
Modeling Interoperability Channel using UPPAAL

Marwane Ayaida, Haytem EL Mehraz, Lissan Afilal and Hacène Fouchal

Centre de recherche CReSTIC

Université de Reims Champagne-Ardenne : UFR Sciences Exactes et Naturelles

Moulin de la Housse, BP 1039; 51687 REIMS Cedex 2, France

Telephone: +33 (0)3 26 91 81 74; Fax: +33 (0)3 26 91 31 06

Email: FirstName.LastName@univ-reims.fr

Abstract: In modern vehicles, there are a lot of devices (GPS, Tachograph, GSM /
GPRS. . . ) with different functions. These peripherals communicate with each other
thanks to various media and protocols. The weakness of some protocols and standards
obstructs the interoperability. They have to exchange useful information about the
vehicle status and understand what is being shared.

This paper aims to design and to model a smart channel of communication and
interoperability between heterogeneous embedded systems on transportation vehicles.
This channel identifies connected peripherals and allows them to exchange data au-
tomatically with any kind of device. Furthermore, the smart channel builds services
which can be customized by the end-user. The model has been proposed and speci-
fied thanks to the toolbox UPPAAL. With this toolbox we perform a simulation and
verification (we considered critical situations of the system).

Introduction

Nowadays, communication technologies in the transportation area are growing quickly.

Many devices are embedded on vehicles in order to control the engine (CAN, sensors. . . ),

to catch positions (GPS. . . ) or to entertain (Wi-Fi. . . ). To be more powerful, each periph-

eral focuses on its core functionality and handles a part of the vehicle information (Posi-

tion, Wheel pressure, Speed, Fuel Level. . . ). Thus, the peripherals require to communicate

and to exchange data in order to meet user needs which become more and more strict. This

communication is complex due to the divergence between protocols and interfaces used by

peripherals. Consequently, it is hard to satisfy the end-to-end interoperability even whith

a standard. Most standards specify only the way to share data and do not handle neither

the semantic nor the processing issues. Generally, data pass through bridges or ad hoc

transceivers.

In order to reduce the allocated resources (hardware and software), we suggest to man-

age this communication into a single and a smart channel. This channel will be able to

identify a device when it is being connected. In addition, the channel will allow devices

to communicate and to exchange information in order to build new and efficient services

for end-users. These services will be launched automatically after the connection of a new

182



device. Then, the user may customize its services online. This channel has been specified

and verified thanks to the UPPAAL toolbox since it is a powerful tool used to design, to

simulate and to verify important properties of systems. Its usual model is a Timed Au-

tomata Networks. These automata communicate and synchronize in order to express the

functioning of all entities involved in the channel.

The paper starts by presenting the lack of interoperability between embedded devices in

transportation and the standards weakness to guarantee it. Then, it presents the channel

model details and describes some important properties to be verified. The paper ends by a

conclusion and a presentation of the future works.

1 Standards & Interoperability

1.1 Interoperability between Embedded Devices

There are several devices embedded on vehicles. They are split into four groups :

1. CAN/FMS systems : are able to communicate via CAN-Bus within the vehicle.

Most sensors on vehicles use this protocol. Tailor-made for transportation, the

Tachograph is an example which records the vehicle speed and whether it is moving

or not. It became mandatory in trucks and buses on 1986 in Europe for public safety.

2. Communication systems : allow the transportation vehicle to send or receive data,

from its company. Actually, most trucks are equipped with GPRS connection which

allows the driver to send and receive useful information.

3. Positioning systems : help the driver to find his way and companies to track their

fleet in real time (GPS. . . ).

4. Security systems : focus on protecting drivers such as gas detector, RoadBox (a

camera which records events 14s before and 6s after an accident). . .

The main purpose in the design of such devices is the ability to share useful information

when connecting them and building new services to the end-user. This principle is called

"Interoperability".

