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Abstract: Analysis-oriented database applications, such as data 
warehousing or customer relationship management, play a crucial 
role in the database area. In general, the multidimensional data 
model is used in these applications, realized as star or snow-flake 
schemata in the relational world. The so-called star queries are the 
prevalent type of queries on such schemata. All database vendors 
have extended their products to support star queries efficiently. 
However, mostly reporting queries benefit from the optimizations, 
like pre-aggregation, while ad-hoc queries usually lack efficient 
support. We present the DBMS Transbase® in this paper, which 
provides a new physical organization of the data based on 
hierarchical clustering and multidimensional clustering combined 
with multidimensional indexing. In combination with new query 
optimizations (e.g., hierarchical pre-grouping) significant 
performance improvements are achieved. The paper describes how 
the new technology is implemented in the Transbase® product 
and how it is made available to the user as transparently as 
possible. The benefits are illustrated with a real-world data 
warehousing scenario. 

1 Introduction 

Data warehousing (DW), online analytical processing (OLAP), and 
customer relationship management (CRM), have become a major market 
in the database area through the last decade. The multidimensional 
paradigm seems to be the undisputed winner as a design choice for such 
databases. The conceptual model adopted is a data warehouse consisting 
of facts (or measures) organized into a set of dimensions, which in turn 
are organized into levels of different aggregation granularity (i.e., detail) 
that comprise one or more hierarchies. Even though proprietary 
multidimensional database management systems (DBMSs) exist, the vast 
majority of systems use relational DBMSs as the underlying storage 
system.  
For relational databases, the multidimensional data warehouse consists of 
one or more star schemata [CD97a], featuring a central fact table 
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surrounded by so-called dimension tables. The most prevalent kind of 
queries submitted to such a system is the star query. Star queries impose 
restrictions on the dimension values that are used for selecting specific 
facts; these facts are further grouped and aggregated according to the user 
demands. The join of the central (and usually very large) fact table with 
the surrounding dimension tables (also known as a star join) has been 
identified as frequent, major bottleneck in evaluating such queries. 
Various solutions have been proposed over the years to cope with these 
problems. Indexing schemes [NG95, NQ97, Sar97, CI98, WB98, Wu99, 
WOS01] and precomputation of aggregation results [GM95, Rou98, 
Sri96] have been studied extensively in the research community and are 
also, to some extent, used in commercial systems [ACN01, Ora01, 
Zah00]. 
While these solutions work well in reporting scenarios, they do not 
support acceptable performance for ad hoc star queries, i.e., queries that 
are not known in advance, which become more and more important in 
online applications. For this kind of queries the usage of precomputed 
aggregation results is extremely limited or even impossible in some cases. 
Even when elaborate indexes are used, due to the arbitrary ordering of the 
fact table tuples, there might be as many I/Os as there are tuples in the 
result set.  
To overcome these deficiencies, new alternatives of the physical 
organization of data have emerged [Des98, MRB99, KS01]. The idea is to 
incorporate the two fundamental properties of the conceptual data model 
into the data storage: the multidimensionality and hierarchy semantics. 
These organizations exploit a special kind of key that is based on the 
hierarchy paths of the dimensions, in order to achieve hierarchical 
clustering of the facts. This physical clustering results in a reduced I/O 
cost for the majority of star queries, which are based on the dimension 
hierarchies. Moreover, [MRB99] and [KS01] exploit a clustering, 
multidimensional index for storing the tuples. A typical star join then is 
transformed into a multidimensional range query, which is very 
efficiently computed using the underlying multidimensional data 
structures. 
In this paper we present the Transbase® DBMS from Transaction 
Software GmbH that incorporates state of the art techniques for analysis-
centric applications. More precisely, it supports the UB-Tree as native 
multidimensional index and allows for clustering of data according to 
hierarchy semantics. Taking advantage from the knowledge of 
hierarchies, not only the physical storage of the data can be optimized but 
also query processing can largely be improved. We will discuss the basic 
concepts of the underlying technology as well as how it is implemented in 
the DBMS kernel. The evaluation in a real-world data warehousing 
scenario shows significant performance improvements over traditional 
techniques.  
The rest of the paper is organized as follows. Section 2 covers related 
work and in Section 3 we introduce the basic technology used in 
Transbase®. Section 4 shows the user’s view with an example before we 
address the implementation issues in Section 5. Section 6 covers the 
automatic maintenance of hierarchy clustering and Section 7 is dedicated 
to the query processing for multidimensional hierarchical clustering. In 
Section 7 we provide an evaluation of the techniques in a real-world 
scenario; Section 9 summarizes our contribution.  



 

 

2 Related Work 

Due to the large body of work in the area of data warehousing and 
optimizing DBMSs for these applications we can only give an incomplete 
account of related work in this field. We cover general approaches first 
and then address commercial solutions. 

