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Using Knowledge Graphs to Manage a Data Lake

Henrik Dibowski (%) ! Stefan Schmid?

Abstract: Knowledge graphs as fundamental pillar of artificial intelligence are experiencing a strong
demand. In contrast to machine learning and deep learning, knowledge graphs do not require large
amounts of (training) data and offer a bigger potential for a multitude of domains and problems. This
article shows the application of knowledge graphs for the semantic description and management of
data in a data lake, which improves the findability and reusability of data, and enables the automatic
processing by algorithms. Since knowledge graphs contain both the data as well as its semantically
described schema (ontology), they enable novel ontology-driven software architectures, in which
the domain knowledge and business logic can completely reside on the knowledge graph level. This
article further introduces such a use case: an ontology-driven frontend implementation, which is
able to fully adapt itself based on the underlying knowledge graph schema and dynamically render
information in the desired manner.

Keywords: Artificial Intelligence; Ontology; Knowledge Representation; Knowledge Graph; Semantic
Data Lake; Data Catalog; Semantic Search; Semantic Layer; Ontology-Driven Uls

1 Introduction

Artificial intelligence (Al is one of the biggest topics in computer science, and we have
seen a big development of machine learning (ML) and deep learning (DL) during the past
ten years. As many other enterprises in the world, Bosch is heavily investing in becoming
one of the world-leading Al companies. The foundation of the Bosch Center for Artificial
Intelligence in 2017 was an important milestone and meanwhile employs over a hundred
Al experts. With ML and DL, data-driven subsymbolic approaches have dominated the
past decade. Ontologies and knowledge graphs are another fundamental pillar of the Al
landscape and they are emerging from the shadows. These approaches are fundamentally
different, as knowledge is not represented by the weights of a neural network (black box), but
in an explicit, symbolic way by means of logic languages with formal semantics (white box).
Their inferences are deterministic and their results are traceable and explainable, which
constitutes an essential requirement for a wide range of applications, such as autonomous
driving. At Bosch, we are facing a high demand for knowledge graphs from various business
units and are seeing a strong momentum. That is not much of a surprise, as Gartner recently
rated knowledge graphs as one of the most promising emerging Al technologies of the next
five to ten years [Br19]. We believe that knowledge graphs have a way bigger potential
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for being a truly disruptive technology than ML and DL, because they do not depend on
large amounts of available data for training the networks, and because they are applicable
for representing knowledge of practically any domain, be it engineering, sciences, the
humanities, medicine, etc.

The shift from subsymbolic to symbolic approaches goes along with a fundamental paradigm
shift: from the use of raw data to the use of knowledge in Al. Purely subsymbolic approaches
assume that with more and more data, Al can beat even the best algorithms. On the contrary,
symbolic approaches emphasize that the quality of the data is more important than the
quantity, and weigh knowledge over raw data. Data without description of its meaning is
of low value, and it takes a lot of effort to turn such data into business value. Knowledge
and semantically well-described information however is a key for many kinds of novel
applications, machine understanding and truly smart Al

2 Semantic Data Lakes

With the development of cloud computing, data lakes have emerged as new kind of cloud-
based repositories for storing large amounts of data. Data lakes can store data in its native
format in a flat architecture and run different types of analytics on the data. However, just
“dumping” large amounts of data into a data lake does not provide value on its own. Without
a contextual, semantic description of the data and without provenance information, the data
stored in a data lake is unlikely to be usable by people and machines others than the ones
that stored it and can still remember what was stored where. We reckon that this accounts
for a majority of all existing data lakes, which are rather “data swamps” than data lakes.
Data in a data lake is only (re)usable by people and machines, if it is semantically well
described, and if the data provenance is clearly defined and tracked. Semantic data lakes are
a specific form of data lakes in which a semantic layer on top enriches and connects the
data semantically. The semantic layer overcomes data silos and enables semantic search
across all data. This facilitates completely new, advanced use cases and analytics on the
entirety of stored data. In our opinion, the best technology for realizing semantic data lakes
are semantic technologies and knowledge graphs.

