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Improving Very Low-Resolution Iris Identification Via

Super-Resolution Reconstruction of Local Patches

Fernando Alonso-Fernandez i1, Reuben A. Farrugiaa, Josef Bigun2 

Abstract: Relaxed acquisition conditions in iris recognition systems have significant effects on the
quality and resolution of acquired images, which can severely affect performance if not addressed
properly. Here, we evaluate two trained super-resolution algorithms in the context of iris identifica-
tion. They are based on reconstruction of local image patches, where each patch is reconstructed sep-
arately using its own optimal reconstruction function. We employ a database of 1,872 near-infrared
iris images (with 163 different identities for identification experiments) and three iris comparators.
The trained approaches are substantially superior to bilinear or bicubic interpolations, with one of
the comparators providing a Rank-1 performance of ∼88% with images of only 15×15 pixels, and
an identification rate of 95% with a hit list size of only 8 identities.

Keywords: Iris, biometrics, super-resolution, low resolution.

1 Introduction

While the literature on image super-resolution is ample, its application to biometrics is rel-

atively recent, with most research concentrated on face reconstruction [Wa14]. However,

a number of applications which are becoming ubiquitous, such as surveillance or smart-

phone biometrics, have the lack of pixel resolution as one of their most evident problems

when acquisition is done distantly. One reason of such limited research might be that most

super-resolution approaches are general-scene, aimed at producing overall visual enhance-

ment, which does not necessarily correlate with better recognition performance [Ng12].

Thus, adaptation of super-resolution techniques to the particularities of images from a

specific biometric modality is needed to achieve a more efficient up-sampling [BK02].

This paper investigates two trained super-resolution approaches based on PCA Eigen trans-

formation (eigen-patches) [AFB15] and Locality-Constrained Iterative Neighbor Embed-

ding (LINE) of local image patches [Ji14] in the context of iris identification. The meth-

ods employed make use of coupled dictionaries to learn the mapping relation between

low- and high-resolution image pair in order to hallucinate a high-resolution image from

the observed low-resolution one. This learning-based strategy has the advantage of only

needing one low-resolution image as input, and usually allow higher magnification fac-

tors than reconstruction-based methods, which fuse several low-resolution images into a

high-resolution one [PPK03]. Another particularity of the evaluated methods is that they
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Fig. 1: Block diagram of patch-based hallucination.

use a patch-based approach, where overlapped local image patches are reconstructed sepa-

rately, and then stitched together. This better represents local details and preserves texture

than if reconstruction of the complete image was done at a time, since each patch has its

own optimal reconstruction function. In our experiments, we employ the CASIA-IrisV3-

Interval database [CA] of NIR iris images, with low-resolution images having a size of

only 15×15 pixels. Identification experiments are conducted with three iris comparators

based on 1D Log-Gabor filters (LG) [Ma03], SIFT key-points [Lo04], 5 and local intensity

variations of iris textures (CR) [RU10]. LG and CR exploit texture information globally

(across the entire image), while SIFT exploits local features in discrete key-points. Thus,

one motivation is to employ features that are diverse in nature. Despite the patch-based ap-

proaches used are not new [AFB15, Ji14], we contribute with its evaluation in the context

of iris identification, and particularly with the application of these three iris comparators to

the reconstructed images. Reported results show the superiority of the two trained recon-

struction approaches w.r.t. bicubic or bilinear interpolations, with an impressive Rank-1

performance of ∼88% with the LG comparator under such very low resolution.

2 Reconstruction of Low Resolution Iris Images

Given an input low resolution (LR) image X, the goal is to reconstruct its high resolu-

tion (HR) counterpart Y. The LR image can be modeled as the HR image manipulated

by blurring (B), warping (W ) and down-sampling (D) as X = DBWY + n (where n repre-

sents additive noise). For simplicity, W and n are usually omitted, leading to X = DBY .

