
Themen und Anwendungen der Computeralgebra

Motion Polynomials and Planar Linkages
C. Koutschan
(Johann Radon Institute for Computational and Applied Mathematics,
Österreichische Akademie der Wissenschaften)

christoph.koutschan@ricam.oeaw.ac.at

Introduction

We describe an application of computer algebra to
the construction of mechanisms with certain prescribed
properties. In the CAS Mathematica, we have imple-
mented the package PlanarLinkages; it provides com-
mands for constructing and visualizing planar linkages
that draw a prescribed algebraic curve. The construc-
tion procedure is based on so-called motion polynomi-
als; their basic arithmetic and a factorization algorithm
is also provided by the package.

In order to state the problem more precisely, let us
introduce some terminology. A linkage is a mechani-
cal device consisting of rigid bodies (called links) that
are connected by joints. We restrict our attention to pla-
nar linkages, i.e., to linkages all of whose links move in
parallel planes. Moreover, we consider only rotational
joints, which means that we don’t allow prismatic joints.
In Figure 1 two examples for this type of linkages can
be seen: the first one has four degrees of freedom, while
the second one has only a single degree of freedom (we
say it has mobility one). If we move a linkage of mobil-
ity one, the trace of any point located on one of the links
yields a bounded curve in the plane.

The problem of constructing a planar linkage that
draws a finite segment of a given algebraic curve
was first addressed and solved in full generality by
Kempe [2]. While his construction is very elegant in
theory, it yields quite complicated linkages in practice;
see [3] for an implementation. In a recent article [1]
the symbolic computation group at RICAM, including
the author, designed a novel algorithm for basically the
same problem. The advantage of the new algorithm is
that it yields much simpler linkages: the number of links
and joints is only linear in the degree of the curve. More-
over, it allows for a simple collision detection, which for
general linkages is a very hard problem. The drawback
of our method is that it is only applicable to bounded
rational curves,

Figure 1: An open chain linkage and its extension to a
linkage of mobility one, both realizing the translational
motion given by P (t) in Equation (4).

i.e., to curves that are parametrizable by rational
functions and that are contained in some disk of finite
radius.

Theoretical Background
Before we describe our Mathematica package, we
sketch the new method for constructing planar linkages
and give a bit of theoretical background. The interested
reader is referred to the paper [1] where all this is laid
out in detail, and from which also the following simple
example is taken: we consider the ellipse that is implic-
itly defined by the polynomial (x+ 1)2 + 4y2 = 1. The
goal is to construct a linkage with rotational joints that
draws this ellipse and that admits only one degree of
freedom. More precisely, “drawing” means that there is
a specific link (to which we attach the pen) that performs
a motion along the ellipse while the linkage moves.

Mathematically speaking, a motion is a one-
dimensional family of direct isometries (i.e., translations

8

mailto:christoph.koutschan@ricam.oeaw.ac.at


and rotations). We denote by SE2 the special Euclidean
group, which is the set of direct isometries in the plane
with composition as the group operation. For a conve-
nient treatment in a computer algebra system, we encode
direct isometries as elements of the noncommutativeR-
algebraK of dual complex numbers:

K = C[η] / (η2, iη + ηi).

Its elements are of the form z + ηw with complex num-
bers z, w ∈ C, and according to the defining relations,
which can be seen as rewriting rules, they are multiplied
as follows:

(z1 +ηw1) ·(z2 +ηw2) = z1z2 +η (z1w2 +z2w1). (1)

By defining onK the equivalence relation

k1 ∼ k2 :⇐⇒ k1 = αk2 for some α ∈ R \ {0}, (2)

we can show that the multiplicative group

{z + ηw ∈ K | z 6= 0} /∼

is isomorphic to SE2; in Out[8] below the isomorphism is
given explicitly. A univariate polynomial in K[t] gives
rise to a one-dimensional family of direct isometries and
is therefore called a motion polynomial. Motions that
can be represented in this way are called rational mo-
tions. The algorithm we are going to describe takes as
input a motion polynomial and outputs a planar linkage
of mobility one realizing the corresponding rational mo-
tion. This task is slightly more general than drawing a
rational curve, since also the orientation of the end ef-
fector is taken into account.

