Specification based testing of
automotive human machine interfaces

Holger Grandy, Sebastian Benz
{holger.grandy, sebastian.benz} @bmw-carit.de
BMW Car IT GmbH

Abstract: Model based testing promises systematic test coverage in a continuous test-
ing process. However, in practice, model based testing struggles with informal speci-
fications, different software variants and large applications. In this paper, we present
a solution to overcome these hurdles in the area of automotive infotainment systems
using domain specific languages in combination with model transformations. Our ap-
proach is to define specific languages on different abstraction levels. We start with a
variant-spanning user interface specification that is structured and formal, but not yet
sufficient for automated testing. We use model transformation to stepwise enrich and
refine these models into more specific test models. The approach has been developed
at BMW Car IT and is currently used in the development of new infotainment systems.

1 Introduction

At the moment, manual testing is the most often used mean of verification in industry.
During the development of a system, 50 percent of the time and more than 50 percent of
the total cost are expended for testing [MSBTO4]. In contrast to manual testing, model
based test case generation is a promising approach to reduce the effort of test case creation
and enables the systematic selection of test cases. Furthermore in combination with an au-
tomated execution of test cases the automatic generation of test cases allows a continuous
testing process during the development of a system. Especially for systems with different
configurations and region specific variants, like an automotive infotainment system, the
automatic generation of test cases is reasonable, because each variant requires its own test
suite.

There exists exhaustive research on model-based test case generation, e.g. [BJK*05,
Utt07] give a good overview. The researched topics range from modeling notations, test
generation algorithms, and test selection criteria. However, in practice, model-based test-
ing is still not widely spread. The reasons why model-based testing is not applied are
often profane. Specifications are informal and therefore prohibit the generation of test
cases. There are no adequate tools that support modeling and test case generation. Avail-
able modeling languages are often too general in their abstraction level and thereby lack
the required conciseness to be able to maintain large system models.

The contribution of this paper is an overview on how these problems can be solved using
the combination of domain-specific languages and model transformations. We present



our approach of specification based test case generation for infotainment systems that we
successfully integrated into the development process at BMW Car IT.

The paper is structured as follows: Section 2 introduces the challenges of test case gener-
ation for infotainment systems. Section 3 presents our approach for model-based test case
generation and Section 4 gives an outlook on future work and concludes.

2 Description of the task

In the area of model-based testing, research and academia focus on appropriate formal
modeling notations, on test generation algorithms, and on model coverage criteria. How-
ever, these are currently in practice of lesser concern. The main task is that currently in
practice one has to deal with sometimes incomplete and constantly evolving specifications
that often do not have the required degree of formalization to generate test cases. It is not
realistic to believe that in the near future full-blown exact and correct formal logical mod-
els for every software component e.g. in a current premium-class vehicle will exist. One
has to deal with these issues first in order to establish model-based test case generation in
practice. Our experience showed, that there are further reasons why model-based test case
generation is often not used in practice:

e Specifications are hand-written and therefore often incomplete, inconsistent, sup-
plemented with informal information and error prone.

e Specification and implementation differ most of the time due to constant evolving
on both sides and due to different development cycles.

e More formal notations used for specification and test case generation (e.g. Tem-
poral Logics and Model Checking like [ZMLO7]) cannot be easily applied for the
specification of a large infotainment system, because of

— steep learning curve and experience in formal methods required

— no tool support for collaboration, e.g. change requests, approval processes or
version management

— insufficient tooling support to handle large models

Furthermore, there are intrinsic challenges in the automotive infotainment domain. First
of all, user interfaces of automotive infotainment systems are large. For example, the user
interface of the current BMW 7-Series consists of more than 4000 different UI elements
(screens, lists, buttons, popup messages, transitions, conditions, texts, ...). Thus, the effort
of handling such a large specification is high in order to keep the specification consistent
and correct.

Another main challenge is to handle the large space of different UI variants. The same user
interface is integrated into different car variants and product families. This results from
different variants for the same car (“variant”) - e.g. whether or not a navigation system is



equipped - and from variants caused by different software product lines (“product line”)
in different car families within the BMW Group.