In local patch-based methods (Figure 1), LR images are first separated into N = Nv ×Nh

overlapping patches X = {x1,x2, · · · ,xN} according to a predefined patch size and over-

lap pixels (Nv and Nh are the vertical and horizontal number of patches). Since we will

consider square images, we assume that Nv = Nh. Two super sets of basis patches Hi and

Li are computed for each patch xi from collocated patches of a training database of M

high resolution images {H}. Super set Hi =
{

h1
i ,h

2
i , · · · ,h

M
i

}
is obtained from collocated

patches of {H}. By degradation (low-pass filtering and down-sampling), a low-resolution

database {L} is obtained from {H}, and the other super set Li =
{

l1i , l
2
i , · · · , l

M
i

}
is obtained

similarly from {L}. Each individual LR patch xi is then hallucinated using the dictionaries

Hi and Li, producing the corresponding HR patch yi.

Eigen-Patch Reconstruction Method (PCA). This method is described in [AFB15],

which is based on the algorithm for face images of [CC14]. Here, a PCA eigen- trans-

formation is conducted in the set of LR basis patches Li. Given an input LR patch xi, it is

then projected onto the eigenpatches of Li, obtaining the optimal reconstruction weights

ci =
{

c1
i ,c

2
i , · · · ,c

M
i

}
of xi w.r.t. Li. The reconstruction weights are then carried on to
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weight the HR basis set, and the HR patch is super-resolved as yi = Hic
T
i . Finally, once

the overlapping reconstructed patches {y1,y2, · · · ,yN} are obtained, they are stitched to-

gether by averaging, resulting in the preliminary reconstructed HR image Y′.

Locality-Constrained Iterative Neighbour Embedding Method (LINE). This is based

on the algorithm for face images of [Ji14]. Instead of using all entries of the training dictio-

nary to estimate the reconstruction weights, a set of K <M entries is used. Using all entries

can result in over-smooth reconstructed images which lacks important texture information,

which is essential for iris. Given a LR patch xi, a first estimate of the HR patch vi,0 is ini-

tialized by bicubic up-scaling. Then, an iterative loop indexed by j ∈ [0,J − 1] is started.

For every iteration, the support s of Hi that minimizes the distance d = ||vi, j −Hi(s)||
2
2 is

computed using K-nearest neighbours. The combination weights are then derived using

w∗
i, j = argminw∗

i, j
(
∥∥∥xi −Li (s)w∗

i, j

∥∥∥2

2
+ τ

∥∥∥d(s)⊙w∗
i, j

∥∥∥2

2
) (1)

where τ is a regularization parameter. Operator ⊙ (element-wise multiplication) is used to

penalize the reconstruction weights with the distances between vi, j and its closest neigh-

bors in the training dictionary Hi. This optimization problem can be solved by an analytic

solution [Ji14]. The estimated HR patch is then updated using vi, j+1 = Hi(s)w
⋆
i, j and the

loop is repeated. The final estimate of the HR patch is then derived using yi = vi,J . We em-

ploy τ=1e−5 and J=4 [Ji14]. Contrarily to the PCA method, where reconstruction weights

are obtained in the LR manifold and then simply transferred to the HR manifold, note

that Equation 1 jointly considers the LR manifold (via xi, Li (s)) and the HR counterpart

(via d(s)) during the reconstruction. In addition, reconstruction starts in the HR mani-

fold, which is not affected by the degradation process, and computation of the K nearest

neighbors employed for reconstruction is done in this manifold as well.

Image Reprojection. Inspired by [AFB15], we incorporate a re-projection step to Y′ to

reduce artifacts and make the output image Y more similar to the input image X. The image

Y′ is re-projected to X via Yt+1 = Yt −υU (B(DBYt −X)) where U is the up-sampling

matrix. The process stops when |Yt+1 −Yt | ≤ ε . We use υ=0.02 and ε = 10−5 [AFB15].