The ellipse (x + 1)2 + 4y2 = 1 admits the rational
parametrization

ϕ(t) =
(
− 2

t2 + 1
,

t

t2 + 1

)
, t ∈ R ∪ {∞}, (3)

from which one can read off that a translational motion
along this ellipse is represented by the motion polyno-
mial

P (t) = (t2 + 1) + η (it− 2) (4)

(“translational” means that the orbit of any point under
this motion is a translate of the ellipse). A motion poly-
omial Z + ηW ∈ K[t] is called bounded if the com-
plex polynomial Z ∈ C[t] does not have any real roots;
the connection to the boundedness of the corresponding
curve (the orbit of the origin) is established by the fact
that Z appears as the denominator of the parametriza-
tion.

In order to construct a linkage that realizes the mo-
tion P (t), we want to decompose it into simpler mo-
tions, namely into revolutions; these correspond exactly
to motions that can be realized by a single (rotational)
joint. We find [1, Lemma 4.3] that each linear motion
polynomial, whose orbits are bounded, represents a rev-
olute motion. Therefore, the desired decomposition is
obtained by a factorization of P into linear polynomi-
als.

In our example, however, one can easily check (e.g.,
by an ansatz with undetermined coefficients) that such a
factorization does not exist. But this doesn’t mean that
we have to give up on drawing the ellipse! Recall that
by the definition (2) of the equivalence relation ∼, the
motion polynomial RP ∈ K[t] describes the same mo-
tion as P for any real polynomial R ∈ R[t]. In this case
we can take R = t2 + 1 and observe that

R(t) · P (t) =
(
t4 + 2t2 + 1

)
+ η

(
it3 − 2t2 + it− 2

)
indeed admits a factorization into linear polynomials:(
t+ i−η i

)
·
(
t− i+ 1

2η i
)
·
(
t− i+ 3

2η i
)
· (t+ i). (5)

In [1, Theorem 5.15] it is shown that for any bounded
motion polynomial P such a real polynomial R exists,
and an algorithm to compute R and the complete factor-
ization of RP is described.

The factorization (5) allows us to construct a link-
age, in the form of an open chain (upper part of Fig-
ure 1), whose links can move according to the revo-
lutions represented by the linear factors. Since such a
linkage has many degrees of freedom, we need to con-
strain its mobility. This is done by adding more links
and joints (lower part of Figure 1), which is achieved by
an iteration of the so-called flip procedure [1, Sections
6–7].

However, if we just want to draw the ellipse, we
need not realize exactly the translational motion P (t):
it is enough to find a motion for which the orbit of one
point is the ellipse. One can check that multiplying with
a polynomial C ∈ C[t] from the left does not change
the orbit of the origin. In our case, we find that the poly-
nomial CP with C(t) = t− i factors completely:

C(t) ·P (t) =
(
t− i− 1

2η i
)
·
(
t− i+ 1

2η i
)
·
(
t+ i+η i

)
.

This factorization gives rise to a slightly simpler con-
struction, which is depicted in Figure 2.

Figure 2: A linkage drawing the ellipse (3); it is shown
in different positions: t = 2 (white), t = 1

2 (light gray),
t = 0 (dark gray), and t = −1 (black).

9



The Mathematica Package
We now give a brief demonstration of our Mathemat-
ica package PlanarLinkages. The package, its source
code, and a Mathematica notebook with some sample
computations are freely available [4].

In[1]:= << PlanarLinkages.m

PlanarLinkages — c© 2015 Christoph Koutschan
This program comes with absolutely no warranty; it is free
software, and you are welcome to redistribute it and/or mod-
ify it under the terms of the GNU General Public License
(http://www.gnu.org/licenses/).

Motion polynomials are entered using the special sym-
bol eta and Mathematica’s NonCommutativeMultiply
(written as **). As output we obtain a pretty-printed
version of the motion polynomial, which internally is
represented as a Mathematica expression with head MP.

In[2]:= P = t + I + eta ∗∗ (2− I)

Out[2]= (i + t) + η · (2− i)

In[3]:= FullForm[P ]

Out[3]= MP[Plus[Complex[0, 1], t],Complex[2,−1]]

Arithmetic can be done in the usual way, by taking into
account the noncommutative multiplication.

In[4]:= P + 1 + eta ∗∗ I
Out[4]= ((1 + i) + t) + η · 2
In[5]:= P ∗∗ (1− eta) ∗∗P

Out[5]=
(
−1 + 2 i t+ t2

)
+ η ·

(
−1 + (4− 2 i) t− t2

)
When executing the multiplication symbolically, we re-
cover Equation (1):

In[6]:= MP[z1, w1] ∗∗MP[z2, w2]

Out[6]= z1 z2 + η · (Conjugate[z1]w2 + w1 z2)

The command ActR2 performs the action of an element
(x1 + ix2) + η(y1 + iy2) ∈ K, which itself represents
a direct isometry in SE2, on a point (a, b) ∈ R2, see [1,
(4.2)].

