

Transbase®: A leading-edge ROLAP Engine
supporting multidimensional Indexing and

Hierarchy Clustering∇∇∇∇
R. Pieringer1, K. Elhardt1, F. Ramsak2, V. Markl3, R. Fenk2, R. Bayer2

1 Transaction
Software GmbH
Thomas-Dehler-

Str. 18
D-81737 München

{pieringer,elhardt}@
transaction.de

2 Bayerisches
Forschungszentrum für

Wissensbasierte Systeme
Boltzmannstr. 3

D-85747 München
{ramsak,fenk}@forwiss.de,

bayer@in.tum.de

3IBM Almaden
Research Center,

K55/B1,
650 Harry Road, San

Jose, CA 95120-
6099

marklv@us.ibm.com

Abstract: Analysis-oriented database applications, such as data
warehousing or customer relationship management, play a crucial
role in the database area. In general, the multidimensional data
model is used in these applications, realized as star or snow-flake
schemata in the relational world. The so-called star queries are the
prevalent type of queries on such schemata. All database vendors
have extended their products to support star queries efficiently.
However, mostly reporting queries benefit from the optimizations,
like pre-aggregation, while ad-hoc queries usually lack efficient
support. We present the DBMS Transbase® in this paper, which
provides a new physical organization of the data based on
hierarchical clustering and multidimensional clustering combined
with multidimensional indexing. In combination with new query
optimizations (e.g., hierarchical pre-grouping) significant
performance improvements are achieved. The paper describes how
the new technology is implemented in the Transbase® product
and how it is made available to the user as transparently as
possible. The benefits are illustrated with a real-world data
warehousing scenario.

1 Introduction

Data warehousing (DW), online analytical processing (OLAP), and
customer relationship management (CRM), have become a major market
in the database area through the last decade. The multidimensional
paradigm seems to be the undisputed winner as a design choice for such
databases. The conceptual model adopted is a data warehouse consisting
of facts (or measures) organized into a set of dimensions, which in turn
are organized into levels of different aggregation granularity (i.e., detail)
that comprise one or more hierarchies. Even though proprietary
multidimensional database management systems (DBMSs) exist, the vast
majority of systems use relational DBMSs as the underlying storage
system.
For relational databases, the multidimensional data warehouse consists of
one or more star schemata [CD97a], featuring a central fact table

∇ This work is funded by the European Union under the IST-Project EDITH (IST-1999-
20722)

surrounded by so-called dimension tables. The most prevalent kind of
queries submitted to such a system is the star query. Star queries impose
restrictions on the dimension values that are used for selecting specific
facts; these facts are further grouped and aggregated according to the user
demands. The join of the central (and usually very large) fact table with
the surrounding dimension tables (also known as a star join) has been
identified as frequent, major bottleneck in evaluating such queries.
Various solutions have been proposed over the years to cope with these
problems. Indexing schemes [NG95, NQ97, Sar97, CI98, WB98, Wu99,
WOS01] and precomputation of aggregation results [GM95, Rou98,
Sri96] have been studied extensively in the research community and are
also, to some extent, used in commercial systems [ACN01, Ora01,
Zah00].
While these solutions work well in reporting scenarios, they do not
support acceptable performance for ad hoc star queries, i.e., queries that
are not known in advance, which become more and more important in
online applications. For this kind of queries the usage of precomputed
aggregation results is extremely limited or even impossible in some cases.
Even when elaborate indexes are used, due to the arbitrary ordering of the
fact table tuples, there might be as many I/Os as there are tuples in the
result set.
To overcome these deficiencies, new alternatives of the physical
organization of data have emerged [Des98, MRB99, KS01]. The idea is to
incorporate the two fundamental properties of the conceptual data model
into the data storage: the multidimensionality and hierarchy semantics.
These organizations exploit a special kind of key that is based on the
hierarchy paths of the dimensions, in order to achieve hierarchical
clustering of the facts. This physical clustering results in a reduced I/O
cost for the majority of star queries, which are based on the dimension
hierarchies. Moreover, [MRB99] and [KS01] exploit a clustering,
multidimensional index for storing the tuples. A typical star join then is
transformed into a multidimensional range query, which is very
efficiently computed using the underlying multidimensional data
structures.
In this paper we present the Transbase® DBMS from Transaction
Software GmbH that incorporates state of the art techniques for analysis-
centric applications. More precisely, it supports the UB-Tree as native
multidimensional index and allows for clustering of data according to
hierarchy semantics. Taking advantage from the knowledge of
hierarchies, not only the physical storage of the data can be optimized but
also query processing can largely be improved. We will discuss the basic
concepts of the underlying technology as well as how it is implemented in
the DBMS kernel. The evaluation in a real-world data warehousing
scenario shows significant performance improvements over traditional
techniques.
The rest of the paper is organized as follows. Section 2 covers related
work and in Section 3 we introduce the basic technology used in
Transbase®. Section 4 shows the user’s view with an example before we
address the implementation issues in Section 5. Section 6 covers the
automatic maintenance of hierarchy clustering and Section 7 is dedicated
to the query processing for multidimensional hierarchical clustering. In
Section 7 we provide an evaluation of the techniques in a real-world
scenario; Section 9 summarizes our contribution.

2 Related Work

Due to the large body of work in the area of data warehousing and
optimizing DBMSs for these applications we can only give an incomplete
account of related work in this field. We cover general approaches first
and then address commercial solutions.

