.0, a call to withdraw and again a call to
deposit. As it is seen, the call to withdraw is placed between the precondition and the
postcondition described in Figure 4. It is also possible to group all the test cases
corresponding to the same test script into just a method. In this case, the Java file
produced is much smaller, but also more difficult to be read by a person.

The tool generates also a web page to execute the methods included in the
BankingAccountTestCases class (in our case). Figure 7 shows this web page after having
executed the test case shown in Figure 6. We suppose here there is an error in the
implementation of the withdraw operation that puts the component in a state that does
not fulfil the postcondition attached to this method, so the corresponding exception is
thrown and shown in the page. Test cases can also be executed all together, showing on
the web page the execution results for all of them. The web page includes also
information about the aspects tested by the test cases contained in the test script.

25

public void testTS_11568_1() throws Exception {
InitialContext ic = new InitialContext();
Object objRef = ic.lookup("ejbs.BankingAccountEJB");
ejbs.BankingAccountHome home=(ejbs.BankingAccountHome)
PortableRemoteObject.narrow(objRef, ejbs.BankingAccountHome.class);

java.lang.String x1=(java.lang.String) "1234567890"; double x2=(double) 50.0;
ejbs.BankingAccount o=home.create(x1, x2);

double x3=(double) 10.0;
o.deposit(x3);

double x4=(double) 100.0;
if (x4<=0.0)
throw new lllegalArgumentException("The amount must be greater than 0");
double balancePre=0.getbalance();
o.withdraw(x4);
if (0.getbalance()!=balancePre+x4) {
o.setbalance(balancePre);
throw new Exception("There has been an error in the operation");

}

double x5=(double) 100.0;
o.deposit(x5);

Figure 6. One of the test cases generated

Methods exposed by the interfaces can take non-primitive parameters. In our example
(see Figure 5), the findByPrimaryKey method requires an object of BankingAccountPK
class representing the primary key value of the tuple associated with the instance to be
created.

In order to pass values of complex data types to test methods, the tool includes a
repository of serialized objects. When the tool needs this type of values to generate test
cases, it looks for files whose name is the same than the data type required. In the
example, the tool could keep instances of BankingAccountPK in several files called
BankingAccountPK _1.ser, BankingAccountPK_2.ser, etc. Obviously, it is indispensable
that classes corresponding to these objects implement the java.io.Serializable interface.

4 Conclusions and future work

Splitting metadata according to aspects brings the possibility of applying separation of
concerns to improve test selection and generation. Particularly, complexity of analysis
might be reduced through the use of categorised metadata. In this paper, we have
presented an environment to automate the generation of aspect-based test cases from
Java code.

26

-3 BankingAccount testing - Microsoft Internet Explorer

archivo Edicion Wer Fawvoritos Herramientas Avuda

BankingAccount testing

| »

ejhs Banking® ccountETR
- pibz Bankings coount
= ejbs Bankinga ceountHome

Execute all

|create(ja\ra.lang.5{ring, double) |Home |Persistence
|deposi1:(doub|ej |Remote |Elusiness
|uuithdraul(ja\ta.lang.string, double) |Remote |Elusiness
|deposi1(douh|ej |Remote |Elusiness

Test cases Results

testTS_11562_1
Java.lang.Exception: There has been an error in the operation

testTS_11565_2

testTS_11568_3

testTS_11565_4

|&] Listo [[[|4 mtermnet

=
4

Figure 7. Web page for executing test cases

The tool reuses several data structures of a previous tool for testing standard Java
classes. This one had a wider set of functionalities that we are now adding to the current
tool, such as:

- Generation of mutants for the test cases, such as [GMO1] claim. This
includes the generation of text files that could be used as reports, to
compare the results of the original and the mutated test cases.

- Implementation of a new user interface for the test case executor. The
current one (web page) requires a web server and does not provides any
specific contribution.

Other considered functionalities include:

27

- Addition to the tool of the EntityTesting class, an abstract class we defined
in a previous work [CP04] and that can be used to create components
specially designed and ready for testing .

- Addition of a specific module for managing the test cases according to the
aspects they are related to.

Acknowledgments

This work is partially supported by the CyTED project VII-JRITOS2; by the UNComa
project 04/E048; and by the MAS project (TIC 2003-02737-C02-02).

Bibliography

[BOPOO] Buy, U.; Orzo, A., and Pezz¢ M.: Automated Testing of Classes. In Proc. International

[CP02]

[CP04]

Symposium on Software Testing and Analysis, Portland, Oregon, 2000.

Cechich, A. and Polo M.: Black-box Evaluation of COTS Components using Aspects
and Metadata. In Proc. 4th Int. Conf. on Product Focused Software Process
Improvement, Springer-Verlag LNCS 2559, pages 494-508, 2002.

Cechich A. and Polo M.: COTS Component Testing through Aspect-based Metadata. In
Building Quality into COTS Components — Testing and Debugging. Beydeda S. and
Gruhn V. (Eds), Springer-Verlag, 2004 (to appear).

[CTCO1] Chen H.Y.; Tse T.H.; and Chen T.Y.: TACCLE: A methodology for object-oriented

[DF94]

[EdO1]

[FG99]

[GMO1]

[Ha01]

[JPP03]

[La98]

[Me01]

[Of03]

software testing at the class and cluster levels. ACM Transactions on Software
Engineering and Methodology, 10(4):56-109, 2001.

Doong, R.K. and Frankl P.G.: The ASTOOT approach to testing object-oriented
programms. ACM Transactions on Software Engineering and Methodology, 3(2): 101-
130, 1994.

Edwards S.H.: A framework for practical automated black-box testing of component-
based software. Software Testing, Verification and Reliability, (11):97-111, 2001.
Fewster M. and Graham D.: Software Test Automation, Addison-Wesley, 1999.

Ghosh S. and Mathur A.: Interface mutation. Software Testing, Verification and
Reliability (11): 227-247, 2001.

Harrold, M. et.al.: Using Component Metadata to Support the Regression Testing of
Component-Based Software. Technical Report GIT-CC-01-38, College of Computing,
Georgia Institute of Technology, 2001.

Jiménez M., Polo M., and Piattini M.: Una técnica de descripciéon formal para la
generacion y ejecucion automatica de casos de prueba. Proceedings of the 6th Workshop
Iberoamericano de ingenieria de Requisitos y Ambientes de Software, pages 97-108,
2003.

Lapierre, S. et.al.: Automatic Unit Test Data Generation Using Mixed-Integer Linear
Programming and Execution Trees. In Proc. Int. Conf. on Software Maintenance, 1998.
Meudec C.: ATGen: automatic test data generation using constraint logic programming
and symbolic execution. Software Testing Verification and Reliability, 11(2): 81-96,
2001.

Offut J. et.al.: Generating test data from state-based specifications. Software Testing,
Verification and Reliability, (13):25-53, 2003.

28

[Or00] Orso A.. Component Metadata for Software Engineering Tasks. In Proc. 2™ Int.
Workshop on Engineering Distributed Objects, Springer-Verlag LNCS 1999, pages 126-
140, 2000.

[PPRO1] Polo M., Piattini M., and Ruiz F.: Automating Testing of Java Programs using
Reflection. In Proc. of ICSE 2001 Workshop WAPATYV, IEEE Press, 2001.

[SW99] Stafford J. and Wolf L.: Annotating Components to Support Component-Based Static
Analyses of Software Systems. Technical Report CU-CS-896-99, University of Colorado
at Boulder, 1999.

29

