
Müller, Neumair, Reiser, Dreo Rodosek (Hrsg.): 9. DFN-Forum Kommunikationstechnologien,

Lecture Notes in Informatics (LNI), Gesellschaft fur Informatik, Bonn 2016 45¨
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Abstract: The development of hard disk technology has not kept up with the general speed-up of
computers and modern day technological developments like virtualization and cloud deployment.
Flash storage, on the contrary, improves access speed and bandwidth significantly but at comparably
higher costs. As in most scenarios only a fraction of the actual data stored on disk is ever used in
arbitrary operation, a combination of both storage technologies can offer a good balance of speed and
capacity. This resulted in tiered storage solutions offered by a range of commercial system providers.
If the procurement of a new storage system is out of question, a Linux based flash cache approach
can significantly improve performance of existing systems with moderate efforts in terms of setup
and configuration.
This paper describes how an overloaded storage system primarily used as NFS based storage system
for virtualization hosts could be brought back to operation by a multilayer data caching strategy to
overcome high latencies and a low throughput. The resulting system design combines the benefits of
high capacity slow spinning disk storage with flash only storage to a hybrid system. The presented
approach was tested and evaluated in a real world productive environment. Various performance
measurements and data are presented.

1 Introduction

Spinning magnetic disks were the backbone of permanent storage in computer technology

for more than forty years. While the capacity was increased from some few Megabytes in

the beginning to a several TeraBytes in modern day disks, this unparalleled development

was not matched in terms of increased bandwidth and reduced access latency. Quite some

effort was put into increasing the bandwidth and access times4 of single disks, but the cur-

rent technology has hit certain physical barriers. In particular, the access times have not

changed significantly in the development of recent years [Wo09]. Storage manufacturers

undertook quite some research to overcome those limits by combining multiple disks in

complex configurations. But the exponential increase in storage demand and new appli-

cations like virtualization, cloud technology or big data easily outrun these developments.

These applications usually generate random IO patterns, which are not handled well above

a certain threshold by most traditional storage systems and appliances. This issue is fairly

independent of whether directly attached disks, network attached storage (NAS) or storage

area networks (SAN) are deployed. Especially, the additional layer of a network filesystem
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4 For a standard 15k RPM disk (e.g. Seagate Savvio 15K.3 300GB) the average latency is 2.0 ms and the disk

seek-time for read operations is 2,6 ms. On everage this gives about 217 IOPS; The sequential read bandwidth

depends on the position on the disk (outer edge or inner edge) and varies between 202 and 151 MByte/s.
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as used with NAS can add to the problem. Nevertheless, a significant advantage of the net-

work based solutions is a fast and easy live migration of virtual machines and a centralized

data management.

In virtualization environments where a large number of virtual machines access files on

the same NAS or SAN systems, traditional spinning disks are heavily challenged by the

generated IO patterns. The reason is that each VM reads and writes into a different (large)

file of the same storage. From the view-point of the storage system, the observed IO pat-

tern is highly unpredictable.

Flash storage (in the form of solid state drives (SSD)) looks like the natural solution to

this challenge as a single disk can easily handle multiple times of the bandwidth of spin-

ning disks and especially since it is much more potent regarding IOPS5 - 217 IOPS of

an enterprise harddisk6 compared to 28k (write) and 97k (read) IOPS of a SATA attached

flash disk7 (even more for special purpose devices like PCIe attached flash storage). Nev-

ertheless, even with the evident decrease in price per Gigabyte, flash still cannot challenge

magnetic hard-drives in terms of capacity.

Looking at the amount of accessed blocks on a storage system within a certain time frame

reveals that most of the data is cold, meaning seldomly or never read. Only a small per-

centage is often accessed. Thus, transferring all data to flash is not required at all, but a

proper strategy is needed to send hot data blocks to flash and keep cold blocks on magnetic

mass storage. The state of the art solution to this problem is so-called tiered storage. It uses

SSDs for caching to buffer data before being sent to the spinning drives [By12] [Ch15].