2.1 Star query optimization

One of the most important parts of a star query is the processing of the
star join. Star join processing has been studied extensively and specific
solutions have been also implemented in commercial products. See
[CD97b] for an overview.
To compute the star join, most systems avoid building the Cartesian
product of the fact table with the dimension tables as the resulting
cardinality leads to a non-tolerable overhead. Thus, one tries to apply
dimension restrictions also to the fact table in order to reduce the join
size. Bitmap indices are often used to speed up the access to the fact table.
The bitmaps corresponding to the different dimension values are ANDed
or ORed depending on the selection condition. The resulting bitmap is
used to extract tuples from the fact table [NG95, NQ97]. When the query
selectivity is high, only a few bits in the result bitmap are set. If there is
no particular order (clustering) among the fact table tuples, we can expect
each bit to access a tuple in a different page.
Multidimensional clustering has been discussed in the field of
multidimensional access methods (e.g., [GG97] and [Sam90]). [ZSL98]
addresses the issue of hierarchical clustering for the one-dimensional
case. The importance of good physical clustering in OLAP has been
shown in [KR98], where packed R-trees are exploited for storing the
results of the data cube operator ([Gra96]). In [Des98], the benefits of
hierarchical clustering for star queries was observed as a side effect of
using a chunked file organization for enabling caching with chunk as the
caching unit.
Among others, in [MRB99] the UB-tree (see Section 3.1) is used as a
primary organization of the fact table. Surrogate keys based on the
dimension hierarchies are exploited and hierarchical clustering of the fact
table is achieved. Consequently star joins are transformed to
multidimensional range queries. The combination of the two mechanisms
results in a greatly reduced I/O cost for star joins.
In [KS01] a physical organization based on a hierarchical chunking of the
fact table is presented. Fact data are clustered physically according to the
dimensional hierarchies. To achieve this clustering, special path-based
dimension keys are exploited. In particular, these keys guide the
clustering (called chunking) process. Star joins are transformed to range
queries in the multidimensional and multi-level data space of a cube. The
adopted multidimensional structure is a variant of the Grid File [NHS84].
Several aspects of processing and optimizing star join queries on
hierarchically clustered fact tables are also presented in [TT01]. The
paper considers a star schema with UB-Tree organized fact tables and
dimension tables stored sorted on a composite surrogate key. For a
particular class of star join queries, the authors investigate the usage of
sort-merge joins and a set of other heuristic optimizations.

A general query processing framework that addresses all issues involved
in star query processing over hierarchically clustered fact tables has been
presented in [Kar02] and [Pie03]. In this paper, we describe in more
detail, how this framework is implemented in a real DBMS. We extend
the concepts of pre-grouping, first introduced in [CS94], [YL94] and
[YL95] by including hierarchical information.

2.2 Hierarchies in Oracle

Hierarchies in Oracle are not used, in order to cluster data in the fact table
([Ora01]). Hierarchies are additional information (meta data) for special
features for query processing. For example, query rewriting needs
hierarchical information to use materialized pre-aggregated views in the
query formulation. Thus, the definition of dimensions and hierarchies
does not influence the physical clustering of the data.
A dimension, created by a CREATE DIMENSION statement contains one
or more hierarchies. The hierarchy levels can be placed in any table. For
each hierarchy level, one or more feature attributes can be assigned (via
the DETERMINES clause). Hierarchies can be modified by adding or
dropping hierarchy levels.

3 Basic Concepts

In this section we briefly introduce the fundamental concepts that are used
in the Transbase® DBMS to support OLAP applications. On the one
hand, we introduce the multidimensional index available in Transbase®
and on the other hand explain the basic idea of hierarchy clustering.

3.1 The UB-Tree

We just give a short introduction to UB-Trees here, details can be found
in [Bay97, Ram00]. The basic idea of the UB-Tree is to use a space-
filling curve to map a multidimensional universe to one-dimensional
space. Using the Z-curve for preserving multidimensional clustering it is a
variant of the zkd-B-Tree [OM84]. A Z-address α = Z(x) is the ordinal
number of the key attributes of a tuple x on the Z-curve, which can be
efficiently computed by bit-interleaving. A standard B-Tree is used to
index the tuples taking the Z-addresses of the tuples as keys. The
pagination of the B-Tree creates a disjunctive partitioning of the
multidimensional space into so-called Z-regions. This allows for very
efficient processing of multidimensional range queries.
Figure 1 shows a Z-region partitioning for a two-dimensional universe
and the corresponding B-Tree. The interval limits of the Z-regions are
also depicted.

Z-region partitioning of 2-D space B+-Tree with Z-values

8 17 39 51

28

8 178 17 39 5139 51

2828
9

0

8

17
18

28 29

39
40

51
52

64

Figure 1 UB-Tree: Z-region partitioning and underlying B-Tree

The processing of basic operations, i.e., insertion, deletion, update, and
point query, of the UB-Tree are analogous to the basic operations of the
B-Tree. For each tuple the corresponding Z-address is computed, and
with the resulting value the underlying B-Tree is accessed. Thus, all basic
operations require only cost proportional to the height of the tree. The
only recommendable modification to the standard B-Tree algorithms is an
adaptation of the split algorithm to achieve a “good” (as rectangular as
possible) Z-region partitioning.
A UB-Tree is especially good in processing multidimensional range
queries, as it only retrieves all Z-regions that properly intersect the query
box. Consequently, it usually shows the nice property that the response
time of the range query processing is proportional to the result set size.

3.2 Clustering of Hierarchies

Hierarchies play an important role in various application domains. They
are used to provide a semantic structure to data, e.g., a geographical
classification of customers in a data warehouse. As the hierarchies cover
the application semantics they are used frequently by users to specify the
restrictions on the data as well as the level of aggregation. The restrictions
on the hierarchies usually result in point or range restrictions1 on some
hierarchy levels [Sar97]. The problem that arises is that these restrictions
on upper hierarchy levels lead to a large set of point restrictions on the
lowest level, i.e., the level with the most detailed information. This
situation is depicted in Figure 2 (a): restricting the level 'Product Group'
to the value 'VCR' leads to the set of ids {5,8,21} and not to the interval
[5,21], as the item with id 11 does not belong to the specified product
group.
For most access methods it would be more efficient to process one range
restriction instead of a set of point restrictions. The resulting question is
how to map a point/range restriction on a higher hierarchy level to a range
restriction on the lowest level? To this end, Transbase® applies the
clustering scheme for hierarchies as proposed in [MRB99]. A special kind
of keys is used for the elements of the lowest level which reflect the
hierarchy semantics, i.e., keys which adhere to the partial order defined
by the hierarchy levels. These so-called (compound) surrogates guarantee

1 Range restrictions on hierarchy levels are only meaningful if an order on the elements of
the hierarchy level is defined.

that the keys of all elements in a sub-tree of the hierarchy lie within a
closed interval (Figure 2 (b)) such that a key of an element not lying in
the subtree is not within the interval. In our example, the restriction to the
product group 'VCR' now leads to the interval [48,50]; the item with id 11
is mapped to the surrogate 33 that does not violate the interval.