3 Experimental Framework

We use CASIA Interval v3 iris database [CA]. It has 2,655 NIR images of 280×320 pixels

from 249 contributors captured with a close-up camera. Manual annotation is available,

including iris circles and noise mask (Figure 2) [AB15, Ho14], which is used as input

for our experiments. All images are resized by bicubic interpolation to have the same

sclera radius (R=105, average of the database given by the ground-truth). Then, images

are aligned by extracting a region of 231×231 around the pupil center (corresponding to

∼1.1×R). If extraction is not possible (for example if the eye is close to a boundary), the

image is discarded. After this procedure, 1,872 images remain, which are then divided into

two sets, a training set with images from the first 116 users (M=925 images) used to train

the hallucination methods, and a test set from the remaining 133 users (947 images) for
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Fig. 2: Example of images of the CASIA Interval v3 database with the annotated circles modeling

iris boundaries and eyelids.

validation. We carry out identification experiments with three iris comparators in the test

set. From the 133 users, we select those eyes having at least two samples, resulting in 163

different eyes (i.e. identities) and 927 images. The first sample of each eye is considered as

enrolment sample, and the remaining 764 samples are used as input for identification. This

results in 764×163=124,532 comparisons. Given an input sample, identification is done

by outputting the N closest identities of the enrolment set. An identification is considered

successful if the correct identity is among the N outputted ones.

The iris comparators used are based on 1D Log-Gabor filters (LG) [Ma03], SIFT operator

[Lo04], and local intensity variations in iris textures (CR) [RU10]. In LG, the iris region

is first unwrapped to a normalized rectangle of 20×240 pixels [Da04] and next, a 1D

Log-Gabor wavelet is applied plus phase binary quantization to 4 levels. Comparison be-

tween binary vectors is done using the normalized Hamming distance [Da04]. In the SIFT

method, SIFT key points are directly extracted from the iris region (without unwrapping),

and the recognition metric is the number of matched key points, normalized by the average

number of detected key-points in the two images under comparison. The CR method starts

by unwrapping the iris to a rectangle of 64×512 pixels, and then it traces intensity vari-

ations across horizontal stripes of distinct height, encoding the paths where the minimum

and maximum grey values of each column occur. The LG implementation is from Libor

Masek [Ma03], using its default parameters. The SIFT method uses a free toolkit3, with

adaptations described in [Al09] to remove spurious matchings. The CR algorithm is from

the University of Salzburg Iris Toolkit (USIT) [RUW13].

Bilinear Bicubic PCA k=75 k=150 k=300

M-LINE

Originalk=600 k=900

Fig. 3: Resulting hallucinated HR images. The original HR image is also shown.

3 http://vision.ucla.edu/ vedaldi/code/sift/assets/sift/index.html
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4 Results

The two reconstruction methods are evaluated together with bilinear and bicubic interpola-

tions. The 947 validation images are used as HR reference images. They are down-sampled

via bicubic interpolation to a size of 15×15, corresponding to a down-sampling factor of

16, and then used as input LR images of the reconstruction methods, from which halluci-

nated HR images are computed. This simulated down-sampling is the approach followed

in most previous studies [Wa14], mainly due to the lack of databases with LR and corre-

sponding HR reference images. In PCA and LINE, we employ a patch size of 1/4 of the

LR image size. This is motivated by [AFB15], where better results were obtained with big-

ger patch sizes. Overlapping between patches is 1/3 of the patch size. We also extract the

LG, SIFT and CR features from both the hallucinated HR and the reference HR images.

Figure 3 shows some examples of reconstructed images with the different methods tested

here. It can be observed that smaller values of K results in sharper reconstructed images,

while a bigger K produces blurrier images. This is expected, since a bigger K implies that

more patches are being averaged, so the output image patch will be smoother.