2.1 Star query optimization 

One of the most important parts of a star query is the processing of the 
star join. Star join processing has been studied extensively and specific 
solutions have been also implemented in commercial products. See 
[CD97b] for an overview.  
To compute the star join, most systems avoid building the Cartesian 
product of the fact table with the dimension tables as the resulting 
cardinality leads to a non-tolerable overhead. Thus, one tries to apply 
dimension restrictions also to the fact table in order to reduce the join 
size. Bitmap indices are often used to speed up the access to the fact table. 
The bitmaps corresponding to the different dimension values are ANDed 
or ORed depending on the selection condition. The resulting bitmap is 
used to extract tuples from the fact table [NG95, NQ97]. When the query 
selectivity is high, only a few bits in the result bitmap are set. If there is 
no particular order (clustering) among the fact table tuples, we can expect 
each bit to access a tuple in a different page.  
Multidimensional clustering has been discussed in the field of 
multidimensional access methods (e.g., [GG97] and [Sam90]). [ZSL98] 
addresses the issue of hierarchical clustering for the one-dimensional 
case. The importance of good physical clustering in OLAP has been 
shown in [KR98], where packed R-trees are exploited for storing the 
results of the data cube operator ([Gra96]). In [Des98], the benefits of 
hierarchical clustering for star queries was observed as a side effect of 
using a chunked file organization for enabling caching with chunk as the 
caching unit. 
Among others, in [MRB99] the UB-tree (see Section 3.1) is used as a 
primary organization of the fact table. Surrogate keys based on the 
dimension hierarchies are exploited and hierarchical clustering of the fact 
table is achieved. Consequently star joins are transformed to 
multidimensional range queries. The combination of the two mechanisms 
results in a greatly reduced I/O cost for star joins.  
In [KS01] a physical organization based on a hierarchical chunking of the 
fact table is presented. Fact data are clustered physically according to the 
dimensional hierarchies. To achieve this clustering, special path-based 
dimension keys are exploited. In particular, these keys guide the 
clustering (called chunking) process. Star joins are transformed to range 
queries in the multidimensional and multi-level data space of a cube. The 
adopted multidimensional structure is a variant of the Grid File [NHS84]. 
Several aspects of processing and optimizing star join queries on 
hierarchically clustered fact tables are also presented in [TT01]. The 
paper considers a star schema with UB-Tree organized fact tables and 
dimension tables stored sorted on a composite surrogate key. For a 
particular class of star join queries, the authors investigate the usage of 
sort-merge joins and a set of other heuristic optimizations. 



 

 

A general query processing framework that addresses all issues involved 
in star query processing over hierarchically clustered fact tables has been 
presented in [Kar02] and [Pie03]. In this paper, we describe in more 
detail, how this framework is implemented in a real DBMS. We extend 
the concepts of pre-grouping, first introduced in [CS94], [YL94] and 
[YL95] by including hierarchical information. 

2.2 Hierarchies in Oracle 

Hierarchies in Oracle are not used, in order to cluster data in the fact table 
([Ora01]). Hierarchies are additional information (meta data) for special 
features for query processing. For example, query rewriting needs 
hierarchical information to use materialized pre-aggregated views in the 
query formulation. Thus, the definition of dimensions and hierarchies 
does not influence the physical clustering of the data. 
A dimension, created by a CREATE DIMENSION statement contains one 
or more hierarchies. The hierarchy levels can be placed in any table. For 
each hierarchy level, one or more feature attributes can be assigned (via 
the DETERMINES clause). Hierarchies can be modified by adding or 
dropping hierarchy levels. 

3 Basic Concepts 

In this section we briefly introduce the fundamental concepts that are used 
in the Transbase® DBMS to support OLAP applications. On the one 
hand, we introduce the multidimensional index available in Transbase® 
and on the other hand explain the basic idea of hierarchy clustering. 

3.1 The UB-Tree 

We just give a short introduction to UB-Trees here, details can be found 
in [Bay97, Ram00]. The basic idea of the UB-Tree is to use a space-
filling curve to map a multidimensional universe to one-dimensional 
space. Using the Z-curve for preserving multidimensional clustering it is a 
variant of the zkd-B-Tree [OM84]. A Z-address α = Z(x) is the ordinal 
number of the key attributes of a tuple x on the Z-curve, which can be 
efficiently computed by bit-interleaving. A standard B-Tree is used to 
index the tuples taking the Z-addresses of the tuples as keys. The 
pagination of the B-Tree creates a disjunctive partitioning of the 
multidimensional space into so-called Z-regions. This allows for very 
efficient processing of multidimensional range queries.  
Figure 1 shows a Z-region partitioning for a two-dimensional universe 
and the corresponding B-Tree. The interval limits of the Z-regions are 
also depicted. 
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Figure 1 UB-Tree: Z-region partitioning and underlying B-Tree 

 
The processing of basic operations, i.e., insertion, deletion, update, and 
point query, of the UB-Tree are analogous to the basic operations of the 
B-Tree. For each tuple the corresponding Z-address is computed, and 
with the resulting value the underlying B-Tree is accessed. Thus, all basic 
operations require only cost proportional to the height of the tree. The 
only recommendable modification to the standard B-Tree algorithms is an 
adaptation of the split algorithm to achieve a “good” (as rectangular as 
possible) Z-region partitioning. 
A UB-Tree is especially good in processing multidimensional range 
queries, as it only retrieves all Z-regions that properly intersect the query 
box. Consequently, it usually shows the nice property that the response 
time of the range query processing is proportional to the result set size. 

3.2 Clustering of Hierarchies 

Hierarchies play an important role in various application domains. They 
are used to provide a semantic structure to data, e.g., a geographical 
classification of customers in a data warehouse. As the hierarchies cover 
the application semantics they are used frequently by users to specify the 
restrictions on the data as well as the level of aggregation. The restrictions 
on the hierarchies usually result in point or range restrictions1 on some 
hierarchy levels [Sar97]. The problem that arises is that these restrictions 
on upper hierarchy levels lead to a large set of point restrictions on the 
lowest level, i.e., the level with the most detailed information. This 
situation is depicted in Figure 2 (a): restricting the level 'Product Group' 
to the value 'VCR' leads to the set of ids {5,8,21} and not to the interval 
[5,21], as the item with id 11 does not belong to the specified product 
group. 
For most access methods it would be more efficient to process one range 
restriction instead of a set of point restrictions. The resulting question is 
how to map a point/range restriction on a higher hierarchy level to a range 
restriction on the lowest level? To this end, Transbase® applies the 
clustering scheme for hierarchies as proposed in [MRB99]. A special kind 
of keys is used for the elements of the lowest level which reflect the 
hierarchy semantics, i.e., keys which adhere to the partial order defined 
by the hierarchy levels. These so-called (compound) surrogates guarantee 
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that the keys of all elements in a sub-tree of the hierarchy lie within a 
closed interval (Figure 2 (b)) such that a key of an element not lying in 
the subtree is not within the interval. In our example, the restriction to the 
product group 'VCR' now leads to the interval [48,50]; the item with id 11 
is mapped to the surrogate 33 that does not violate the interval.  
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Figure 2 Example of hierarchy clustering: (a) non-clustered vs. (b) clustered 