...

Item

Product
Group

Category VideoAudio VideoAudio

Camcorder VCR

TR-780 TRV-30TR-780 TRV-30 GR-AX 200 GV-500 SLV-E800

ALL

...

ID 2 11 5 8 21

(a)

(b)

...

Item

Product
Group

Category VideoAudio VideoAudio

Camcorder VCR

TR-780 TRV-30TR-780 TRV-30 GR-AX 200 GV-500 SLV-E800

ALL

...

ID 2 11 5 8 21

00 01

0 1

Surrogate 0100000

0000 0001 0000 0001 0010

0100001 0110000 0110001 0110010
32 33 48 49 50

Figure 2 Example of hierarchy clustering: (a) non-clustered vs. (b) clustered

hierarchy

We refer to this technique as hierarchy clustering (HC) from now on. If
we combine HC and multidimensional indexing on multiple hierarchy
encoding as it is done in Transbase®, then we speak of multidimensional
hierarchical clustering (MHC).

4 Example: MHC in Transbase®

In this section, we will briefly present the user’s perspective when using
the OLAP functionality in Transbase® ([Tra02]).
For our discussions we use a conventional star schema [CD97a] with a
fact table consisting of dimension (qualitative) and measure (quantitative)
attributes [Kim96]. For the dimensions typically one or more hierarchical
classifications based on the dimension attributes (often referred to as
features) exist. The primary key of the dimension represents the most
detailed level of the dimension hierarchies.

In this paper, we focus on star schemata for the ease of description.
However, the algorithms also are implemented for general snowflake
schemata.

4.1 Sample Schema

As running example throughout this paper we use the schema depicted in
Figure 3. This data warehouse stores sales transactions recorded per item,
store, customer, and date. It contains one fact table FACT, which is
defined over the dimensions: PRODUCT, CUSTOMER, DATE, and
LOCATION with the obvious meanings. The measures of FACT are price,
quantity and sales representing the values for an item bought by a
customer at a store at a specific day. The schema of the fact and
dimension tables is shown in Figure 3 and the dimension hierarchies are
depicted in Figure 4.

hsk
Year

Month
Day

DATE

hsk
Year

Month
Day

DATE

hsk_client
hsk_product

hsk_location
hsk_date

Sales
Quantity

Price
Store
Client

Product
Day

FACT

hsk_client
hsk_product

hsk_location
hsk_date

Sales
Quantity

Price
Store
Client

Product
Day

FACT

Category

hsk
Brand

Group
Item

PRODUCT

Category

hsk
Brand

Group
Item

PRODUCT

Profession
Name

hsk
Address

Person
CLIENT

Profession
Name

hsk
Address

Person
CLIENT

Country
Region

hsk
Population

City
Store

LOCATION

Country
Region

hsk
Population

City
Store

LOCATION

Figure 3: Sample Schema: standard star schema and HC extension (hsk*)

The dimension DATE is organized in three levels: day – month – year.
The dimension CUSTOMER is organized in two levels: customer –
profession. For each customer the dimension table contains an ID, a
name, an address, and a profession. The dimension has two hierarchical
attributes (person_id, profession) and two feature attributes (name,
address). The LOCATION dimension is organized by four levels: store –
city – region – country. Stores are grouped into cities, these are grouped
into regions and the regions finally are grouped into countries. For each
city, the population is stored as feature attribute. The dimension has four
hierarchical attributes (store, city, region, country) and one feature
attribute (population) that is assigned to the city level.

Year

Month

Day

DATE

Category

Group

Item

PRODUCT

Region

City

Store

LOCATION

Profession

Person

CLIENT

Country

Year

Month

Day

DATE

Category

Group

Item

PRODUCT

Region

City

Store

LOCATION

Profession

Person

CLIENT

Country

Figure 4: The dimension hierarchies of the example

Finally, the PRODUCT dimension is organized into three levels: item –
group – category. Items are grouped into product groups and those are
further grouped into categories (e.g., “air condition”). The attribute brand
characterizing each item is a feature attribute.
Star queries are written in standard SQL, i.e., the join attributes between
the fact and dimension tables are the dimension key attributes:
SELECT SUM(sales)
FROM FACT F, DATE D, PRODUCT P , LOCATION L
WHERE D.day=F.day AND P.item=F.product AND
L.store=F.store AND D.year=2002 AND P.category = ‘Air
Condition’ AND L.population > 1000000
GROUP BY D.year, D.month

This query returns the sum of sales for the year 2002 for air conditions in
cities with a population larger than one million.