Thus, the interoperability is not only the ability of two heterogeneous systems to exchange

data, but also the understanding of what is being exchanged and the capability of interac-

tion and joint execution of tasks [YCBL03].

Peripherals communicate using many different standards and protocols. If they need to

exchange data, they have to pass through bridges for the translation between protocols.

Furthermore, some standards can not guarantee end-to-end interoperability. So, devices

which are in conformance to a standard may have some troubles to communicate [TM03].

183



1.2 Interoperability Weakness

Despite multiple attempts of standards to guarantee the end-to-end interoperability, most

of them are not sufficient to attend it [LMSW08].

1.2.1 Standards Contributions

Standards have a major contribution to satisfy the first and second levels of interoperability.

Actually, we can not imagine that we need different browsers to attend different Web sites

thanks to standards like TCP/IP, HTML. . .

Standards, when they are well adopted, enable more abstraction of lowest levels to devel-

opers and offer them less difficulties to build their programs regardless of the hardware

platform on which their programs will be implemented. So, they can focus on their added

value which is the core functionality of their service or the program they are building.

1.2.2 Standards Failures

It is too difficult to develop a language rich enough to cover a specific domain targeted

by a standard. Standards also neglect some aspects when systems interoperate. As an

example, we can talk about QoS (Quality of Services) which describes characteristics of

running systems (response time, security, performance, availability. . . ). Few standards

require a threshold time response in communication between systems which may lead to

incompatibility and prevent the interoperability.

In addition to that, standards are specifications and requirements. So, they are useless until

the transformation into final products or services. This transformation may involve with

customization and then leads to trouble to interoperate. Standards are useful when they are

well adopted. But, like any other technology, they have a life cycle and will become obso-

lete, by evolving to a non backward-compatible version or by using alternative standards.

Some standards become widely used because they were the first ("de facto") standards and

not necessarily the best ones. Unfortunately, organizations cannot economically explain

migration to better standards and are often locked into such standards. There are also bad

standards (under-specified, over-specified, unstable. . . ) and conflicting standards because

they are mutually exclusive or competing. A well-known example of incompatible and

competing standards are HD-DVD and Blu-Ray.

2 C2A : Connect to All System

2.1 Origin of the Idea

As we mentioned in 1.1, there are a lot of devices embedded on vehicles. These devices

follow different standards which are not necessarily compatible as we have seen in 1.2.2.

184



Thus, the idea was to design a smart channel. This channel is shown in Figure 1.

Figure 1: Connect to All system : a smart channel which allows embedded devices to communicate

and exchange data.

Connect to All (C2A) system must not only be able to identify the peripheral when being

plugged in, but also, it has to allow it to communicate. The system scans continuously

all ports to detect the connection of devices, it tries to identify it (storage media, GPS. . . ).

Then, it looks for the communication parameters of this device. After this, the channel

makes use of the data provided by the peripheral or looks for other peripherals which will

be able to share data with it.

2.2 Modeling : First Step in Design C2A System

We present a model about C2A smart channel. Then, we will check the validity of the

model using the UPPAAL tool box which is a well-known model checker [BDL04].

2.2.1 Introduction to UPPAAL

UPPAAL is an integrated tool environment for modeling, validation and verification of

real-time systems (real time controllers, communication protocols, multimedia applica-

tions. . . ) modeled as networks of timed automata. It was named UPPAAL with UPP

standing to Uppsala University in Sweden and AAL for Aalborg University in Denmark

which develop it. The first version was proposed in 1995. It consists of a graphical descrip-

tion tool, a simulator and a model checker. It serves as a modeling or a design language to

describe a system behavior as networks of automata extended with clocks and data vari-

ables. It has been used for the simulation of the system and checks if there is any error on

the system. Properties -to be verified- can be specified using a subset of CTL (computa-

tional tree logic) formalism.

2.2.2 Definition of Network Timed Automata

A Timed Automaton (TA) is a finite-state machine (FSM) extended with clock variables.