In[7]:= ActR2[(x1+Ix2)+eta ∗∗ (y1+I y2), {a, b}];
In[8]:= Simplify[%, Element[{x1, x2, y1, y2}, Reals]]

Out[8]=

{
a x21 − a x22 − 2 b x2 x1 + x1 y1 − x2 y2

x21 + x22
,

2 a x2 x1 + b x21 − b x22 + x1 y2 + x2 y1
x21 + x22

}
The command AnimateMP visualizes the action of a
motion polynomial; as a result we obtain an animation
(not printed here!) showing a small triangle that moves
according to the given motion. Since a linear bounded
motion polynomial corresponds to a revolute motion, we
can compute its fixed point. From the output, it be-
comes clear that the fixed point can only be given if
the input polynomial is bounded, i.e., if the polynomial

t + z ∈ C[t] has no real roots. In contrast, the motion
polynomial t+ 1 + η corresponds to an unbounded mo-
tion, in this case a horizontal translation, and the attempt
to compute its fixed point results in an error message.

In[9]:= FixPoint[t + z + eta ∗∗ (2w)]

Out[9]=

{
− Im(w)

Im(z)
,

Re(w)

Im(z)

}
In[10]:= Catch[FixPoint[t + 1 + eta]]

Out[10]= FixPoint: Input is not a normed bounded motion
polynomial of degree 1.

Next, we provide a command to compute a factorization
of a motion polynomial into linear factors; as a consis-
tency check, we expand the result and obtain the original
polynomial back.

In[11]:= FactorMP[(t + I)̂ 5 + eta ∗∗ t]

Out[11]=

(
(i + t) + η · i

16

)
·
(

(i + t)− η · i
8

)
·(

(i + t) + η · 0
)
·
(

(i + t) + η · i
8

)
·
(

(i + t)− η · i

16

)
In[12]:= Expand[%]

Out[12]=
(
t5 + 5 i t4 − 10 t3 − 10 i t2 + 5 t+ i

)
+ η · t

If the polynomial itself cannot be factored, then the
command automatically determines a minimal-degree
real polynomial such that the product of the two poly-
nomials factors completely.

In[13]:= fact = FactorMP[t̂ 2 + 1 + eta ∗∗ (I t− 2)]
FactorMP::R : Multiply the input with R = 1 + t2

Out[13]=

(
(i + t) + η ·

(
C[2] − i

2

))
·
(
(−i + t) − η · C[2]

)
·(

(−i + t) + η ·
(

C[1] +
3i

2

))
·
(
(i + t)− η · C[1]

)
This factorization can now be used to construct a

linkage, by calling the command ConstructLinkage.
For this purpose we instantiate the free parameters C[1]
and C[2], and give a “random” polynomial rand as sec-
ond argument according to [1, Lemma 7.5]. While al-
most any choice of C[1], C[2], and rand yield a valid
linkage, we can play with these parameters to influence
the shape of the resulting linkage. For example, we can
omit the second argument, in which case the program
chooses a random polynomial, but the linkage then will
usually look very “ugly”, in the sense that some links
are much longer than others. The output has to be under-
stood as follows: each triple {i, j, p} stands for “link i is
connected to link j by a joint and their relative motion is
given by the motion polynomial p”, where the links are
labeled with integers from 1 to 10.

In[14]:= fact = fact /. {C[1]→ 0,C[2]→ −I/2};
In[15]:= rand = t + (9/5) I + eta ∗∗ 0;
In[16]:= L = ConstructLinkage[fact, rand]

Out[16]=
{{

1, 2, (i + t) + η · 0
}
,
{

2, 3, (t− i) + η · 3i2
}
,{

3, 4, (t− i) + η · i

2

}
,
{

4, 5, (i + t)− η · i
}
,

10



{
6, 7, (i + t)− η · 45i56

}
,
{

7, 8, (t− i) + η · 3i8
}
,{

8, 9, (t− i) + η · 41i28

}
,
{

9, 10, (i + t) + η · 2i7
}
,{

1, 6,
(
t+ 9i

5

)
− η · 9i28

}
,
{

2, 7,
(
t+ 9i

5

)
− η · 9i8

}
,{

3, 8,
(
t+ 9i

5

)
− η · 9i4

}
,
{

4, 9,
(
t+ 9i

5

)
− η · 9i7

}
,{

5, 10,
(
t+ 9i

5

)
+ η · 0

}}
Still, this mathematical description of a linkage is

not very intuitive. To get an idea of how this linkage
looks like and how it draws the ellipse, our package pro-
vides the command ShowLinkage, which offers a large
variety of ways to visualize and animate linkages. For
example, we can draw the link graph, which is a graph
whose vertices correspond to the links and whose edges
correspond to the joints of the linkage.