Actively used data is cached in flash, and cold-data is stored on spinning hard disks.

As many traditional and often expensive storage systems are still in use and cannot easily

be replaced by betteperforming systems before their planned end of life, a cost-efficient

but effective approach to bridge this time is required by many computer centers.

We evaluated a comparably novel multilayer caching strategy, which includes the use of

memory-caching and SSD-caching. For the SSD-caching we used the block layer cache

bcache8 for which not much long term experience exists. The proposed solution is based

on free open source software and utilizes commodity hardware. It is therefore usable in

a wide range of applications. For example for applications like parallel storage in HPC9,

where large amounts of data, in some research workflows easily hundreds of TeraBytes,

need to be stored and accessed for high performance processing. Back-end storage for

cloud scenarios can be expected to profit as well.

5 Input/Output Operations Per Second, an often used performance metric for storage devices.
6 Seagate Savvio 15K.3 300GB; For calculation see footnote 4
7 Samsung Enterprise SSD SM863 SATA 960GB
8 bcache: Linux kernel block layer cache; [bc]
9 HPC: High-Performance Computing
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2 Initial Situation

The initial system without caching is given in Figure 1. As storage back end a system

equipped with 56 x 3TB HDD and 4 x SSDs is used.10 The SSDs are used as a read

cache. The storage provided by the system is internally configured as a Dynamic Disk

Pool [De15] and then exported as a LUN11 over Fibre Channel. Internally every LUN

is mapped to one of the two RAID controllers. The NFS server connects to the Storage

System by two redundant 8 GBit/s wide Fibre Channel links. The system is using Fibre

Channel multipathing provided by the Linux Device-Mapper. The imported block storage

is mounted by the NFS server as an ext4 filesystem to provide various NFS exports for

the ESX Cluster over 10 GBit/s Ethernet. On the VMware ESX-Cluster12 we have 150+

running VMs on five servers. Each host connects to the NFS server over NFSv3 and uses

multiple 10 GBit Ethernet connections for redundancy13.

The chosen setup was easy to use since new VMs could effortlessly be provided and auto-

matically placed on the NFS datastore. The general challenge of this configuration lies in
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Abb. 1: Structure of the Virtualization Environment with shared NFS-based NAS

the complexity of the layered filesystem and block device setup. Within the VMs the OS

is writing to a file which translates to a block IO like it would do in a physical machine.

Because of virtualized hardware this block IO is translated to an IO on an open file on the

storage handled by the virtualization hypervisor. This finally triggers a block IO on the

network attached storage system.

10 The system used is a DELL PowerVault-MD3660f dual-controller (active/active). The system was developed by

LSI-Engenio (today NetApp) and is based on SANtricity. A widely available block storage product of similar

features is offered by a number of manufacturers.
11 LUN: A logical unit number identifies physical or virtual storage devices
12 In this setup we used VMware ESX 5.5
13 LACP configuration on the server and switches
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A slow or delayed IO on the storage system looks like a failing block device to the operat-

ing system running inside a VM. At a certain threshold the OS is remounting the filesystem

read-only (for data integrity reasons). To mitigate that scenario VMware tools (or open-

vm-tools) usually increase SCSI timeouts14 within the VM to prevent that a filesystem is

remounted read-only too early. To save disk space, the container files are created using

thin provisioning. Those files are constantly growing if a VM writes data to its disk. Since

multiple containers are increasing in size parallelly, the container files are fragmented over

time. This means that even sequential IO patterns from inside the VM do not necessarily

write sequentially to the underlying storage system. For a storage system with spinning

magnetic disks, fragmentation is therefore a problem since a lot of seeking operations are

required to access data.