Clock variables evaluate to real numbers and all of them progress synchronously. A sys-

185



tem is modeled as a parallel composition of TA. An automaton may perform a transition

separately or synchronizes with another automaton (channel synchronization).

More precisely, a TA is a tuple (L, l0, C,A,E, I) , where :

1. L is a set of locations

2. l0 ∈ L is the initial location

3. C is the set of clocks

4. A is the set of actions (e.g. press!), co-actions (e.g. press?) and internal τ -actions

5. E ∈ L× A× B(C)1 × 2C × L is a set of edges between locations with an action,

a guard and a set of clocks to be reset

6. I : L −→ B(C) assigns invariants to locations

A Timed Network Automata (TNA) over a common set of clocks and actions consists of

n TA (Li, l
0
i , C,A,Ei, li) with 1 ≤ i ≤ n.

2.2.3 The Query Language

UPPAAL uses a simplified version of CTL as its query language. The query language

consists of state formulae and path formulae. A state formula describes individual states.

It could be written as expressions (x>3, i==2, x<=3, i==5. . . ), location (porcess.location)

or deadlock (there are no enabled transitions). For path formulae we use four symbols : E

(exists a path), A (for all paths), [] (all states in a path) and <> (some states in a path). The

following combinations are supported : A[], A<>, E<>, E[]. A path formula quantifies

over paths of the model. Let p and q two states formulae. The properties that can be

verified are (Figure 2):

Figure 2: Queries in UPPAAL

1. E<> p - "p Reachable" : it is possible to reach a state in which p is satisfied (p is true

in -at least- one reachable state).

1Boolean guards B(C) are defined as follows : B(C) = true ‖ false ‖ x 45 c ‖ x−y 45 c ‖B(C)∧B(C)

‖ B(C) ∨B(C) ‖ ¬B(C) where : x, y ∈ C, c ∈ N , and 45∈ {<,≤,=,≥, >}.

186



2. A[] p - "Invariantly p" : p holds invariantly (P is true in all reachable states).

3. A<> p - "Inevitable p" : p will be inevitable become true : the automaton is guar-

anteed to eventually reach a state in which p is true (P is true in some states of all

paths).

4. E[] p - "Potentially Always p" : p is potentially always true (There exists a path in

which p is true in all states).

5. q !!" p - "q leads p" : q will inevitably leads to p (p is true in -at least- one reachable

state in all paths from q).

2.3 The Model Description

In this section, we will present the TNA of the C2A model and the synchronization events

between automata. For the model needs, we choose to classify the peripheral-devices in

three groups according to the way of sharing data as follows :

• Device IN : These devices broadcast continuously or after a request from the system.

Generally, there are in read only mode. Data are sent directly or via transceivers.

Here, we call "Device IN" the peripheral and the transceiver. For example, CAN/FMS

Bus, Sensors, GPS, RFID Reader. . .

• Device OUT : These devices consume the data sent by the system. As an example

we can use Flash Memory, Hard Disk, USB Flash Drive, Loudspeaker. . .

• Device INOUT : These devices are smart for communication. They open a channel,

whether the system is source or destination for sharing data outside the system.

Also, the peripheral-devices -when plugged to C2A- drive different types of information

(Speed, Driver’s State, Fuel Level, Time, Position. . . ), denoted as "Signals". Every Signal

has a defined value at any time fixed by a peripheral or the system. All signals describe

the vehicle status. The model is shown on the Figure 3.

The groups of peripherals are modeled by three processes. The smart channel C2A is di-

vided into six processes (Initialization, Identification, Update PerphTable, Signals Update,

Data Loader, Data Management). The blue arrows represent the signals and the red ones

represent the synchronization events between different processes within the C2A smart

channel.