In[17]:= ShowLinkage[L,Return → ”graph”]

Out[17]=

While the link graph gives information about the
topological structure of the linkage, it completely hides
its geometry. To see how a physical model of the link-
age would look like, one can use the same command
with different values of the Return option. This way
one can get a two-dimensional picture (similar to the
one in Figure 2) or the corresponding animation. By
specifying Return→ ”picture3D” one obtains a three-
dimensional drawing of the linkage as in Figure 3. Such
a 3D graphics can be animated as well; we refer to our
website [4] for some sample movies. Figure 3 also
shows that the depicted linkage cannot move without
self-collisions. Thanks to the special structure of the
linkages constructed by our algorithm — the link graph
will always be ladder-shaped as in Out[17] — these col-
lisions can be detected by solving a relatively simple
system of polynomial equations. The following com-
putation shows that when we choose a certain spatial
arrangement of the links, then there are only few colli-
sions and all happen at the same position t = ∞. This
is the position when the pen passes through the origin
(the right-most point of the ellipse) and when all joints
are located on the horizontal axis (compare Figure 2).

In[18]:= ord = {2, 1, 6, 7, 3, 8, 4, 5, 10, 9};
In[19]:= ShowLinkage[L, Links → ord,

Return → ”collisions”]

Out[19]=
{{
{2, 6, 7}, 27 ,∞

}
,
{
{3, 8, 4}, 5461 ,∞

}
,{

{3, 8, 4}, 67 ,∞
}
,
{
{4, 5, 9}, 57 ,∞

}}
We conclude with an example that is motivated by

a popular formulation of Kempe’s theorem, stating that
“There is a linkage that signs your name”, which is
attributed to William Thurston. However, as remarked
by O’Rourke [5], it is not very plausible that a concrete
“signing linkage” has ever been constructed by Kempe’s
procedure due to its complexity, in terms of links and
joints.

Figure 3: Three-dimensional view of a linkage drawing
the ellipse given by the parametrization (3).

As an example to support his claim, O’Rourke
points out that already constructing a linkage drawing
the first letter “J” of John Hancock’s famous signature
on the United States Declaration of Independence would
be a challenging task. The solution to this problem was
found by our program and is depicted in Figure 4.

Figure 4: A rational curve approximating the “J” in
John Hancock’s signature and a linkage drawing it
using a quill pen whose shape is a line segment in
direction (5, 6).

References

[1] Matteo Gallet, Christoph Koutschan, Zijia Li,
Georg Regensburger, Josef Schicho, and Nelly Vil-
lamizar. Planar linkages following a prescribed mo-
tion. Mathematics of Computation, 2016. To appear
(preprint on arXiv:1502.05623), DOI: 10.1090/
mcom/3120.

[2] Alfred B. Kempe. On a general method of describ-
ing plane curves of the nth degree by linkwork. Pro-
ceedings of the London Mathematical Society, s1-
7(1):213–216, 1876.

[3] Alexander Kobel. Automated generation of Kempe
linkages for algebraic curves in a dynamic geome-
try system. Bachelor’s thesis, University of Saar-
brücken, 2008.

[4] Christoph Koutschan. Mathematica package Pla-
narLinkages and electronic supplementary mate-
rial for the paper “Planar linkages following a pre-
scribed motion”, 2015. Available at http://
www.koutschan.de/data/link/.

[5] Joseph O’Rourke. How to fold it. Cambridge Uni-
versity Press, Cambridge, 2011.

11

http://people.mpi-inf.mpg.de/~akobel/publications/Kobel08-kempe-linkages.pdf
http://people.mpi-inf.mpg.de/~akobel/publications/Kobel08-kempe-linkages.pdf
http://people.mpi-inf.mpg.de/~akobel/publications/Kobel08-kempe-linkages.pdf
http://www.koutschan.de/data/link/
http://www.koutschan.de/data/link/