4.2 The User’s View: Hierarchy Specification by extended DDL

To allow the user for defining such a schema, the DDL has been extended
to express hierarchies and the desired physical organization of the fact
table according to the dimension hierarchies. This is achieved by
specifying an additional field per dimension table per hierarchy that
basically represents the compound surrogate derived by HC as described
earlier.
The keyword SURROGATE is used to mark the definition of a surrogate
field as opposed to the definition of a standard user visible field. In the
dimension table, we denote a compound surrogate by the keyword
COMPOUND. The hierarchy levels are specified after this keyword by
enumerating the hierarchy levels from top to bottom. The maximum fan-
out of each hierarchy level is denoted by the keyword SIBLINGS (to
specify the number of bits reserved for the hierarchy level) after the
corresponding hierarchy level.
Figure 5 shows the DDL for the Location dimension: the surrogate
specification defines the hierarchy depicted in the Figure 4. The
SIBLINGS information specify that in this hierarchy there are at most 10
countries, at most 50 regions per country, at most 50 cities per region, and
at most 1000 stores per city. Thus, the Location dimension may at most
contain 10*50*50*1000=25.000.000 members.

create table Location (
 country char(*) NOT NULL,
 region char(*) NOT NULL,
 city char(*) NOT NULL,
 store char(*) NOT NULL,
 SURROGATE cs_location COMPOUND (
 country SIBLINGS 10, region SIBLINGS 50,
 city SIBLINGS 50, store SIBLINGS 1000),

PRIMARY KEY (store)
);

Figure 5 Extended Create-Statement for dimension tables

For the fact table specification (see Figure 6), we now have to specify the
physical organization, besides the standard relationships to the dimension
tables. As we want to cluster the data according to the hierarchies of the

dimension, we use the surrogates instead of the “logical” keys. To this
end, we introduce the concept of reference surrogates. Technically, a
reference surrogate is an additional system maintained field in the fact
table. Because of the necessary foreign key constraints in the fact table, it
is possible to decide to which dimension the reference surrogate belongs.
We use again the keyword SURROGATE to denote a surrogate. Then we
use the keyword FOR, in order to assign the reference surrogate to a
dimension:

create table fact (
 product char(*) NOT NULL references product (item),
 store char(*)NOT NULL references location(store)
 time integer NOT NULL references date(day),
 sales numeric(10,3),
 price numeric(10,3),
 quantity numeric(10,3),
 SURROGATE cs_prod FOR product,
 SURROGATE cs_store FOR store,
 SURROGATE cs_time FOR time,
 PRIMARY HCKEY (cs_prod, cs_store, cs_time))

Figure 6 Extended Create-Statement for the fact table

A different keyword for the key specification the UB-Tree (PRIMARY
HCKEY) is used to specify the index access method, namely a UB-Tree
(HC stands for HyperCube as the UB-Tree is called in Transbase®).
All further statements (especially INSERT and UPDATE) may (and must)
ignore the additional fields. This is comparable to the creation of a
secondary index which is made up by the user but then becomes a system
maintained part of the database.
It is important to note that all fields created by the SURROGATE
specification are system maintained and are not visible to the user. Even
though the fields are really stored in the tables, the user only works on a
view of the table which projects the surrogate fields out.
As the example shows, the user can very naturally specify the physical
organization of the data according to the schema semantics. In the
following sections we will discuss the internals of the system transparent
to the user.

5 Implementing HC in the DBMS Kernel

For the implementation of HC in the Transbase® kernel various issues
have to be solved. The most important one is the internal representation
and management of the surrogates as well as schema extensions,
necessary for the automatic processing.
Before we continue, we want to introduce some terminology that is
frequently used in the remainder of the paper. We refer to the fact table as
FT and to the dimension tables as Di. We use FT.m to denote a measure
attribute of the fact table, Di.hj to denote a hierarchical attribute (h1
denotes the leave level of the hierarchy, i.e., it is the key of the dimension
table), and Di.fk denotes a feature attribute of the dimension. PRED and
AGGR are placeholders for any predicate resp. aggregation function on
the specified attribute.

5.1 Internal Representation of Compound Surrogates

As already indicated in Figure 3, the SURROGATE specification in the
“create table” statement leads to the creation of an extra, non-visible, field
in the dimension or fact table containing the encoding (surrogate key,
“hsk”) of the corresponding hierarchy. It is unique for each dimension
tuple as each leaf member of the hierarchy is assigned a unique value by
HC.
The hsks are also contained in the fact table, as there they are required for
the physical clustering of the data. As the logical dimension keys and the
hsks are substitutes to each other, one may save a lot of space in the fact
table if one would suppress the logical keys and just keep the hsks, if
available for a dimension. However, this may lead to drastic performance
decrease in cases where the original keys of the fact table tuples are
accessed in the query. This would lead to expensive joins with the
dimension tables. The suppression of logical keys is not implemented in
Transbase®.
Internally, compound surrogates are fixed length bit strings. The length
corresponds to the siblings specification of all surrogate components.

5.2 System Catalog Extension

In order to implement hierarchical clustering the system needs to have
knowledge about the defined surrogates. The system catalog extension is
designed to even allow several compound surrogates (and thus
hierarchies) within one table.

5.3 Automatic Index Creation

For efficient query retrieval and surrogate maintenance, we need two
special secondary indexes on the dimension table. Let cs be the field
name of the compound surrogate and ht,..,h1 be the list of field names of
the levels for the compound surrogate definition. Transbase®
automatically creates the following indexes (here described by the
following virtual SQL CREATE statements):
CREATE INDEX “@@sys_surrCSX_<surrid>” ON <dim_table>
(cs);
CREATE INDEX “@@sys_surrHX_<surrid>” ON <dim_table>
(ht,..,h1,cs);

Thus, the index names consist of two components, a prefix that marks the
index as system index, and a generated suffix of the kind of the index
(CSX or HX) and the surrogate id of the corresponding surrogate. The
indexes are needed for the computation of compound surrogates, for the
lookup of reference surrogates (see section 6.2) and for query processing.
Of course, these indexes cannot be dropped by the user.

5.4 Multiple Hierarchies

A dimension of a data warehouse may include several independent
hierarchies. Because of the representation of hierarchies by compound
surrogates, we have to deal with several compound surrogates, one for
every possible hierarchy.

An example of several hierarchies is shown in Figure 7. The customer
dimension has a geographical hierarchy with country – region – town –
customer and an organizational hierarchy with profession – customer.