C2A identifies the group of connected devices. Then, it acquires the signals provided

by the first and/or the third group. After data processing, it dispatches them to the sec-

ond and/or the third groups. The signals configuration is saved on the system and can be

changed by some peripherals known as "Configuration devices". So, the user can cus-

tomize services by choosing signals and the processing results outputs. In this study, we

choose to model only four signals (Time, latitude, longitude and number of satellites pro-

vided by a GPS receiver) and two services (data logging in a Hard Disk and sending data

187



Figure 3: Model of the smart channel C2A

via GPRS connection). As a lot of peripherals in transportation use a serial protocol (USB,

RS232. . . ) or may have an interface with a transceiver, we choose to model the connection

of such peripherals. Every device connect to a serial port of the system and communicates

with a unique Baud Rate.

First of all, the channel detects the connection thanks to the process Initialization. This

process launches the process Identification to recognize the connected device by identify-

ing the port and the Baud rate of the connection. Then, the process Identification sends

’Device_Connected’ to the process Update PerphTable which adds it to the table of con-

nected devices. After sending ’Request_Configuration’ to the process Signals Update, the

process Update PerphTable waits for ’Config’. The configuration will be the stored one

or given by a configuration device after the verification of the device security parameters.

When the process Initialization receives ’Composition_Devices’, it has all the information

needed about the service to launch. It sends ’Start_Services’ to the process Data Loader

which collects the useful data from input devices. At its end, it sends ’Data_Loaded’

to the process Data Management which performs the appropriate processing (conversion,

thresholding. . . ) on these data and sends the result to output devices. Finally, it sends

’Services_Stop’ to all other processes to restart them and waits for the next service.

The rest of the section present -as an example- two automata modeling device for com-

munication and the process identification. All other processes were modeled in the same

way.

2.3.1 Device INOUT Model

The model is shown on Figure 4. Those peripherals are smart enough to send or re-

ceive data. But, they can not execute both of them in the same time. When the device is

plugged, it keeps waiting in ’Wait_Detection’ state for a detection from the system (send-

ing the synchronization order ’Detection_IN’ to the system). Then, it waits for sending

Signals or receiving data from the system on the state ’Wait_Send_Reception’. The sent

188



signals are available when receiving the synchronization event ’DeviceDataToSystem’.

The sending of the data finishes in the state ’End_Sending’ before returning to the state

’Wait_Send_Reception’ for another sending or reception. The event ’Detection_OUT’

launches the reception of the signals synchronized by the event ’DataSystemToDevice’ in

the state ’Reception_Data’ from the system to save or to send them outside. The reception

of the data from the channel finishes in the state ’End_Reception’. Finally, it returns to the

state ’Wait_Send_Reception’ when receiving ’Services_Stop’ event from the process Data

Management and the device waits for other data.

Figure 4: Automaton modeling Device INOUT

2.3.2 Process Identification Model

The model is shown on Figure 5. After receiving ’Device_Connected’ from the process

Initialization, this process identifies the peripheral after its connection by finding the cor-

rect port and Baud rate. As an example, we suppose that the C2A system has three ports

which communicate with three different Baud rates. It opens the port 1 in the state ’Port_1’

with Baud rate 1 in the state ’Baudrate_1’, then with Baud rate 2 in the state ’Baudrate_2’

etc. . . The process opens each port with all Baud rates. If it receives a valid data it sends the

scan result ’Device_Identified’ to the process Update PeriphTable to add this peripheral to

the table of connected devices.

2.4 Simulation & Verification

The simulation aims to check whether the system works as expected. We choose to instan-

tiate an USB Drive as a configuration device, a GPS module as Device IN, a Hard Disk as

a Device OUT, a GPRS module as a Device INOUT and C2A processes. We checked that

189



Figure 5: Automaton modeling process Identification

the system works properly using step by step and random simulations. We also verified

the critical properties of the system. Some of these properties are described in the Table 1.

An example of property number 6 in the table 1 is that all connected devices must be identi-

fied (which gives in UPPAAL : "Identification.Scan_Result -> Identification.Baudrate_Tested

== Baudrate_Dev and Identification.Port_ Tested == Port_Dev"). This means that the sys-

tem finds the right port and Baud rate for the connected device. This allows the reception

of valid characters for the recognition of the group and the type of connected device.