Product lines may share common functionality - for example, the navigation system. How-
ever, the user interfaces of different product lines differ in their look and feel. For example,
the main menu behavior in the user interface of the BMW vehicles is a plain list. In other
product lines it could be possible to have a cyclic structure, which rotates as the user oper-
ates the IDrive controller. In such an Ul it would be possible to jump from the last element
to the first one in contrast to the current BMW UL

The functional parts of the Uls are specified in a product line spanning manner. Different
product lines and variants are encoded by parameters, for example, one parameter de-
scribes whether there is a navigation system integrated. The user interface of the current
BMW 7-series is described by 1000 such parameters.

However, test case generation requires fully executable models. These models must inte-
grate the common functional specification as well as the product line specific specifications
of the look and feel. Furthermore, they must be adaptable in order to overcome temporary
differences between specification and implementation. For example, when in the speci-
fication the order of the main menu buttons “radio” and “navigation” is changed: If this
change has not yet been implemented and a tester generates test cases, all tests will fail that
use these buttons. However, if a tester wants to test whether all texts in the radio menu are
shown correctly, the generated test cases cannot be used. Thus, even if the tested system
properties are independent of the button ordering, the test case generator cannot be used.
The tester must be able to revert this change on short notice in order to be able to test the
radio sub menu.

3 Approach of specification based testing

Our approach is to separate product line specific behavior models and product line inde-
pendent behavior models. We define domain-specific languages for each of these behavior
models. The advantage of DSLs in comparison to general purpose languages, such as
UML, is that these are directly tailored to the problem domain. Furthermore, DSLs enable
the integration of OEM specific elements into the language. This results in concise models
that describe only the relevant parts. We use DSLs at different levels:

¢ Dialog Model A product line independent dialog model that is used to specify com-
mon functionality and structure. The model consists of two parts, the abstract dialog
model that describes the menu tree and an application model that describes the in-
terfaces of the underlying applications.

o Delta Model A delta model enables the temporary adaption of the specification:

— describe differences between specification and implementation
— enrich the specification with missing information

— replace informal parts with formal ones



~ o) Variant
Delta Model . 1 Mapping Model )

\ \ informatiory

) /N
edited by tester l edited by tester l edited by tester l
I Dialog Model # Dialog Model/ # Widget Mody # Test Model/

n

~‘ W generation generation generation
IA\
edited by
spec writer

Figure 1: A workflow for specification based testing

o Widget Model The widget model describes product line specific widget behavior,
such as list or button behavior.

o Mapping Model The mapping model maps entities from the dialog model to their
implementation in the widget model. For example, the abstract main menu in the
dialog model is mapped to a BMW specific main menu widget implementation.

We use automated model transformations to create a product line and variant specific test
model based on these three models. Figure 1 gives an overview over the workflow. A test
model is created in three steps:

1. The dialog specification is transformed into a product line specific dialog model.
and the delta model is applied to the dialog model to adapt the specification to the
current state of the implementation.

2. The product line specific dialog model is transformed into an executable widget
model by applying product line specific mapping rules.

3. The variant of the system under test is encoded into the widget model, resulting in
the test model.

3.1 The dialog model

The dialog model describes the structure and dynamic behavior of the user interface. It
consists of a structural model that describes the abstract menu tree and an application
model that describes the interfaces of the underlying applications. The structure is de-
scribed by abstract screens that consist of containers and elements. Containers are, for
example, lists and elements are, for example, buttons. Changes between different screens
are described using transitions which can have additional actions or guards. As an exam-
ple, we will use the above mentioned example of the cyclic or plain main menu. Listing 1
shows the specification of the main menu dialog structure.



module modulemain {
screen mainscreen productLine=ALL {
title=TEXT_TITLE
container container_main_menu type=list {
element ButtonRadio text=... comment=...
transition target=moduleradio changerequest=...
element ButtonNavi wvariant=VARIANT_NAVI
transition target=modulenavi comment=...
element ButtonBMWOnline disabledIf="NO_INTERNET_CONNECTION"
+}
}

module moduleradio {
}
Listing 1: Dialog model.