CustomerID

Town

Region

Profession

Country

CustomerID

Town

Region

Profession

Country

Figure 7: Customer Dimension with two Hierarchies

We have to distinguish between two levels of hierarchies. The conceptual
level defines hierarchies on the conceptual data warehouse schema.
Depending on the data warehouse application, multiple hierarchies may
be defined on all dimensions representing the application data model.
Usually hierarchies represent drill and aggregation paths for user queries.
The physical level of hierarchies is responsible for the clustering
properties of the hierarchies, in combination with hierarchies of other
dimensions, i.e., the complete MHC schema. The number of clustering
hierarchies is restricted due to the properties of the clustering
multidimensional index. It usually makes sense to use only one hierarchy
per dimension for clustering, because in most times, hierarchies are
dependent or one hierarchy is more important for user queries. However,
in some cases, two or more hierarchies may be required for clustering
(e.g., most user queries restrict both of these hierarchies). In addition, one
dimension table may be used for several fact tables, that use different
hierarchies for clustering. Thus, we have to provide multiple hierarchies
for one dimension.
The internal structures allow to establish an arbitrary number of
hierarchies, represented by compound surrogates. However, we require
that the leaf level of all hierarchies is the same (a so called shared leaf
level), usually the primary key of the dimension table. This hierarchy
property is checked when creating the table and the compound surrogates
in the DDL statement. With multiple hierarchies allowed on one
dimension table, we can use the dimension table for several fact tables
that can be clustered w.r.t. different hierarchies. So we avoid redundancy
problems for replicated dimension tables.
Every compound surrogate is assigned a unique id. This so called surrid
is referred to by the reference surrogates. One fact table includes an
arbitrary number of reference surrogates specified by the surrid of the
corresponding compound surrogate of the dimension tables. Thus, we can
use reference surrogates of several hierarchies of one dimension table
within one fact table. These reference surrogates may be used as index
key attributes and thus for clustering the fact table according to several
hierarchies.

6 Maintenance of MHC

After discussing the internal representation of the surrogates, we now turn
to the automatic maintenance of the hierarchical clustering. We start with
the insertion of new dimension members and continue with the insertion
of fact table tuples. Finally, we will address the issue of major
reorganization of dimension hierarchies.

6.1 Computation of Compound Surrogates

Computation of a compound surrogate hsk occurs when a tuple is inserted
into the dimension table. Updates of hierarchy fields also may lead to a
re-computation of hsk.
In the following picture, the insertion algorithm is depicted for our
example product hierarchy. Figure 8 schematically shows the insertion of
a new tuple. We assume the values vi for each hierarchical field hi.
Considering the hierarchy, the insertion of a tuple means the creation of a
new path (vk,…,v1) in the dimension D.

(a)

(b)

...

Item

Product
Group

Category VideoAudio

Player

SO-NVP305

ALL

...

ID 107

00 01

0

Surrogate

0000

1000000
64

DVD

...

10

...

Item

Product
Group

Category VideoAudio

Player

SO-NVP305

ALL

...

ID 107

00 01

0

Surrogate

0000

1000000
64

DVD

...

10

PA-DV2000

239

0001

1000001
65

MPP

Figure 8: Insertion of new tuples into a dimension

For the computation of the compound surrogate hsk we have to check if
there exists already a prefix of the new path in D. For a tuple to be
inserted, we call the already existing part of the new path the matching
prefix path (MPP). The MPP may be empty as in Figure 8 (a) – in this
case a new root element, here “DVD”, has to be created and the forest
grows by one tree.

A non-empty MPP (see Figure 8 (b)) comprises levels (ht,...,hk) for some
k with k > 1 and k ≤ t. The number k then is called the match level of the
new tuple’s path (2 in our example). At the next lower level, i.e., the first
non-matching level, the surrogate for the new value is determined.
Usually, the maximum surrogate is incremented by one, but one may also
use different schemes to compute the surrogate, for example if one wants
to reuse surrogates from deleted elements. According to the SURROGATE
definition the single surrogate values are concatenated to build the
compound surrogate hsk.

6.2 Insertion into the Fact Table: Lookup of Reference Surrogates

An insertion of a tuple into the fact table specifies the key dimension
attributes (the dimension attributes of the leaf hierarchy level). For each
dimension, however, the corresponding compound surrogate must be
found.
This so called lookup is to be performed before the insertion of the tuple
into the fact table because the tuple has to be extended by the
corresponding compound surrogates for the dimensions (reference
surrogates). For every dimension di, a direct access to the dimension table
is performed to retrieve the corresponding cs.
Depending on the number of dimensions, a number of B*-Tree accesses
is necessary and thus will decrease the insert performance. Especially for
bulk loading, such a procedure may cause long insertion times, because
the caching of the dimension tables may be not optimal. Thus, an
alternative lookup concept has been implemented in Transbase® by
loading a hash table with the dimension keys and corresponding
compound surrogate for every dimension before inserting the fact table
tuples. Then the lookup is very efficient, because only main memory
accesses will be necessary in the hash tables.

6.3 Hierarchy Reorganization

Usually, dimension hierarchies are very stable. However, there are
various application domains, where frequent hierarchy reorganizations,
e.g., moving of sub-trees, occur and should be reflected in the data
organization. Such operations require additional support by the DBMS as
local operations on dimension tables now have immediate influence on
the organization of the fact table. These operations are usually much more
expensive. For example, reclassifying one product group to a different
category will cause changes in the hsks. In order to have a correct
physical clustering of the fact table all fact tuples corresponding to the
changed product group have to be updated. Of course, arbitrary hierarchy
reorganizations by data updates are supported, but it has to be kept in
mind that the necessary fact table updates may be very time critical.
We have implemented similar methods as for star query processing, in
order to support hierarchy reorganization and the corresponding fact table
reclustering as good as possible. For example, we optimized multi-query
box algorihtm methods that are necessary, if a number of hierarchy paths
change and require corresponding reorganization of the fact table records.
An alternative method is to delay the reorganization of the fact table until
a background process uses idle time of the warehouse application for the
reclustering. In this case, we introduce two h-surrogates, where one

contains the previous (hsk1) and the other (hsk2) contains the new value.
hsk1 is updated, when the corresponding fact table records are
reorganized. If hsk1 and hsk2 both have the same value, no reclustering is
necessary.