Therefore, these settings will be used later to establish communication with the device.

We observe here that the simulations and the properties verifications confirm the validity

of the proposed model (over 20 millions of state transitions tested). UPPAAL allow us

to verify properties but suffer from several limits. One limit is that the events used for

FSM synchronization are exclusively binary channels which can’t carry useful data. Other

limit is that the proposed model can’t be translated in an executable code to measure real

performances.

3 Conclusion & Future Works

There are a lot of embedded devices in vehicles. They have various interfaces and proto-

cols which are in general incompatible. The goal of this work is to reduce these differences

by designing a smart channel C2A which supports the most important wired and wireless

peripherals. This solution could be very useful since it reduces hardware and software

resources in a vehicle and increases the compatibility between heterogeneous systems.

This compatibility makes the combination of peripherals possible to offer new functions

to users.

190



N◦ Properties Comments Verification Critical

1 A[] not deadlock System is deadlock free Satisfied Yes

P_Identification.Scan_Result –> The system identify

2 P_Identification.Baudrate_Tested the right Baud Rate Satisfied Yes

== Baudrate_Dev of the device

P_Identification.Scan_Result –> The system identify

3 P_Identification.Port_Tested the right Port Satisfied Yes

== Port_Dev of the device

A<> ((USB.Send_Configuration and The system takes the

4 P_Signals_Update.Config_Sent) input configuration and Satisfied NO

imply Conf == Conf_IN) not the stored one

A<> (USB.Send_Configuration The input configuration

5 imply is catched in less Satisfied NO

P_Signals_Update.tempo <= 3) than 3 time units

A<> (P_Initialization.Detection The connected

6 imply device will Satisfied Yes

P_Identification.Scan_Result) be identified

A<> (GPRS.Send_Data All data sent

7 imply by GPRS module Satisfied Yes

P_Data_Loader.Data_Acquisition ) will be received

A<> (GPS.Send_Data All data sent

8 imply by GPS module Satisfied Yes

P_Data_Loader.Data_Acquisition ) will be received

Table 1: Properties verification

191



In the model presented above, the system detects devices connections. The actual work

aims at improving the model by identifying when devices are disconnected and protecting

the system of resulting bugs. Furthermore, the implementation of this model was coded

in C language and works properly using an USB Drive, a CAN/FMS frames simulator,

a GPS and a GPRS modules. This should be extended to support other devices and pro-

tocols (CAN, Bluetooth, Wi-Fi, ZigBee, RFID. . . ) giving access to new services. In the

future, we aim to model C2A system with Specification and Description Language (SDL)

which can be translated automatically into executable C language after simulation and

verification.

Bibliography

[BDL04] Gerd Behrmann, Re David, and Kim G. Larsen. A tutorial on uppaal. In M. Bernardo
and F. Corradini, editors, International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM-RT 2004. Revised Lectures,
volume 3185 of Lecture Notes in Computer Science, pages 200–237. Springer Verlag,
2004. Freely available at http://www.uppaal.com/.

[LMSW08] Grace A. Lewis, Edwin Morris, Soumya Simanta, and Lutz Wrage. Why Standards Are
Not Enough to Guarantee End-to-End Interoperability. In ICCBSS ’08: Proceedings
of the Seventh International Conference on Composition-Based Software Systems (IC-
CBSS 2008), pages 164–173, Washington, DC, USA, 2008. IEEE Computer Society.

[TM03] Andreas Tolk and James A. Muguira. The Levels of Conceptual Interoperability Model
(LCIM). In Proceedings IEEE Fall Simulation Interoperability Workshop. IEEE CS
Press, 2003.

[YCBL03] Paul Young, Nabendu Chaki, Valdis Berzins, and Luqi. Evaluation of Middleware
Architectures in Achieving System Interoperability. Rapid System Prototyping, IEEE
International Workshop on, 0:108, 2003.

192