hierarchy 
 
We refer to this technique as hierarchy clustering (HC) from now on. If 
we combine HC and multidimensional indexing on multiple hierarchy 
encoding as it is done in Transbase®, then we speak of multidimensional 
hierarchical clustering (MHC). 

4 Example: MHC in Transbase® 

In this section, we will briefly present the user’s perspective when using 
the OLAP functionality in Transbase® ([Tra02]).  
For our discussions we use a conventional star schema [CD97a] with a 
fact table consisting of dimension (qualitative) and measure (quantitative) 
attributes [Kim96]. For the dimensions typically one or more hierarchical 
classifications based on the dimension attributes (often referred to as 
features) exist. The primary key of the dimension represents the most 
detailed level of the dimension hierarchies.  



 

 

In this paper, we focus on star schemata for the ease of description. 
However, the algorithms also are implemented for general snowflake 
schemata. 

4.1 Sample Schema 

As running example throughout this paper we use the schema depicted in 
Figure 3. This data warehouse stores sales transactions recorded per item, 
store, customer, and date. It contains one fact table FACT, which is 
defined over the dimensions: PRODUCT, CUSTOMER, DATE, and 
LOCATION with the obvious meanings. The measures of FACT are price, 
quantity and sales representing the values for an item bought by a 
customer at a store at a specific day. The schema of the fact and 
dimension tables is shown in Figure 3 and the dimension hierarchies are 
depicted in Figure 4.  
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Figure 3: Sample Schema: standard star schema and HC extension (hsk*) 

 
The dimension DATE is organized in three levels: day – month – year. 
The dimension CUSTOMER is organized in two levels: customer – 
profession. For each customer the dimension table contains an ID, a 
name, an address, and a profession. The dimension has two hierarchical 
attributes (person_id, profession) and two feature attributes (name, 
address). The LOCATION dimension is organized by four levels: store – 
city – region – country. Stores are grouped into cities, these are grouped 
into regions and the regions finally are grouped into countries. For each 
city, the population is stored as feature attribute. The dimension has four 
hierarchical attributes (store, city, region, country) and one feature 
attribute (population) that is assigned to the city level. 
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Figure 4: The dimension hierarchies of the example 

 



 

 

Finally, the PRODUCT dimension is organized into three levels: item – 
group – category. Items are grouped into product groups and those are 
further grouped into categories (e.g., “air condition”). The attribute brand 
characterizing each item is a feature attribute.  
Star queries are written in standard SQL, i.e., the join attributes between 
the fact and dimension tables are the dimension key attributes: 
SELECT SUM(sales)  
FROM FACT F, DATE D, PRODUCT P , LOCATION L  
WHERE D.day=F.day AND P.item=F.product AND 
L.store=F.store AND D.year=2002 AND P.category = ‘Air 
Condition’ AND L.population > 1000000  
GROUP BY D.year, D.month 

This query returns the sum of sales for the year 2002 for air conditions in 
cities with a population larger than one million. 

4.2 The User’s View: Hierarchy Specification by extended DDL 

To allow the user for defining such a schema, the DDL has been extended 
to express hierarchies and the desired physical organization of the fact 
table according to the dimension hierarchies. This is achieved by 
specifying an additional field per dimension table per hierarchy that 
basically represents the compound surrogate derived by HC as described 
earlier. 
The keyword SURROGATE is used to mark the definition of a surrogate 
field as opposed to the definition of a standard user visible field. In the 
dimension table, we denote a compound surrogate by the keyword 
COMPOUND. The hierarchy levels are specified after this keyword by 
enumerating the hierarchy levels from top to bottom. The maximum fan-
out of each hierarchy level is denoted by the keyword SIBLINGS (to 
specify the number of bits reserved for the hierarchy level) after the 
corresponding hierarchy level.  
Figure 5 shows the DDL for the Location dimension: the surrogate 
specification defines the hierarchy depicted in the Figure 4. The 
SIBLINGS information specify that in this hierarchy there are at most 10 
countries, at most 50 regions per country, at most 50 cities per region, and 
at most 1000 stores per city. Thus, the Location dimension may at most 
contain 10*50*50*1000=25.000.000 members. 
 
create table Location ( 
 country char(*) NOT NULL, 
 region char(*) NOT NULL, 
 city char(*) NOT NULL, 
 store char(*) NOT NULL, 
 SURROGATE cs_location COMPOUND ( 
  country SIBLINGS 10, region SIBLINGS 50,  
  city SIBLINGS 50, store SIBLINGS 1000), 

PRIMARY KEY (store) 
); 

Figure 5 Extended Create-Statement for dimension tables 
 
For the fact table specification (see Figure 6), we now have to specify the 
physical organization, besides the standard relationships to the dimension 
tables. As we want to cluster the data according to the hierarchies of the 



 

