
Intrusion Detection and Failure Recovery in Sensor Nodes

Harald Vogt, Matthias Ringwald, Mario Strasser
Institute for Pervasive Computing

ETH Zurich, Switzerland
{vogt,mringwal}@inf.ethz.ch, mast@gmx.net

1 Introduction

Intrusion detection systems (IDS) are important security tools in computer networks. There
exist many approaches to this problem in traditional computer networks and wireless ad-
hoc networks [ZL00], but literature on this topic with regard to sensor networks is scarce.
The goal of failure recovery is to extend the lifetime of a sensor network by restarting or
reprogramming failed or misbehaving nodes. In combination, these two measures raise
the cost for a potential attacker. Even if an attacker manages to capture a node and abuses
it for his own purposes, there is a chance that the aberrant behaviour of this node will be
detected and the node be recovered, thus nullifying the attack.

When trying to protect a system from malicious use, it is important to define the goals and
capabilities of potential attackers. Here, we consider attackers that try to capture nodes by
taking control of the code they are executing. This would allow an attacker to take part
in the network’s ordinary operation and thus exercise a certain influence on the outcome
of its operation, and to exploit the resources of the captured nodes. We will not consider
denial-of-service attacks.

There are many possible ways for an attacker to inject malicious code into a node, in-
cluding the exploitation of weaknesses in its application code or in protocols used for
application management, or physical vulnerabilities. The impact of software vulnerabili-
ties can be minimized by using qualitiy assurance tools like code verification and others.
Defending against physical attempts at rewriting the application code requires barriers that
make access to physical features of the node’s hardware as difficult as possible [AK97].
However, all defense mechanisms increase the cost of a sensor network. Therefore, it may
be sensible to devote resources to intrustion detection and recovery in order to mitigate the
effects of attacks.

Active measures against physical manipulations are also possible. The sensors already
built into sensor nodes could help detect physical manipulations. For example, if a node
is relocated, acceleration sensors can trigger the zeroization of key material, rendering
the node inoperable within the network. In principle, all defense mechanisms can be
circumvented, but the required effort should be prohibitively high. Generally, we would
like to avoid that attacking a single node becomes cheaper if many nodes have already

161



been attacked.

In this paper, we sketch a system for detecting intrusions and recovering sensor nodes. We
plan to come up with an approach for application-based anomaly specification and detec-
tion and node recovery, and a prototypical implementation based on BTnodes [BKR03].

2 Misbehaviour Detection

One of the challenges for an IDS for sensor networks will be to come up with appropriate
models for anomaly detection1. These models will be governed by the following princi-
ples: (1) anomaly detection is based on observations and probing by neighbour nodes; (2)
there is no full trust between observer nodes, since they could be under attack themselves;
(3) based on the assumed attack patterns (e.g., single nodes, regions), observed data has
to be interpreted differently; (4) the specific application of the sensor network determines
the modeling of “good” and “bad” behaviour.

Although suitable intrusion models still have to be defined, there is some basic behaviour
that can be observed by neighbour nodes which is the basis for any of these models.
Canonical conditions on this behaviour can be defined that, if violated, can indicate possi-
ble intrusions. Such conditions include: correct forwarding of messages; correspondence
between current incoming and outgoing traffic; conformance to communication sched-
ules; integrity of application code. Additionally, one can check for illegal relocation and
replication of nodes.

Generally, we rely on nodes to cooperate for detecting misbehaviour. A node that has
accumulated enough evidence of a node misbehaving casts a vote in favour of recovery
of this node. If a sufficiently large set of nodes participates in the consensus protocol and
they agree on recovering the node in question, they start the recovery phase. Emphasis
must be put on the efficient implementation of the IDS.

3 Recovery Support

Microcontrollers such as used in the BTnode design include the feature of a bootloader,
a piece of software that supports reprogramming “on board”, i.e. without the help of
external devices. The bootloader accepts application code from a standard communication
interface, such as radio or a serial line, and writes it directly to program memory.

To be useful in a malicious environment, the bootloader requires special protection: (1)
Before application code is written to memory, its authenticity has to be verified. (2) The
keys used for code authentication must reside in a protected memory area that can only be
read by the bootloader itself. (3) The bootloader must not be susceptible to manipulation
from malicious application code. This can be achieved by placing the bootloader in write-

1An alternative approach would be the detection of typical attack signatures. Since there is no empirical data
available for sensor networks, we will not consider this approach here.

162



protected memory. (4) The bootloader must have direct access to the communication
interface. This ensures that messages are not intercepted before they reach the bootloader.

These requirements are similar to trusted hardware such as smartcards. The microcon-
troller employed by the BTnode, Atmel’s ATmega128, has built-in support for memory
protection, which allows the bootloader to be protected from application code. Rewriting
the bootloader code requires erasing all memory, which would effectively delete the keys
stored in there. A secure path from the radio interface to the bootloader is currently not
directly supported. This issue is addressed by ARM’s TrustZone architecture [AF04]. To
support all requirements listed above, sensor node designs should be based on such an
architecture.

Once a node is being categorized as failed by a sufficiently large number of neighbours,
they may initiate a recovery procedure by sending authenticated recovery requests to the
bootloader of the failed node. If the bootloader has collected a certain number of these
recovery requests, it switches to a new state in which it is ready to receive application code
and rewrite the program memory. After signalling this state change to its neighbours, they
start to send the legitimate application code. After a system reset, this code is executed.

This form of recovery is quite expensive compared to ordinary network operation, since
all of the application code must be transmitted to the node. The load necessary to send
the code could be shared among several neighbours, but the receiving node carries the full
load. Also, transmitting the application code can take a significant amount of time if the
used interface only provides low bandwidth. Note that no extra space is required for the
application code itself, since it can be simply read from the memory of the (correct) nodes.

Although there is usually one main microcontroller unit (MCU) on a sensor node that
is responsible for executing application code, there might be some additional MCUs for
special tasks, for example handling Bluetooth communications (as the ARM-based Blue-
tooth module on the BTnode). Some of these MCUs are powerful enough to take on
additional tasks like monitoring the main MCU’s activities or rewriting the application
memory. Since that extra MCU is directly responsible for communication, it is guaranteed
that it has access to all data packets as well. Such an extra MCU could also serve as a
trusted coprocesser if equipped with special shielding for tamper resistance.

References

[AF04] Tiago Alves and Don Felton. TrustZone: Integrated Hardware and Software Security.
Technical report, ARM, July 2004.

[AK97] Ross Anderson and Markus Kuhn. Low Cost Attacks on Tamper Resistant Devices. In
5th Int. Workshop on Security Protocols, number 1361 in LNCS. Springer-Verlag, 1997.

[BKR03] Jan Beutel, Oliver Kasten, and Matthias Ringwald. BTnodes - A Distributed Platform
for Sensor Nodes. In Proc. 1st ACM Conf. Embedded Networked Sensor Systems (SenSys
2003). ACM Press, 2003.

[ZL00] Yongguang Zhang and Wenke Lee. Intrusion Detection in Wireless Ad-Hoc Networks.
In MOBICOM 2000. ACM Press, 2000.

163