The application model describes the interface of applications that are part of the infotain-
ment system. This is e.g. the playback information of tracks in a CD player. It is used
to specify all data types required in the UI behavior and application specific actions. One
example are events, which are triggered by the user by using the IDrive controller or by
external sources like an incoming call. An application interface consists of:

e Data models: represent data that is required by the UI. For example, a list of CD
tracks that is shown in the track list screen.

e Actions: can be triggered by the UIL. An action can either change the data model or
trigger an action in the application, for example, to start the playback of a CD.

e Events: represent inputs that can be triggered by the application. Examples are
joystick inputs, or check control messages.

Listing 2 shows a simplified example for such an application model, describing the inter-
face of the IDriver controller and the CD player.

application IDrive{
event IDriveEvent ({

String id}
IDriveEvent left = new IDriveEvent ("left");
IDriveEvent right = new IDriveEvent ("right");

boolean VARIANT_NAVI = true
boolean VARIANT_HEADUP_DISPLAY = true}

application CDPlayer({
int currentTrack = -1
list (String) tracks = {’Track 1’, ’'Track 2’}
action playTrack (int trackIndex) {
currentTrack = trackIndex}}

Listing 2: Application model.

The application model further contains all the variables representing the configuration
of the variant of the system under test. For example the information, whether or not a
navigation system is built into the system under test is represented by an boolean variable
VARIANT_NAVI. This variable is used to specify the variant of the button ButtonNavi in
Listing 1.



3.2 Delta Model

The goal of the delta model is to provide an easy way to describe changes in the dialog
model, when changes in the original specification are not quickly possible because of e.g.
development process related issues. It is also a good way to document change requests.
The goal is not to provide an additional specification. Instead, the goal is to give testers a
tool that they can use to perform quick changes in the specification, like e.g. changing the
order of elements or changing conditions:

move element ’'ButtonRadio’ to position 3

move element ’'ButtonNavi’ to position 2
add disabledIf 'NO_RADIO_RECEPTION’ to element ButtonRadio

Listing 3: Delta model.

3.3 Widget Model

The second step in our approach is the generation of product line specific test models. For
test case generation we use state machines as abstraction which corresponds to existing
approaches, e.g. [AO99, EKRV06, MAMSO06]. The advantage of state machines is that
there exists a wide range of techniques for test case generation. However, the problem is
that state machines or statecharts [Har87] are not the right abstraction to describe a GUIL.
Modeling an automotive user interface using state machines is tedious because expressing
GUI concepts often results in large and unmaintainable models. Our goal is to keep the
statechart interface (the notion of events, transitions, active states, guards, ...) in order to
generate test cases. The solution is to integrate domain knowledge into the state machine
metamodel. One can think of the widget model as domain specific state charts.

In this language, we are defining product line specific statechart states, which already
implement certain functionality of the product line. For example, a list typed Ul element
in the specification is mapped to a statechart combined state which additionally already
implements focus handling in the list per default. For a product line with a cyclic main
menu, we map to a specific state that implements cyclic focus handling. For a BMW
product line, we map to a state that implements a plain list focus handling strategy. This is
done for example by adding transitions to the statechart state for the list that dynamically
change their targets according to the currently selected menu element. Such a behavior is
not possible in standard statechart semantics.

Figure 2 shows the differences in more detail. The right hand side of the figure shows
our domain specific statechart models. The specific state MainMenuWidget implements
the specific behaviour of the main menu. The extended behavior of the state is executed
when an event is handled by this state. The two routines shiftright and shiftleft change the
targets of the two transitions for the events left and right. For example, if the current state
is Navi (this is the current situation in the figure) and the right event is fired, the active
state becomes Settings, the target for transition with the left event becomes Navi and so
on.



Statecharts Domain Specific

menu with flat list behavior menu with cyclic behavior Statechart Models
without navigation: with navigation:
Main Menu Main Menu

bmw::MainMenuW\dge{"‘;

[variant_navi]
Navi
right

Extended behavior:

If event = left then

. shiftleft(transitions)
Settings If event = right then
shiftright(transitions);

Figure 2: standard statecharts vs. domain specific statecharts

Radio

right
Radio Navi
left

Settlngs Imemet
right

Furthermore, the widgets can be guarded (e.g. state Navi in the figure). The shifting
routines will select their next transition target according to the value of that guard.