 

dimension, we use the surrogates instead of the “logical” keys. To this 
end, we introduce the concept of reference surrogates. Technically, a 
reference surrogate is an additional system maintained field in the fact 
table. Because of the necessary foreign key constraints in the fact table, it 
is possible to decide to which dimension the reference surrogate belongs.  
We use again the keyword SURROGATE to denote a surrogate. Then we 
use the keyword FOR, in order to assign the reference surrogate to a 
dimension: 
 
create table fact ( 
 product char(*) NOT NULL references product (item), 
 store char(*)NOT NULL references location(store) 
 time integer NOT NULL references date(day), 
 sales numeric(10,3), 
 price numeric(10,3), 
 quantity numeric(10,3), 
 SURROGATE cs_prod FOR product, 
 SURROGATE cs_store FOR store, 
 SURROGATE cs_time FOR time, 
 PRIMARY HCKEY (cs_prod, cs_store, cs_time)) 

Figure 6 Extended Create-Statement for the fact table 
 
A different keyword for the key specification the UB-Tree (PRIMARY 
HCKEY) is used to specify the index access method, namely a UB-Tree 
(HC stands for HyperCube as the UB-Tree is called in Transbase®).  
All further statements (especially INSERT and UPDATE) may (and must) 
ignore the additional fields. This is comparable to the creation of a 
secondary index which is made up by the user but then becomes a system 
maintained part of the database. 
It is important to note that all fields created by the SURROGATE 
specification are system maintained and are not visible to the user. Even 
though the fields are really stored in the tables, the user only works on a 
view of the table which projects the surrogate fields out. 
As the example shows, the user can very naturally specify the physical 
organization of the data according to the schema semantics. In the 
following sections we will discuss the internals of the system transparent 
to the user. 

5 Implementing HC in the DBMS Kernel 

For the implementation of HC in the Transbase® kernel various issues 
have to be solved. The most important one is the internal representation 
and management of the surrogates as well as schema extensions, 
necessary for the automatic processing. 
Before we continue, we want to introduce some terminology that is 
frequently used in the remainder of the paper. We refer to the fact table as 
FT and to the dimension tables as Di. We use FT.m to denote a measure 
attribute of the fact table, Di.hj to denote a hierarchical attribute (h1 
denotes the leave level of the hierarchy, i.e., it is the key of the dimension 
table), and Di.fk  denotes a feature attribute of the dimension. PRED and 
AGGR are placeholders for any predicate resp. aggregation function on 
the specified attribute. 



 

 

5.1 Internal Representation of Compound Surrogates 

As already indicated in Figure 3, the SURROGATE specification in the 
“create table” statement leads to the creation of an extra, non-visible, field 
in the dimension or fact table containing the encoding (surrogate key, 
“hsk”) of the corresponding hierarchy. It is unique for each dimension 
tuple as each leaf member of the hierarchy is assigned a unique value by 
HC. 
The hsks are also contained in the fact table, as there they are required for 
the physical clustering of the data. As the logical dimension keys and the 
hsks are substitutes to each other, one may save a lot of space in the fact 
table if one would suppress the logical keys and just keep the hsks, if 
available for a dimension. However, this may lead to drastic performance 
decrease in cases where the original keys of the fact table tuples are 
accessed in the query. This would lead to expensive joins with the 
dimension tables. The suppression of logical keys is not implemented in 
Transbase®. 
Internally, compound surrogates are fixed length bit strings. The length 
corresponds to the siblings specification of all surrogate components. 

5.2 System Catalog Extension 

In order to implement hierarchical clustering the system needs to have 
knowledge about the defined surrogates. The system catalog extension is 
designed to even allow several compound surrogates (and thus 
hierarchies) within one table. 

5.3 Automatic Index Creation 

For efficient query retrieval and surrogate maintenance, we need two 
special secondary indexes on the dimension table. Let cs be the field 
name of the compound surrogate and ht,..,h1 be the list of field names of 
the levels for the compound surrogate definition. Transbase® 
automatically creates the following indexes (here described by the 
following virtual SQL CREATE statements): 
CREATE INDEX “@@sys_surrCSX_<surrid>” ON <dim_table> 
(cs); 
CREATE INDEX “@@sys_surrHX_<surrid>” ON <dim_table> 
(ht,..,h1,cs); 

Thus, the index names consist of two components, a prefix that marks the 
index as system index, and a generated suffix of the kind of the index 
(CSX or HX) and the surrogate id of the corresponding surrogate. The 
indexes are needed for the computation of compound surrogates, for the 
lookup of reference surrogates (see section 6.2) and for query processing. 
Of course, these indexes cannot be dropped by the user. 

5.4 Multiple Hierarchies 

A dimension of a data warehouse may include several independent 
hierarchies. Because of the representation of hierarchies by compound 
surrogates, we have to deal with several compound surrogates, one for 
every possible hierarchy. 



 

 

An example of several hierarchies is shown in Figure 7. The customer 
dimension has a geographical hierarchy with country – region – town – 
customer and an organizational hierarchy with profession – customer.  
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Figure 7: Customer Dimension with two Hierarchies 