7 Query Processing with MHC & UB-Trees

In this section we discuss the basic star query processing for DW
schemata with MHC and multidimensional index organization and its
advantages. For the discussion in this paper, we restrict ourselves to
standard “star queries”.

7.1 Query Template

Figure 9 shows the SQL query template for simple ad hoc star-queries.
The notation {X} represents a set of X objects. The template defines
typical star queries and uses abstract terms that act as placeholders. Note
that the queries that conform to this template generally have a structure
that is a subset of the above template and they instantiate all abstract
terms.
Our template is applied on a schema similar to the one in Figure 3, which
is a typical star schema. It specifies the restrictions on the various
dimensions, the star-join between the fact table, and the required
dimension tables and the subsequent grouping and aggregation. In general
any attribute (hierarchical, feature, or measure) can appear in a GROUP
BY clause. However, most queries group the result by a number of
hierarchical and/or feature attributes. Finally, there is an ORDER BY to
control the order of the presented results.

SELECT {D.h},{D.f},{FT.m},
 {AGGR(FT.m) AS AM}, {AGGR(D.h) AS AH},
 AGGR(D.f) AS AF}

FROM FT,{D1},…,{Dn}

WHERE FT.d1 = D1.h1 AND
 FT.d2 = D2.h1 AND
 ...
 FT.dn = Dn.h1 AND

 PRED(D1) AND
 PRED(D2) AND
 ...
 PRED(Dn) AND

 PRED({FT.m})

GROUP BY {D.h},{D.f},{FT.m}

HAVING PRED({AM},{AH},{AF})

ORDER BY <ordering fields>

Figure 9: Star Query Template

Star-Join condition

„local“ restrictions on the
dimension tables

restrictions to measures

7.2 Star Query Processing with MHC

Processing of star queries as described above can roughly be divided into
three major steps:

(1) Evaluation of dimension predicates
(2) Fetching result tuples from the fact table
(3) Residual joins, grouping and aggregation, sorting

Fact

Fact Table Access

Group Select

Order By

Create Range Create Range

Di
Dj

Main Execution Phase

Predicate Evaluation

...

Residual Join

Dk

Di

...

Having

FactFact

Fact Table AccessFact Table Access

Group SelectGroup Select

Order ByOrder By

Create RangeCreate Range Create RangeCreate Range

DiDi
DjDj

Main Execution Phase

Predicate Evaluation

...

Residual JoinResidual Join

DkDk

DiDi

...

HavingHaving

Figure 10: Standard Abstract Execution Plan

The first step evaluates the predicates on the dimension tables. The
second and third step are often considered together as not all restrictions
can be only evaluated on the fact table. In the following, we speak of two
processing phases:

• Predicate Evaluation
• Main Execution Phase

In the presence of MHC and a multidimensional index for the
organization of the fact table new optimizations can be applied to these
phases. This is reflected already in the abstract execution plan (AEP)
[Kar02] of Figure 10.

7.3 Predicate Evaluation and Fact Table Access

In the predicate evaluation phase the first benefit of HC can be observed.
Instead of generating a large set of point restrictions, the local predicates
on the dimensions usually result in a (small) set of range restrictions. This
is especially true for predicates with hierarchical restrictions (cf. Figure 2
(b)) but also many feature restrictions will lead to ranges if there is some
dependency between the defined hierarchy and the feature values. The
details of the interval generation are discussed in [Kar02].
After the generation of the intervals per dimension, the combination of
intervals is transformed into a number of query boxes that are executed by
the Fact Table Access. At that point, the multidimensional organization of
the fact table yields a major cost saving: relying on the clustering and the

efficient range query algorithm of the UB-Tree the number of I/O to fetch
the required data is drastically reduced.

7.4 Main Execution Phase: Grouping and Aggregation

The Main Execution Phase joins the tuples that are fetched from the fact
table with all necessary dimension tables (Residual Join operator). After
the residual join the tuples are grouped (Group-Select operator), filtered
again (Having operator) and sorted (OrderBy operator). This phase
strongly benefits from the additional information which is encoded in the
fact table tuples via the reference surrogates. The reference surrogates
represent an encoding of the hierarchy path of each level member –
therefore important optimizations can be realized for GROUPing on
dimension fields. Especially, in many cases, a great deal of the grouping
work can be done locally on the fact table tuples using prefixes of the
reference surrogates.
The important point is that this pre-grouping step is done before the fact
table tuples are joined with dimension tables. As the grouping operation
typically greatly reduces tuple cardinality, the cost for the successive join
operation is also greatly reduced. This technique is called Hierarchical
Pre-grouping. In detail, if the GROUPing field belongs to hierarchy level
hk or is functionally dependent on it then the h-surrogate prefix
ht/ht-1/…/hk is dynamically computed and the GROUP operation is done
on that value.
A simple example illustrates the effects of the hierarchical pre-grouping
method: Assume we have a DW with a time dimension (besides other
dimensions) categorized by year – month – day and a well populated fact
table. A query restricting the result to year 2001 (besides other
restrictions) qualifies 100.000 fact table records. If the result has to be
grouped w.r.t. month, we have to join 100.000 records with the time
dimension table. When applying hierarchical pre-grouping, the number of
join operations is reduced by a factor of 30, because all days of one month
are aggregated to the month.
Our measurements with a five dimensional real world DW show an
average reduction of the join cardinality by more than a factor of 100.
This leads to an overall speedup of a factor of 4 to 7 for the grouping and
residual join execution phase.
Figure 11 shows the final abstract execution plan used in Transbase®.
Due to the effective pre-grouping steps, the costly overall residual join
step is avoided if possible.

Dln

Fact Table Access

Post-Group

Order By

Pre-Group

Residual Join

Having

Predicate Evaluation
Fact

Residual Join

Dei

De1

Dl1

...