Challenges also arise from the NFS server side. In favor of performance the NFS client

is often configured in async mode. This means that writing operations are acknowledged

but not necessarily written back to storage system. Instead they are queued in RAM on the

server. The opposite operation mode sync, ensures that every block is written, but signif-

icantly adds to latency as it has to wait for the underlying storage layer to complete the

operation.

If the storage server is becoming congested, a long queue of blocks to be written builds

up in the NFS server. This results in a large wait IO load that can stall the system entirely.

It even might result in lost outstanding IO operations and the container files become cor-

rupted. This corruption is much more dangerous than single files not properly written, as

the files on the storage system are block devices to the virtual machines. Lost block writes

may destroy filesystems and may render VMs unbootable.

The read and write pattern of the Virtualization environment is highly random. Every sin-

gle VM generates only a small number of IO operations but in sum over all VMs the

number of operations fluctuates between 1000 and 3000 IOPS.15 Different problems were

identified. Some VMs were configured with insufficient amount of RAM and started swap-

ping to the storage system. Increasing the amount of RAM and removing the swap partition

improved the situation to a certain degree. Moreover, the log file verbosity of some VMs

generated a significant amount of (unnecessary) IO operations. In most cases it was no

problem to set a less verbose logging behavior of the services.

The lack of a centralized backup system for the virtualization environment made it de-

sirable that every VM itself writes a backup to an external backup system. This again

generates a substantial amount of IOPS, especially at night during the backup runs.

The high number of IO operations leads to high IO latencies for some IO operations and

could be measured within the virtual machines. An example output from the tool fio16

looks like this:

14 scsi device timeout: e.g. /sys/block/sda/device/timeout; also refer to vmware knowledge base: http://kb.vmwar

e.com/kb/1009465
15 These values were readout directly from the storage system with the management tools provided by the manu-

facturer.
16 Fio: Flexible I/O Benchmark; fio configuration: randread, size=8192MB; http://git.kernel.dk/?p=fio.git;a=sum

mary
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lat (usec) : 250=26.96%, 500=72.49%, 750=0.29%, 1000=0.07%

lat (msec) : 2=0.09%, 4=0.08%, 10=0.01%, 20=0.01%, 50=0.01%

lat (msec) : 100=0.01%, 250=0.01%, 500=0.01%, 750=0.01%, 2000=0.01%

lat (msec) : >=2000=0.01%

Most of the operations (>99%) are handled within one millisecond or less. But some

operations require significantly more time. In some cases an operation even takes several

seconds to be processed. In VMs this repeatedly led to long wait IO phases in which the

VM had to wait for requested blocks. The reason for this is that for some IO patterns the

spinning hard disks were not able to reposition and respond in time, causing high latencies

for some IO requests in the storage system. With tools like iotop, htop and vmstat it was

possible to analyze the situation on the NFS server. For example, a high amount of wait

IO load is visible in htop and vmstat. The load was generated by the NFS kernel server

waiting for block requests from the storage system.

3 Available Caching Solutions

For a SSD caching setup based on Linux, different approaches have been implemented

over the last years:

• Flashcache [Fa]: Initially developed by Facebook and released as open source in

2011. It is implemented on top of the Linux kernel Device-Mapper of the Linux

kernel.

• EnhanceIO [ST]: A fork based on Flashcache. In development since 2013. It imple-

ments a new write-back engine and is not based on the device mapper.

• dm-cache [dm]: Also based on the Linux kernel Device-Mapper framework. dm-

cache was merged into the linux mainline kernel with version 3.9 (April 2013). It

requires three devices to operate, a storage device, a caching device and a metadata

device.

• bcache [bc]: Based on Linux kernel block layer. Bcache was merged into Linux

mainline kernel with version 3.10 (June 2013). It is easy to use and configurable

during operation through the proc filesystem. For example it is configurable if se-

quential IO is cached or directly written to the storage system.

Several authors have compared the different implementation approaches. The effect of

Flashcache and bcache on I/O performance is evaluated in the work of Chritopher Hol-

lowell et al. [Ho14] for a High-Energy Physics computing setup. In a white paper from

Dell [AR13] the authors compare bcache and dm-cache as two caching solutions available

in the Linux mainline kernel.