 
We have to distinguish between two levels of hierarchies. The conceptual 
level defines hierarchies on the conceptual data warehouse schema. 
Depending on the data warehouse application, multiple hierarchies may 
be defined on all dimensions representing the application data model. 
Usually hierarchies represent drill and aggregation paths for user queries.  
The physical level of hierarchies is responsible for the clustering 
properties of the hierarchies, in combination with hierarchies of other 
dimensions, i.e., the complete MHC schema. The number of clustering 
hierarchies is restricted due to the properties of the clustering 
multidimensional index. It usually makes sense to use only one hierarchy 
per dimension for clustering, because in most times, hierarchies are 
dependent or one hierarchy is more important for user queries. However, 
in some cases, two or more hierarchies may be required for clustering 
(e.g., most user queries restrict both of these hierarchies). In addition, one 
dimension table may be used for several fact tables, that use different 
hierarchies for clustering. Thus, we have to provide multiple hierarchies 
for one dimension.  
The internal structures allow to establish an arbitrary number of 
hierarchies, represented by compound surrogates. However, we require 
that the leaf level of all hierarchies is the same (a so called shared leaf 
level), usually the primary key of the dimension table. This hierarchy 
property is checked when creating the table and the compound surrogates 
in the DDL statement. With multiple hierarchies allowed on one 
dimension table, we can use the dimension table for several fact tables 
that can be clustered w.r.t. different hierarchies. So we avoid redundancy 
problems for replicated dimension tables. 
Every compound surrogate is assigned a unique id. This so called surrid 
is referred to by the reference surrogates. One fact table includes an 
arbitrary number of reference surrogates specified by the surrid of the 
corresponding compound surrogate of the dimension tables. Thus, we can 
use reference surrogates of several hierarchies of one dimension table 
within one fact table. These reference surrogates may be used as index 
key attributes and thus for clustering the fact table according to several 
hierarchies. 



 

 

6 Maintenance of MHC 

After discussing the internal representation of the surrogates, we now turn 
to the automatic maintenance of the hierarchical clustering. We start with 
the insertion of new dimension members and continue with the insertion 
of fact table tuples. Finally, we will address the issue of major 
reorganization of dimension hierarchies. 

6.1 Computation of Compound Surrogates 

Computation of a compound surrogate hsk occurs when a tuple is inserted 
into the dimension table. Updates of hierarchy fields also may lead to a 
re-computation of hsk. 
In the following picture, the insertion algorithm is depicted for our 
example product hierarchy. Figure 8 schematically shows the insertion of 
a new tuple. We assume the values vi for each hierarchical field hi. 
Considering the hierarchy, the insertion of a tuple means the creation of a 
new path (vk,…,v1) in the dimension D. 
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Figure 8: Insertion of new tuples into a dimension 

 
For the computation of the compound surrogate hsk we have to check if 
there exists already a prefix of the new path in D. For a tuple to be 
inserted, we call the already existing part of the new path the matching 
prefix path (MPP). The MPP may be empty as in Figure 8 (a) – in this 
case a new root element, here “DVD”, has to be created and the forest 
grows by one tree.  



 

 

A non-empty MPP (see Figure 8 (b)) comprises levels (ht,...,hk) for some 
k with k > 1 and k ≤ t. The number k then is called the match level of the 
new tuple’s path (2 in our example). At the next lower level, i.e., the first 
non-matching level, the surrogate for the new value is determined. 
Usually, the maximum surrogate is incremented by one, but one may also 
use different schemes to compute the surrogate, for example if one wants 
to reuse surrogates from deleted elements. According to the SURROGATE 
definition the single surrogate values are concatenated to build the 
compound surrogate hsk. 

6.2 Insertion into the Fact Table: Lookup of Reference Surrogates 

An insertion of a tuple into the fact table specifies the key dimension 
attributes (the dimension attributes of the leaf hierarchy level). For each 
dimension, however, the corresponding compound surrogate must be 
found. 
This so called lookup is to be performed before the insertion of the tuple 
into the fact table because the tuple has to be extended by the 
corresponding compound surrogates for the dimensions (reference 
surrogates). For every dimension di, a direct access to the dimension table 
is performed to retrieve the corresponding cs. 
Depending on the number of dimensions, a number of B*-Tree accesses 
is necessary and thus will decrease the insert performance. Especially for 
bulk loading, such a procedure may cause long insertion times, because 
the caching of the dimension tables may be not optimal. Thus, an 
alternative lookup concept has been implemented in Transbase® by 
loading a hash table with the dimension keys and corresponding 
compound surrogate for every dimension before inserting the fact table 
tuples. Then the lookup is very efficient, because only main memory 
accesses will be necessary in the hash tables.  

6.3 Hierarchy Reorganization 

Usually, dimension hierarchies are very stable. However, there are 
various application domains, where frequent hierarchy reorganizations, 
e.g., moving of sub-trees, occur and should be reflected in the data 
organization. Such operations require additional support by the DBMS as 
local operations on dimension tables now have immediate influence on 
the organization of the fact table. These operations are usually much more 
expensive. For example, reclassifying one product group to a different 
category will cause changes in the hsks. In order to have a correct 
physical clustering of the fact table all fact tuples corresponding to the 
changed product group have to be updated. Of course, arbitrary hierarchy 
reorganizations by data updates are supported, but it has to be kept in 
mind that the necessary fact table updates may be very time critical. 
We have implemented similar methods as for star query processing, in 
order to support hierarchy reorganization and the corresponding fact table 
reclustering as good as possible. For example, we optimized multi-query 
box algorihtm methods that are necessary, if a number of hierarchy paths 
change and require corresponding reorganization of the fact table records. 
An alternative method is to delay the reorganization of the fact table until 
a background process uses idle time of the warehouse application for the 
reclustering. In this case, we introduce two h-surrogates, where one 



 

 

contains the previous (hsk1) and the other (hsk2) contains the new value. 
hsk1 is updated, when the corresponding fact table records are 
reorganized. If hsk1 and hsk2 both have the same value, no reclustering is 
necessary. 

7 Query Processing with MHC & UB-Trees 

In this section we discuss the basic star query processing for DW 
schemata with MHC and multidimensional index organization and its 
advantages. For the discussion in this paper, we restrict ourselves to 
standard “star queries”. 