...

DlnDln

Fact Table AccessFact Table Access

Post-GroupPost-Group

Order ByOrder By

Pre-GroupPre-Group

Residual JoinResidual Join

Having Having

Predicate EvaluationPredicate Evaluation
FactFact

Residual JoinResidual Join

DeiDei

De1De1

Dl1Dl1

...

...

Figure 11: Abstract Execution Plan with Pre-Grouping

We do not enlarge on this optimization in this paper. For detailed
information about hierarchical grouping please refer to [Pie03].

8 Evaluation of MHC

In this section we briefly want to illustrate the benefits of MHC and
multidimensional indexing in the context of a real-world data warehouse
application.
The measurements are performed on a two processor PC Pentium III, 750
MHz, with 256 MB RAM and 30 GB IDE hard disk. We used Windows
2000 as operating system and Transbase® with the MHC implementation
as DBMS.
The DW schema of a large electronic retailer consists of a fact table with
three dimensions CUSTOMER, PRODUCT and DATE and 3 measures:
quantity, value, and unit_price. The CUSTOMER dimension contains 1,4
million records, PRODUCT consists of 27.000 products and the DATE
dimension covers 7 years on day granularity. 15.543.380 records are
stored in the snapshot of the fact table, amounting to 1,5 GB.
The query workload consisted of 220 ad hoc star queries from a real-
world application. We classified the queries into three groups according
to their selectivity on the fact table (i.e., number of tuples retrieved from
the fact table):

• [0.0-0.1]: 0% to 0.1% of fact table, i.e., 0 to about 15K records
• [0.1-1.0]: 0.1% to 1% of fact table, i.e., 15K to 160K records
• [1.0-5.0]: 1.0% to 5.0% of fact table, i.e., 160K to 780K records

The goal of the performance evaluation was to measure three alternative
query processing techniques:

• STAR: conventional star join processing without MHC and
without multidimensional indexing; STAR uses secondary
indexes that are created on the dimension keys of the fact table.
The restrictions on the dimension tables are evaluated and the
resulting dimension keys are used for index intersection on the

fact table. The resulting records are joined with the dimension
tables, in order to perform grouping and get the final result. This
is the typical processing of star queries in commercial DBMSs
(e.g., star transformation in Oracle [Ora01]). This processing
has two major steps: the index intersection and the tuple
materialization. While the index intersection has largely been
optimized (e.g., with bitmap indexes [NQ97]) the materialization
of results is still the bottleneck of non-clustering indexes.
Consequently, we neglect the index intersection time for STAR
and just measure the time for fact record materialization, residual
joins and grouping. Thus, the times for STAR have to be
considered as lower bounds of the real processing time.

• MHC: applying MHC and multidimensional indexing to the fact
table

• OPT: MHC with pre-grouping optimizations
For MHC and OPT the complete processing including index access is
measured.

Table 1: Response time (in sec) for the three techniques for the three
query classes

FT Sel. % [0.0-0.1] [0.1-1.0] [1.0-5.0]

 STAR MHC OPT STAR MHC OPT STAR MHC OPT

MIN 0 0 0 65 2 2 274 11 6

MAX 30 6 3 290 9 6 1219 47 27

MEDIAN 1 1 1 182 8 5 477 23 13

STD-DEV 4.9 1.2 0.5 75.6 3.1 1.6 346.0 14.1 7.9

Table 1 shows the response time analysis (in seconds) for the three
alternative processing plans. As the three classes contain queries with
different result set size and thus different response times we use the
maximum, minimum, median time and the standard deviation to analyze
the performance.
Our results show that the standard STAR processing is outperformed by
our approaches. However, for small queries, i.e., the class [0.0-0.1], the
speedup is below an order of magnitude. In general, for small result sets,
the advantage of clustering over non-clustering is not that large. The
picture changes drastically, when we consider larger queries (classes [0.1-
1.0] and [1.0-5.0]), which are more typical for OLAP applications. The
hierarchical clustering of MHC leads to an average speedup compared to
STAR of 24 and with the additional optimization of pre-grouping an
additional factor of about two is gained. Note also that STAR has a very
high deviation in the response times for queries within one class. This is
mainly for two reasons: (a) STAR performance deteriorates very fast as
the fact table selectivity is increased and (b) since the fact table is not
stored clustered the number of performed I/Os may differ significantly
from one query to another. On the other hand, the deviation for MHC and
OPT remains low, showing a much more stable behavior.

9 Summary

In this paper we presented the Transbase® DMBS supporting
multidimensional hierarchical clustering (MHC). Multidimensional
indexing and hierarchical clustering is combined for the primary
organization of the fact table of a typical star schema. Transbase® is
running on UNIX systems as HP-UX, SUN Solaris, AIX and Linux and
on Windows platforms.
The integration is made almost transparent to the user: only when creating
the dimension tables and the fact table the hierarchy and the clustering
specification has to be provided. From then on, the system is
automatically maintaining the hierarchical clustering and uses it for query
processing.
We presented some of the implementation issues of MHC and advanced
query optimization features enabled by MHC. The measurements on a
real-world data warehouse illustrated that MHC can dramatically improve
star query processing on such organized schemata.
The improvements of the query processing are not restricted to star
schemata, also snowflake schemata are supported. Therefore, our
approach is usable in many real data warehouse applications, even
complex ones.
In the future we are implementing some advanced algorithms, in order to
support complex expressions in aggregation functions, improve queries
with non-clustering dimensions and support joins over multiple fact
tables.

Bibliography

[ACN01] S. Agrawal, S. Chaudhuri, V. R. Narasayya: Materialized View and Index Selection
Tool for Microsoft SQL Server 2000. SIGMOD Conference 2001

[Bay97] R. Bayer. The universal B-Tree for multi-dimensional Indexing: General Concepts.
WWCA ’97. Tsukuba, Japan, LNCS, Springer Verlag, March, 1997.

