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1 Preliminaries

Post-Quantum Cryptography. Due to the quantum algorithm for factoring
integers by Shor [2], the field of post quantum cryptography arose. The name is
be a bit misleading as it is actually classical, i.e. non-quantum, cryptography.
However, it is based on hardness assumptions assumed to be secure once large
quantum computers exist, e.g the learning with errors (LWE) problem.

Quantum Computation. In classical computation, we use bits to store in-
formation. A bit can either be 0 or 1. In quantum computation, information
is stored in quantum bits (short: qubits). These are typically written in Dirac
notation |0〉 and |1〉, the quantum analog to 0 and 1.

What makes quantum computation more powerful, is that a qubit is not
limited to be either |0〉 or |1〉. Instead, it can be in a superposition of these.
For instance the qubit |φ〉 = 1√

2
|0〉 + 1√

2
|1〉 is |0〉 and |1〉 at the same time.

Another important aspect of quantum computation is the no-cloning theorem
which states that an arbitrary superposition can not be copied.

Security Reductions. Security reductions are a common technique to prove
the security of cryptographic schemes. In more detail, one tries to prove that
a scheme is secure under the assumption that a certain problem P is hard to
solve. This is proven by contradiction. We assume an hypothetical black-box
adversary A against the scheme. Then we construct an algorithm R which
solves problem P by using the adversary A as a subroutine which contradicts
our assumption that P is hard to solve.

The (Quantum) Random Oracle Model. Many cryptographic schemes
are proven secure in the so-called random oracle model (ROM). In this model,
everyone, including the adversary, has access to a random oracle. Each time
the random oracle is queried on a message, it checks whether it has already
been queried on this message. If not, it returns a value sampled at random,
otherwise, it returns the same value as done during the last query. As pointed
out by Boneh et al. [1], for a quantum algorithm we need to use the quantum
random oracle model (QROM), in which the random oracle can be queried on
a superposition of inputs.
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2 Challenges

In the following, we briefly describe some challenges that arise in security proofs
in the QROM.

Oracle Simulation. In the ROM, the random oracle is typically generated
on-the-fly, i.e. for each query, a new random value is sampled. This works,
as for each new query, one random value has to be sampled. In the QROM,
however, the adversary can query the random oracle on a superposition of all
possible input in one query. This would require to sample exponentially many
random values at once, which is not possible for the reduction. This issue can be
solved using quantum secure pseudorandom functions [1] or q-wise independent
functions [4].

Challenge Injection. Another common technique for the reduction is the
injection of its own challenge to the random oracle. This is done by choosing a
query by the adversary randomly and returning its own challenge, instead of a
randomly sampled value. There is a significant chance that the adversary will
use this injected challenge when breaking the scheme. In the QROM this simple
idea does not work. Consider an adversary who queries the random oracle always
on a superposition of all inputs. Then the output should be always the same,
hence the adversary might notice that a challenge is injected. In the QROM, a
challenge can be injected using so-called semi constant distributions [4], where
the challenge is injected into a small but significant subset of all inputs.

Rewinding. Rewinding is a technique in which the adversary, after generating
an output, is set to a previous (intermediate) state and executed again to obtain
a different output. The important part is that the state of the adversary in both
executions is equal up to the rewinding point. Rewinding in the QROM requires
to copy the (quantum) state of the adversary. However, this is impossible due
to the no-cloning theorem. Unfortunately, there is no simple workaround for
this yet.

Oracle Reprogramming. The idea behind oracle reprogramming is to run
the adversary up to a certain point, then reprogram the random oracle on a
certain input, and continue running the adversary. The only chance for the
adversary to detect a reprogramming on input x, is when he queried x before
the reprogramming took place. In the ROM, the reduction sees all queries by
the adversary, hence, it can reprogram the oracle on a not yet queried input. In
the QROM, it is not known which values the adversary queried in superposition.
Again, this follows from the no-cloning theorem, as this knowledge of the query
would allow to copy the query. There are workarounds for this, e.g. by Unruh [3],
which allow for some reprogramming of the random oracle. However, there is
no general approach how to do this.
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