The performance of the reconstruction methods is measured by reporting identification ex-

periments using hallucinated images. We do not report other measures traditionally used

in super-resolution literature (e.g. PSNR) since the aim of applying these algorithms in

biometrics is enhancing recognition performance [Ng12]. Two scenarios are considered:

1) enrolment samples taken from original HR input images, and query samples from hallu-

cinated HR images; and 2) both enrolment and query samples taken from hallucinated HR

images. The first case simulates a controlled enrolment scenario, while the second case

simulates a totally uncontrolled scenario (albeit for simplicity, both samples have similar

resolution). We first test the LINE method using different values of K, from K=75 (small

neighbors set) to K=900 (nearly the whole training set). Identification results are given in

Figure 4. It can be seen that the preferred neighbor size K is different for each compara-

tor. While LG and CR prefer a bigger set (K > 300), SIFT shows better results with a

smaller set (K = 150). This highlights the need of looking into the performance of individ-

ual comparators, rather than into general scene indicators such as PSNR, since the image

properties recovered by a particular algorithm may not be relevant for a comparator, even

if visual appearance of the reconstructed image can be referred as ‘good’.

We then select the best LINE configurations for each comparator, and report identification

results together with the other reconstruction methods (Figure 5). Our first observation is

the superior performance of PCA and LINE w.r.t. bilinear or bicubic interpolation, high-

lighting the benefits of trained reconstruction. Also, LINE is superior to PCA in some

cases, while in others, both methods show similar performance. In this sense, PCA can be

pre-trained in advance using the set Li of basis patches, since eigenpatches are the same

for any input patch xi, so higher computational speeds can be expected. LINE on the other

hand needs to compute the set of nearest neighbors specific of a particular input patch.

Regarding performance of individual comparators, LG is clearly superior to the others.

Rank-1 performance of LG is above 70% (scenario 1) and 84% (scenario 2). Also, an iden-

tification rate of 95% with this comparator is obtained for a hit list size of just N=8 (sce-
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Fig. 4: Identification results (LINE method). Best seen in colour.

nario 2) using LINE. Rank-1 of SIFT is very poor (less than 10% in scenario 1 and ∼40%

in scenario 2), while an identification rate of 95% cannot be achieved even if N >80). The

CR comparator only does a little bit better than SIFT. It should be noted however that the

size of the LR images is very small (15×15). With respect to the two scenarios evaluated,

scenario 2 has much better performance. In scenario 2, both enrolment and query images

undergo the same down-sampling and reconstruction. It seems that when the two images

do not suffer the same degradation process (i.e. scenario 1), they have fairly different fea-

ture properties, at least with the features employed here. This result has been observed in

previous verification studies [AFB15] as well.

5 Conclusions

While more relaxed acquisition environments are pushing image-based biometrics (e.g.

face or iris) towards the use of low resolution imagery, it can pose significant problems in

terms of reduced performance if not addressed properly. Here, we apply two trained super-

resolution approaches based on PCA transformation [AFB15] and Locality-Constrained

Iterative Neighbor Embedding (LINE) of local patches [Ji14] to improve the resolution
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Fig. 5: Identification results of the different image reconstruction methods employed (LINE method:

best case according Figure 4 is shown). Best seen in colour.

of iris images under infra-red lightning. We carry out identification experiments on the

reconstructed images with three iris comparators based on Log-Gabor wavelets (LG), SIFT

keypoints, and local intensity variations of iris textures (CR). Low resolution images are

simulated by down-sampling high-resolution irises to a size of just 15×15. Experimental

results show a clear superiority of trained approaches under such challenging conditions

w.r.t. bilinear or bicubic methods. Even under such low resolution, a Rank-1 performance

of ∼88% is obtained with one of the comparators (LG), and an identification rate of 95%

is obtained with a hit list size of just 8. Another observation is that the LINE method

is superior to PCA in some cases, but their performance is in general very similar. This

allows computational savings by using PCA, since PCA models are the same for any input

image, so they can be trained in advance.

An avenue of improvement is removing the assumption that reconstruction weights are

the same in the low- and high-resolution manifolds. While this simplifies the problem,

the LR manifold is usually distorted by the one-to-many relationship between LR and HR

patches [Wa14]. Another simplification is the assumption of linearity in the combination of
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patches from the training dictionary. We will also consider including additional recognition

methods [RUW13] and employing imagery in visible range (e.g. smart-phones).
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