3.4 Widget Mapping Model

The widget mapping model is responsible for bridging the gap between the dialog model
and the domain specific statechart states in the widget model. It contains mapping rules,
which define the relation between the two. Listing 4 shows as an example the definition
of mapping rules, which map every screen in the dialog model to a BMW product line
specific state with the name ScreenWidget. An exception is the state with the name
Nav_MapView which implements the view for the navigation map. This screen has a
special behavior (for example it shows a toolbar at the left side for controlling the map).
So this screen is mapped to a special state of type MapViewScreenWidget. The same is
true for the above mentioned main menu example. Every list in the dialog model is mapped
to a ListWidget, except the main menu, which is mapped to a MainMenuWidget.
screen to bmw::ScreenWidget except {
name Nav_MapView to bmw::MapViewScreenWidget}

list to bmw::ListWidget except {
name List_Main_Menu to bmw::MainMenuWidget}

Listing 4: Widget mapping model.

4 Summary

The presented approach enabled us to introduce model based testing in our UI develop-
ment. We demonstrated that model transformations and automatic code generation, paired
with extendable textual models for e.g. application specific parts are suitable to enable
testers to test certain aspects in more detail. This also bridges the abstraction gap between
test models and specifications. Specifications benefit from our approach as well, because
a transformation to executable models enables simulation and validation, too.



We made heavy use of the eclipse modeling framework (EMF)! and Xtext? to define the
meta models and textual syntax of our languages. Xtext has the advantage that it supports
generation of editors with highlighting, code completion and syntax checking. Our ex-
perience is that especially textual modeling languages are a good way to describe large
models, where graphical editors become unusable. The main advantage is that for textual
languages already a large set of tools exists to support distributed development.

Functional interaction between software components, which is generally error prone, has
significantly increased in the past and will increase further. We already did work on special
methods testing of interaction scenarios [Ben07]. For the future, we are planning to use
the results of that work in conjunction with the models of this paper.

Acknowledgments: We thank Michael Fitzner, Markus Hillebrand, Maximillian Leinwe-
ber and the UI specification and test team at BMW for their work in this context. We also
thank Harald Heinecke and Jiirgen Steurer for their helpful comments.

References

[AO99] Aynur Abdurazik and Jeff Offutt. Generating Test Cases from UML Specifications.
Technical Report ISE-TR-99-09, George Mason University, 1999.

[Ben07] Sebastian Benz. Combining test case generation for component and integration testing.
In A-MOST ’07: Proceedings of the 3rd international workshop on Advances in model-
based testing, pages 23-33, New York, NY, USA, 2007. ACM Press.

[BJKT05] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander
Pretschner. Model-Based Testing of Reactive Systems: Advanced Lectures. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[EKRVO06] Juhan P. Ernits, Andres Kull, Kullo Raiend, and Jiiri Vain. Generating Tests from
EFSM Models Using Guided Model Checking and Iterated Search Refinement. In
Formal Approaches to Software Testing and Runtime Verification, pages 85-99. 2006.

[Har87] David Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Com-
puter Programming, 8(3):231-274, June 1987.

[MAMSO06] P. V.R. Murthy, P. C. Anitha, M. Mahesh, and Rajesh Subramanyan. Test ready UML
statechart models. In SCESM ’06: Scenarios and state machines: models, algorithms,
and tools, pages 75-82, New York, NY, USA, 2006. ACM.

[MSBT04] Glenford J. Myers, Corey Sandler, Tom Badgett, and Todd M. Thomas. The Art of
Software Testing, Second Edition. John Wiley and Sons, New Jersey, June 2004.

[Utt07] Mark Utting. Practical Model-Based Testing. Morgan Kaufmann Publishers, San Fran-
cisco, 2007.

[ZMLO7] Hongwei Zeng, Huaikou Miao, and Jing Liu. Specification-based Test Generation and
Optimization Using Model Checking. In TASE ’07: Joint IEEE/IFIP Symposium on
Theoretical Aspects of Software Engineering, pages 349-355, Washington, DC, USA,
2007. IEEE Computer Society.

Thttp://www.eclipse.org/emf
Zhttp://wiki.eclipse.org/Xtext