7.1 Query Template 

Figure 9 shows the SQL query template for simple ad hoc star-queries. 
The notation {X} represents a set of X objects. The template defines 
typical star queries and uses abstract terms that act as placeholders. Note 
that the queries that conform to this template generally have a structure 
that is a subset of the above template and they instantiate all abstract 
terms. 
Our template is applied on a schema similar to the one in Figure 3, which 
is a typical star schema. It specifies the restrictions on the various 
dimensions, the star-join between the fact table, and the required 
dimension tables and the subsequent grouping and aggregation. In general 
any attribute (hierarchical, feature, or measure) can appear in a GROUP 
BY clause. However, most queries group the result by a number of 
hierarchical and/or feature attributes. Finally, there is an ORDER BY to 
control the order of the presented results. 
 
SELECT {D.h},{D.f},{FT.m},  
 {AGGR(FT.m) AS AM}, {AGGR(D.h) AS AH},  
 AGGR(D.f) AS AF} 

FROM FT,{D1},…,{Dn}  

WHERE FT.d1 = D1.h1  AND 
 FT.d2 = D2.h1  AND  
 ... 
 FT.dn = Dn.h1  AND 
 
 PRED(D1)  AND  
 PRED(D2)  AND   
 ... 
 PRED(Dn)  AND 
 
 PRED({FT.m})  

GROUP BY {D.h},{D.f},{FT.m}  

HAVING PRED({AM},{AH},{AF})  

ORDER BY <ordering fields> 

Figure 9: Star Query Template 

Star-Join condition 

„local“ restrictions on the 
dimension tables 

restrictions to measures 



 

 

7.2 Star Query Processing with MHC 

Processing of star queries as described above can roughly be divided into 
three major steps: 

(1) Evaluation of dimension predicates  
(2) Fetching result tuples from the fact table 
(3) Residual joins, grouping and aggregation, sorting 
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Figure 10: Standard Abstract Execution Plan 

 
The first step evaluates the predicates on the dimension tables. The 
second and third step are often considered together as not all restrictions 
can be only evaluated on the fact table. In the following, we speak of two 
processing phases: 

• Predicate Evaluation 
• Main Execution Phase 

In the presence of MHC and a multidimensional index for the 
organization of the fact table new optimizations can be applied to these 
phases. This is reflected already in the abstract execution plan (AEP) 
[Kar02] of Figure 10.  

7.3 Predicate Evaluation and Fact Table Access 

In the predicate evaluation phase the first benefit of HC can be observed. 
Instead of generating a large set of point restrictions, the local predicates 
on the dimensions usually result in a (small) set of range restrictions. This 
is especially true for predicates with hierarchical restrictions (cf. Figure 2 
(b)) but also many feature restrictions will lead to ranges if there is some 
dependency between the defined hierarchy and the feature values. The 
details of the interval generation are discussed in [Kar02]. 
After the generation of the intervals per dimension, the combination of 
intervals is transformed into a number of query boxes that are executed by 
the Fact Table Access. At that point, the multidimensional organization of 
the fact table yields a major cost saving: relying on the clustering and the 



 

 

efficient range query algorithm of the UB-Tree the number of I/O to fetch 
the required data is drastically reduced. 

7.4 Main Execution Phase: Grouping and Aggregation 

The Main Execution Phase joins the tuples that are fetched from the fact 
table with all necessary dimension tables (Residual Join operator). After 
the residual join the tuples are grouped (Group-Select operator), filtered 
again (Having operator) and sorted (OrderBy operator). This phase 
strongly benefits from the additional information which is encoded in the 
fact table tuples via the reference surrogates. The reference surrogates 
represent an encoding of the hierarchy path of each level member – 
therefore important optimizations can be realized for GROUPing on 
dimension fields. Especially, in many cases, a great deal of the grouping 
work can be done locally on the fact table tuples using prefixes of the 
reference surrogates. 
The important point is that this pre-grouping step is done before the fact 
table tuples are joined with dimension tables. As the grouping operation 
typically greatly reduces tuple cardinality, the cost for the successive join 
operation is also greatly reduced. This technique is called Hierarchical 
Pre-grouping. In detail, if the GROUPing field belongs to hierarchy level 
hk or is functionally dependent on it then the h-surrogate prefix 
ht/ht-1/…/hk is dynamically computed and the GROUP operation is done 
on that value. 
A simple example illustrates the effects of the hierarchical pre-grouping 
method: Assume we have a DW with a time dimension (besides other 
dimensions) categorized by year – month – day and a well populated fact 
table. A query restricting the result to year 2001 (besides other 
restrictions) qualifies 100.000 fact table records. If the result has to be 
grouped w.r.t. month, we have to join 100.000 records with the time 
dimension table. When applying hierarchical pre-grouping, the number of 
join operations is reduced by a factor of 30, because all days of one month 
are aggregated to the month. 
Our measurements with a five dimensional real world DW show an 
average reduction of the join cardinality by more than a factor of 100. 
This leads to an overall speedup of a factor of 4 to 7 for the grouping and 
residual join execution phase. 
Figure 11 shows the final abstract execution plan used in Transbase®. 
Due to the effective pre-grouping steps, the costly overall residual join 
step is avoided if possible. 
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Figure 11: Abstract Execution Plan with Pre-Grouping 

 
We do not enlarge on this optimization in this paper. For detailed 
information about hierarchical grouping please refer to [Pie03]. 