The possibility to cache write operations (write-back) is important in our case since ran-

dom write operations were congesting our storage system. This is supported by all of

the listed software solutions. To avoid a conflicting configuration, we decided not to use



50 Konrad Meier, Martin Ullrich und Dirk von Suchodoletz

dm-cache because we already used the Device-Mapper for our Fibre Channel multipath

configuration. Instead we decided to use bcache because it is already in the kernel and is

based on the Linux block layer.

4 Caching Setup

To overcome the poor IO performance within the virtualization environment a new NFS

server with a multi-layer caching strategy was deployed. Two objectives were pursued.

First, reducing the read operations in the back end storage system through a bigger read

cache in the NFS server. Second, aggregating the random write operations to a more linear

write pattern, by using a write cache in the NFS server.

For the first objective the amount of RAM in the storage node was increased significantly

by the factor of 8 to 256 GByte. The RAM is only used as a read-cache because of its

nonpermanent nature. Otherwise, in the case of power loss, data stored in RAM and not

yet written would be lost.

For the second objective, Linux bcache is used as a read and write cache. Bcache is a

kernel block layer cache, that allows to use SSDs as cache for slower hard drives. Bcache

can be used as read and writeback cache at the same time.

For the new NFS server with bcache a complete new machine with the following spec-

ification was deployed: 2 x 8 Core Intel E5-2640v3 2.6 GHz; 256 GByte DDR4 RAM;

Ethernet: 2 x 10 GBit/s; Fibre Channel: 2 x 8 GBit/s Fibre Channel Host Adapter; bcache

Storage: 4 x 960 GByte Samsung SM863 Enterprise SATA SSD;

The additional CPU cores in the new server are used to start a high number of NFS server

threads. In comparison to the old system we increased the number of server threads from

8 to 256. This allows to handle more NFS requests parallelly.

The two Ethernet interfaces are configured as LACP17 network device. A RAID-Controller

is used to configure the four SSD Drives as RAID 1018. RAID 10 was used because it is

the best compromise between storage capacity, redundancy and performance. Choosing

suitable SSD drives is a critical task. We expected a write stream of about 100 MB/s.

This results in ˜8,4 TByte data written to the cache every day. A normal consumer SSD is

specified for about 75-150 TBW19. We selected a middle class enterprise SSD Samsung

SM86320 with a specification of 6160 TBW. This gives an expected life-time of about 3

years. The connection to the storage subsystem remained unchanged (2 x 8 GBit/s Fibre

Channel). The interaction of the components in the new NFS server is shown in Figure 2.

As a fast first level cache the RAM of the NFS server is used as a Linux kernel page cache.

Unallocated RAM is used to cache data from the storage devices. About 236 GByte is used

as file cache. Half of the file cache is marked as inactive. This means that this cache data

17 LACP: Link Aggregation Control Protocol; IEEE specification for bonding of multiple network links.
18 RAID 10: striped set from a series of mirrored drives
19 TBW: TeraByte Written. Specifies the total amount of data that can be written to the disk before flash cells

starts to die. For example the popular Sasmung 840 EVO 250 GB is specified for 75 TBW.
20 Alternate SSDs considered were: Intel SSD DC S3610 800 GB with 5300 TBW; Sandisk CloudSpeed Ascend

960 GB with 1752 TBW; Toshiba HK3R2 960 GB with 1752 TBW
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Abb. 2: NFS Server RAM and SSD caching structure

has not been accessed for a longer time period. The values are only changing slightly over

time.

For bcache to work, a minimum of two block devices are necessary. A Cache-Device to

store the cached data and a Backing-Device that should be cached. In our setup the RAID

10 device provided by the RAID controller is used as bcache Cache-Device. The Backing-

Devices are the LUNs provided over Fibre Channel. To confine problems caused by corrupt

filesystems, we decided to provide 10 x 2 TByte LUNs instead of a single 20 TByte LUN.