[CD97a] S. Chaudhuri, U. Dayal: An Overview of Data Warehousing and OLAP Technology.
SIGMOD Record 26(1): 65-74 (1997)

[CD97b] S. Chaudhuri, U. Dayal: Data Warehousing and OLAP for Decision Support
(Tutorial). SIGMOD Conference 1997: 507-508

[CI98] C. Y. Chan, Y. E. Ioannidis: Bitmap Index Design and Evaluation. SIGMOD
Conference 1998: 355-366

[CS94] S. Chaudhuri, K. Shim: Including Group-By in Query Optimization. VLDB 1994:
354-366

[Des98] P. Deshpande, K. Ramasamy, A. Shukla, J. F. Naughton: Caching Multidimensional
Queries Using Chunks. SIGMOD Conference 1998: 259-270

[Gra96] J. Gray, A. Bosworth, A. Layman, H. Pirahesh: Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Total. ICDE 1996: 152-159

[GG97] V. Gaede and O. Günther. Multidimensional Access Methods. ACM Computing
Surveys 30(2), 1997.

[GM95] A. Gupta, I. S. Mumick: Maintenance of Materialized Views: Problems, Techniques,
and Applications. Data Engineering Bulletin 18(2): 3-18 (1995)

[Kim96] R. Kimball. The Data Warehouse Toolkit. John Wiley & Sons, New York. 1996.
[KR98] Y. Kotidis, N. Roussopoulos: An Alternative Storage Organization for ROLAP

Aggregate Views Based on Cubetrees. SIGMOD Conference 1998: 249-258

[KS01] N. Karayannidis, and T. Sellis: SISYPHUS: A Chunk-Based Storage Manager for
OLAP Cubes. DMDW 2001

[Kar02] N. Karayannidis, A. Tsois, T. Sellis, R. Pieringer, V. Markl, F. Ramsak, R. Fenk, K.
Elhardt, R. Bayer: Processing Star Queries on Hierarchically-Clustered Fact Tables.
VLDB 2002

[MRB99] V. Markl, F. Ramsak, R. Bayern: Improving OLAP Performance by
Multidimensional Hierarchical Clustering. Proc. of the Intl. Database Engineering
and Applications Symposium, pp. 165-177, 1999.

[NG95] P. E. O'Neil, G. Graefe: Multi-Table Joins Through Bitmapped Join Indices.
SIGMOD Record 24(3): 8-11 (1995)

[NHS84] J. Nievergelt, H. Hinterberger, K. C. Sevcik: The Grid File: An Adaptable,
Symmetric Multikey File Structure. TODS 9(1): 38-71 (1984)

[NQ97] P. E. O'Neil, D. Quass: Improved Query Performance with Variant Indexes.
SIGMOD Conference 1997: 38-49

[OM84] J. A. Orenstein, T. H. Merret. A Class of Data Structures for Associate Searching.
Proc. of ACM SIGMOD-PODS Conf., Portland, Oregon, 1984, pp. 294-305

[Ora01] Oracle 8i Documentation, 2001.
[Pie03] R. Pieringer, K. Elhardt, F. Ramsak, V. Markl, R. Fenk, R. Bayer, N. Karayannidis,

A. Tsois, T. Sellis: Combining Hierarchy Encoding and Pre-Grouping: Intelligent
Grouping in Star Queries. ICDE 2003

[Ram00] F. Ramsak, V. Markl, R. Fenk, M. Zirkel,K. Elhardt, R. Bayer.Integrating the UB-
Tree intoa Database System Kernel. In VLDB2000,Proceedings of International
Conference on Very Large Data Bases, 2000, Cairo, Egypt, 2000.

[Rou98] N. Roussopoulos: Materialized Views and Data Warehouses. SIGMOD Record
27(1): 21-26 (1998)

[Sam90] H. Samet. The Design and Analysis of Spatial Data Structures. Addison Wesley,
1990

[Sar97] S. Sarawagi: Indexing OLAP Data. Data Engineering Bulletin 20(1): 36-43 (1997)
[SDJL96] D. Srivastava, S. Dar, H. V. Jagadish, A. Y. Levy: Answering Queries with

Aggregation Using Views. VLDB Conference 1996: 318-329
[Tra02] The TransBase HyperCube relational database system, available at:

http://www.transaction.de/
[TT01] D. Theodoratos, A. Tsois: Heuristic Optimization of OLAP Queries in

Multidimensionally Hierarchically Clustered Databases. DOLAP 2001.
[WB98] M. C. Wu, A. P. Buchmann: Encoded Bitmap Indexing for Data Warehouses. ICDE

1998: 220-230
[WOS01] K. Wu, E. J. Otoo, A. Shoshani: A Performance Comparison of bitmap indexes.

CIKM 2001: 559-561
[Wu99] Ming-Chuan Wu: Query Optimization for Selections Using Bitmaps. SIGMOD

Conference 1999: 227-238
[YL94] W. P. Yan, P-Å. Larson: Performing Group-By before Join. ICDE 1994: 89-100
[YL95] W. P. Yan, P.-Å. Larson: Eager Aggregation and Lazy Aggregation. VLDB

Conference 1995
[Zah00] Markos Zaharioudakis, Roberta Cochrane, George Lapis, Hamid Pirahesh, Monica

Urata: Answering Complex SQL Queries Using Automatic Summary Tables.
SIGMOD Conference 2000:

[ZSL98] C. Zou, B. Salzberg, and R. Ladin: Back to the Future: Dynamic Hierarchical
Clustering. Proc. Of ICDE, 1998, pp. 578-587.

http://www.transaction.de/

	page6471: 648
	page6481: 649
	page6491: 650
	page6501: 651
	page6511: 652
	page6521: 653
	page6531: 654
	page6541: 655
	page6551: 656
	page6561: 657
	page6571: 658
	page6581: 659
	page6591: 660
	page6601: 661
	page6611: 662
	page6621: 663
	page6631: 664
	page6641: 665
	page6651: 666
	page6661: 667