8  Evaluation of MHC 

In this section we briefly want to illustrate the benefits of MHC and 
multidimensional indexing in the context of a real-world data warehouse 
application. 
The measurements are performed on a two processor PC Pentium III, 750 
MHz, with 256 MB RAM and 30 GB IDE hard disk. We used Windows 
2000 as operating system and Transbase® with the MHC implementation 
as DBMS. 
The DW schema of a large electronic retailer consists of a fact table with 
three dimensions CUSTOMER, PRODUCT and DATE and 3 measures: 
quantity, value, and unit_price. The CUSTOMER dimension contains 1,4 
million records, PRODUCT consists of 27.000 products and the DATE 
dimension covers 7 years on day granularity. 15.543.380 records are 
stored in the snapshot of the fact table, amounting to 1,5 GB. 
The query workload consisted of 220 ad hoc star queries from a real-
world application. We classified the queries into three groups according 
to their selectivity on the fact table (i.e., number of tuples retrieved from 
the fact table): 

• [0.0-0.1]: 0% to 0.1% of fact table, i.e., 0 to about 15K records 
• [0.1-1.0]: 0.1% to 1% of fact table, i.e., 15K to 160K records 
• [1.0-5.0]: 1.0% to 5.0% of fact table, i.e., 160K to 780K records 

The goal of the performance evaluation was to measure three alternative 
query processing techniques: 

• STAR: conventional star join processing without MHC and 
without multidimensional indexing; STAR uses secondary 
indexes that are created on the dimension keys of the fact table. 
The restrictions on the dimension tables are evaluated and the 
resulting dimension keys are used for index intersection on the 



 

 

fact table. The resulting records are joined with the dimension 
tables, in order to perform grouping and get the final result. This 
is the typical processing of star queries in commercial DBMSs 
(e.g., star transformation in Oracle [Ora01]). This processing 
has two major steps: the index intersection and the tuple 
materialization. While the index intersection has largely been 
optimized (e.g., with bitmap indexes [NQ97]) the materialization 
of results is still the bottleneck of non-clustering indexes. 
Consequently, we neglect the index intersection time for STAR 
and just measure the time for fact record materialization, residual 
joins and grouping. Thus, the times for STAR have to be 
considered as lower bounds of the real processing time. 

• MHC: applying MHC and multidimensional indexing to the fact 
table 

• OPT: MHC with pre-grouping optimizations  
For MHC and OPT the complete processing including index access is 
measured. 
 
Table 1: Response time (in sec) for the three techniques for the three 
query classes 

FT Sel. % [0.0-0.1] [0.1-1.0] [1.0-5.0] 

 STAR MHC OPT STAR MHC OPT STAR MHC OPT 

MIN 0 0 0 65 2 2 274 11 6 

MAX 30 6 3 290 9 6 1219 47 27 

MEDIAN 1 1 1 182 8 5 477 23 13 

STD-DEV 4.9 1.2 0.5 75.6 3.1 1.6 346.0 14.1 7.9 

 
Table 1 shows the response time analysis (in seconds) for the three 
alternative processing plans. As the three classes contain queries with 
different result set size and thus different response times we use the 
maximum, minimum, median time and the standard deviation to analyze 
the performance. 
Our results show that the standard STAR processing is outperformed by 
our approaches. However, for small queries, i.e., the class [0.0-0.1], the 
speedup is below an order of magnitude. In general, for small result sets, 
the advantage of clustering over non-clustering is not that large. The 
picture changes drastically, when we consider larger queries (classes [0.1-
1.0] and [1.0-5.0]), which are more typical for OLAP applications. The 
hierarchical clustering of MHC leads to an average speedup compared to 
STAR of 24 and with the additional optimization of pre-grouping an 
additional factor of about two is gained. Note also that STAR has a very 
high deviation in the response times for queries within one class. This is 
mainly for two reasons: (a) STAR performance deteriorates very fast as 
the fact table selectivity is increased and (b) since the fact table is not 
stored clustered the number of performed I/Os may differ significantly 
from one query to another. On the other hand, the deviation for MHC and 
OPT remains low, showing a much more stable behavior. 



 

 

9 Summary 

In this paper we presented the Transbase® DMBS supporting 
multidimensional hierarchical clustering (MHC). Multidimensional 
indexing and hierarchical clustering is combined for the primary 
organization of the fact table of a typical star schema. Transbase® is 
running on UNIX systems as HP-UX, SUN Solaris, AIX and Linux and 
on Windows platforms. 
The integration is made almost transparent to the user: only when creating 
the dimension tables and the fact table the hierarchy and the clustering 
specification has to be provided. From then on, the system is 
automatically maintaining the hierarchical clustering and uses it for query 
processing.  
We presented some of the implementation issues of MHC and advanced 
query optimization features enabled by MHC. The measurements on a 
real-world data warehouse illustrated that MHC can dramatically improve 
star query processing on such organized schemata.  
The improvements of the query processing are not restricted to star 
schemata, also snowflake schemata are supported. Therefore, our 
approach is usable in many real data warehouse applications, even 
complex ones.  
In the future we are implementing some advanced algorithms, in order to 
support complex expressions in aggregation functions, improve queries 
with non-clustering dimensions and support joins over multiple fact 
tables. 
 
 
Bibliography 
 

[ACN01] S. Agrawal, S. Chaudhuri, V. R. Narasayya: Materialized View and Index Selection 
Tool for Microsoft SQL Server 2000. SIGMOD Conference 2001 

[Bay97] R. Bayer. The universal B-Tree for multi-dimensional Indexing: General Concepts. 
WWCA ’97. Tsukuba, Japan, LNCS, Springer Verlag, March, 1997. 