Every LUN was then configured as Backing-Device and the resulting block device was

formated with an ext4 filesystem. The resulting 10 filesystems are exported over NFS and

used in the ESX cluster as NFS datastores. As shown in 2 a single Cache-Device is used

to cache the 10 LUNs provided.

The default configuration of bcache can be modified by the proc filesystem. For our setup

we activated the write back option and disabled sequential cutoff. With enabled write back,

write operations are stored on the cache device (SSD) and later copied to the backing

device. This allows bcache to collect write operations and write them to the backing device

in a more sequential order. The sequential cutoff detects sequential write operations and

redirects the operations directly to the Backing-Device. In our setup we disabled sequential

cutoff to ensure that each write operation is made to the Cache-Device first. This way the

number of write operations to our storage system is minimized.

5 Results

The new caching setup (RAM + bcache) reduces the IO latencies within the virtual ma-
chines significantly. The same fio test as stated before shows that the overall IO latency
was reduced:
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lat (usec) : 250=99.89%, 500=0.08%, 750=0.01%, 1000=0.01%

lat (msec) : 2=0.01%, 4=0.01%, 10=0.01%, 20=0.01%, 50=0.01%

lat (msec) : 100=0.01%

The amount of dirty data in the bcache fluctuates over time and is given in figure 3 for

each Backing-Device. Some caching devices like bcache0 and bcache3 have to handle

virtual machines with a more write intensive workload. The amount of dirty data for each

caching device is limited to approximately 19 GByte21. It is possible to use more space

as write cache, but first results show that the default configuration of bcache is sufficient.

The figure shows the first eight days after start of the new caching setup. The migration

of the VM Container files to the new cached datastores can be clearly seen as a spike in

the figure. After this initial copy procedure, the VMs were powered back on and resumed

normal operation. The read operations cache hit ratio for every cached device is given in

Abb. 3: Amount of dirty data in bcache devices over a period of eight days

figure 4(a-j). The ratio fluctuates heavily over time for some bcache devices. For bcache0

and bcache3 the average cache hit ratio is low, but the amount of dirty data in the cache

is high. This suggests that VMs with a more write intensive workload are running on that

data store.

Before the system was taken into production, several failure scenarios where tested to

ensure that data written to the write back cache is not corrupted in case of an outage.

For this a VM was writing a known data to a datastore and the bcache NFS server was

rebooted, reset and disconnected from the power. In none of the tested scenarios data was

lost or corrupted. After the server rebooted successfully the NFS client connection was

restored and all write operations continued.

21 Default bcache config: 10% of the caching device is used as write cache. This space is divided by the number

of caching devices. In this setup: 1919, GByte * 0,1 / 10 = 19,193 GByte
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Abb. 4: Cache hit ratio for all 10 cached devices
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6 Conclusion

The overall setup took less than two days to complete and migrate all data. The setup was

designed in a way to allow a single SSD to fail and to get replaced without any downtime.

In total we invested an amount of 10.000 Euro to bridge the gap until the new storage

system is in place. The relatively moderate investment significantly improved the perfor-

mance and even allowed to add new virtual machines (a process which was stopped due to

the issues).

The setup has now been running for more than 4 month without any failure or data loss.

The SSDs are permanently monitored to check for the amount of data written (TBW limit)

and to look for possible failures. A total amount of 97.4 TB has been written to the bcache

(SSD disks). This is significantly less than predicted (cf. section 4). The amount of data

written by bcache corresponds to the values reported by the SMART from the disks. Due

to the RAID 10 configuration every disk reports about 50 TB written.

Initial results show that the cache significantly reduces the load on the spinning disks as

well as the overall I/O latency. Hot data is cached on the SSD drives and can be accessed

much faster than the data on the spinning disks.
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