[CD97a] S. Chaudhuri, U. Dayal: An Overview of Data Warehousing and OLAP Technology. 
SIGMOD Record 26(1): 65-74 (1997) 

[CD97b] S. Chaudhuri, U. Dayal: Data Warehousing and OLAP for Decision Support 
(Tutorial). SIGMOD Conference 1997: 507-508 

[CI98] C. Y. Chan, Y. E. Ioannidis: Bitmap Index Design and Evaluation. SIGMOD 
Conference 1998: 355-366  

[CS94] S. Chaudhuri, K. Shim: Including Group-By in Query Optimization. VLDB 1994: 
354-366 

[Des98] P. Deshpande, K. Ramasamy, A. Shukla, J. F. Naughton: Caching Multidimensional 
Queries Using Chunks. SIGMOD Conference 1998: 259-270 

[Gra96] J. Gray, A. Bosworth, A. Layman, H. Pirahesh: Data Cube: A Relational Aggregation 
Operator Generalizing Group-By, Cross-Tab, and Sub-Total. ICDE 1996: 152-159 

[GG97] V. Gaede and O. Günther. Multidimensional Access Methods. ACM Computing 
Surveys 30(2), 1997. 

[GM95] A. Gupta, I. S. Mumick: Maintenance of Materialized Views: Problems, Techniques, 
and Applications. Data Engineering Bulletin 18(2): 3-18 (1995) 

[Kim96] R. Kimball. The Data Warehouse Toolkit. John Wiley & Sons, New York. 1996. 
[KR98] Y. Kotidis, N. Roussopoulos: An Alternative Storage Organization for ROLAP 

Aggregate Views Based on Cubetrees. SIGMOD Conference 1998: 249-258 



 

 

[KS01] N. Karayannidis, and T. Sellis: SISYPHUS: A Chunk-Based Storage Manager for 
OLAP Cubes. DMDW 2001 

[Kar02] N. Karayannidis, A. Tsois, T. Sellis, R. Pieringer, V. Markl, F. Ramsak, R. Fenk, K. 
Elhardt, R. Bayer: Processing Star Queries on Hierarchically-Clustered Fact Tables. 
VLDB 2002 

[MRB99] V. Markl, F. Ramsak, R. Bayern: Improving OLAP Performance by 
Multidimensional Hierarchical Clustering. Proc. of the Intl. Database Engineering 
and Applications Symposium, pp. 165-177, 1999. 

[NG95] P. E. O'Neil, G. Graefe: Multi-Table Joins Through Bitmapped Join Indices. 
SIGMOD Record 24(3): 8-11 (1995) 

[NHS84] J. Nievergelt, H. Hinterberger, K. C. Sevcik: The Grid File: An Adaptable, 
Symmetric Multikey File Structure. TODS 9(1): 38-71 (1984) 

[NQ97] P. E. O'Neil, D. Quass: Improved Query Performance with Variant Indexes. 
SIGMOD Conference 1997: 38-49 

[OM84] J. A. Orenstein, T. H. Merret.  A Class of Data Structures for Associate Searching.  
Proc. of ACM SIGMOD-PODS Conf., Portland, Oregon, 1984, pp. 294-305 

[Ora01] Oracle 8i Documentation, 2001. 
[Pie03] R. Pieringer, K. Elhardt, F. Ramsak, V. Markl, R. Fenk, R. Bayer, N. Karayannidis, 

A. Tsois, T. Sellis: Combining Hierarchy Encoding and Pre-Grouping: Intelligent 
Grouping in Star Queries. ICDE 2003 

[Ram00] F. Ramsak, V. Markl, R. Fenk, M. Zirkel,K. Elhardt, R. Bayer.Integrating the UB-
Tree intoa Database System Kernel. In VLDB2000,Proceedings of International 
Conference on Very Large Data Bases, 2000, Cairo, Egypt, 2000. 

[Rou98] N. Roussopoulos: Materialized Views and Data Warehouses. SIGMOD Record 
27(1): 21-26 (1998) 

[Sam90] H. Samet. The Design and Analysis of Spatial Data Structures. Addison Wesley, 
1990 

[Sar97] S. Sarawagi: Indexing OLAP Data. Data Engineering Bulletin 20(1): 36-43 (1997) 
[SDJL96] D. Srivastava, S. Dar, H. V. Jagadish, A. Y. Levy: Answering Queries with 

Aggregation Using Views. VLDB Conference 1996: 318-329 
[Tra02] The TransBase HyperCube relational database system, available at:  

http://www.transaction.de/ 
[TT01] D. Theodoratos, A. Tsois: Heuristic Optimization of OLAP Queries in 

Multidimensionally Hierarchically Clustered Databases. DOLAP 2001. 
[WB98] M. C. Wu, A. P. Buchmann: Encoded Bitmap Indexing for Data Warehouses. ICDE 

1998: 220-230  
[WOS01] K. Wu, E. J. Otoo, A. Shoshani: A Performance Comparison of bitmap indexes. 

CIKM 2001: 559-561 
[Wu99] Ming-Chuan Wu: Query Optimization for Selections Using Bitmaps. SIGMOD 

Conference 1999: 227-238 
[YL94] W. P. Yan, P-Å. Larson: Performing Group-By before Join. ICDE 1994: 89-100 
[YL95] W. P. Yan, P.-Å. Larson: Eager Aggregation and Lazy Aggregation. VLDB 

Conference 1995 
[Zah00] Markos Zaharioudakis, Roberta Cochrane, George Lapis, Hamid Pirahesh, Monica 

Urata: Answering Complex SQL Queries Using Automatic Summary Tables. 
SIGMOD Conference 2000: 

[ZSL98] C. Zou, B. Salzberg, and R. Ladin: Back to the Future: Dynamic Hierarchical 
Clustering. Proc. Of ICDE, 1998, pp. 578-587. 

 

http://www.transaction.de/

	page6471: 648
	page6481: 649
	page6491: 650
	page6501: 651
	page6511: 652
	page6521: 653
	page6531: 654
	page6541: 655
	page6551: 656
	page6561: 657
	page6571: 658
	page6581: 659
	page6591: 660
	page6601: 661
	page6611: 662
	page6621: 663
	page6631: 664
	page6641: 665
	page6651: 666
	page6661: 667