2.1 The role of data catalogs

In the era of big data, data catalogs emerged as the standard for metadata management. In
the last few years, new application areas have appeared and the volume and richness of
metadata required has grown significantly. Data lakes constitute one such important new
application for data catalogs, besides warehouses, master data repositories, etc. According
to Gartner, a data catalog “. .. maintains an inventory of data assets through the discovery,
description, and organization of datasets. The catalog provides context to enable data
analysts, data scientists, data stewards, and other data consumers to find and understand a
relevant dataset for the purpose of extracting business value.” [Ed17].
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2.2 State of practice and criticism

Current vendors offer a wide range of commercial data catalog software. A sample of such
vendors includes Alation Data Catalog, Atlan Enterprise Data Catalog, Talend Data Catalog,
Collibra Data Catalog, Informatica Enterprise Data Catalog, Microsoft Azure Data Catalog,
Oracle Cloud Infrastructure Data Catalog, and even Google is joining the market with its
Google Data Catalog. To our knowledge, however, none of these data catalogs uses or
supports standard semantic technologies (W3C recommendations), nor do they allow for
using existing ontology vocabularies. Rather, they are closed, propriety systems with their
own metadata languages and glossaries.

Our solution differs from existing solutions by proposing a semantic data lake architecture
that incorporates a semantic data catalog, built with standard semantic technologies, and
that addresses provenance and access control for resources in the data lake. This solution is
described in detail in the following sections.

3 Semantic data lake catalog ontology

As a primary contribution, this section describes a data catalog ontology for semantic data
lakes: the DCPAC ontology (Data Catalog, Provenance, and Access Control). The DCPAC
ontology can be applied for adding a semantic layer to a data lake, which provides semantic
description of the content, provenance, and access control permissions of the resources in
a data lake. This ontology was created by combining several common, (predominantly)
standardized ontology vocabularies and by aligning and extending them where necessary.

3.1 Ontology layer architecture

A big benefit of semantic technologies is the possibility to reuse, combine and extend
existing ontology vocabularies, instead of reinventing the wheel. There is a large amount of
open and commonly used ontologies available, which cover many domains and specify the
domain knowledge and expertise of thousands of domain experts and knowledge engineers.
One can only benefit from reusing such vocabularies, and further contribute and extend
them. Building on open and standardized vocabularies leads to interoperable metadata
representations and enables the exchange of information between different systems and
applications. This is the approach that we followed, and the result can be seen in Fig. 1.
The figure shows a layer architecture diagram of the DCPAC ontology. Boxes in this figure
each represent an ontology, and the arrows between them define the vocabularies that are
imported. The DCPAC ontology is shown at the bottom, and recursively imports all other
ontologies. Additionally, it defines SHACL constraints for validating instance data (ABox).

In the following subsection, the primary ontologies utilized by DCPAC are introduced.
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Fig. 1: Layer architecture of the semantic data lake catalog ontology

3.2 Utilized ontology vocabularies

The Data Catalog (DCAT) ontology (prefix: dcat) is a recent W3C recommendation and
constitutes “... an RDF vocabulary designed to facilitate interoperability between data
catalogs published on the Web.” [A]120]. The DCAT ontology imports and uses the widely
recognized SKOS [MB09] and DCMI Metadata Terms [Du20] ontologies. Its primary
purpose in the context of the DCPAC ontology is the semantic description of the content of
resources in a data lake.

The Provenance Ontology (PROV-O) (prefix: prov) is another W3C recommendation that

. provides a set of classes, properties, and restrictions that can be used to represent
and interchange provenance information generated in different systems and under different
contexts.” [Lel3]. Its purpose in the context of DCPAC is to describe the provenance of the
data lake resources.

The Open Digital Rights Language (ODRL) Ontology (prefix: odrl) “... is a policy
expression language from W3C that provides a flexible and interoperable information model

. for representing statements about the usage of content and services.” [Ial7]. In our data
lake scenario, ODRL is applied to defining access control permissions for the data lake
resources.

The DCAT — PROV-O Alignment (DPA) ontology (prefix: dpa) [WW19] was created by the
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W3C Dataset Exchange Working Group and contains alignment axioms between DCAT
ontology and PROV-O. Thereby, it enhances the DCAT ontology with the ability to use
PROV-O for expressing advanced provenance information.

The Simple Knowledge Organization System (SKOS) (prefix: skos) is “a common data model
for sharing and linking knowledge organization systems” [MB09]. We use SKOS to define
separate domain-specific SKOS Tags Ontologies (STO) that comprise sets of semantic tags
and their semantic relationships. By assigning each dataset a set of relevant semantic tags,
they provide semantic description of the content of data lake resources and enable semantic
search on the resources in the semantic data lake.

3.3 Data Catalog — Provenance — Access Control (DCPAC) Ontology

The Data Catalog — Provenance — Access Control (DCPAC) ontology (prefix: dcpac) [Di20]
is our primary contribution to the ontology layer architecture (see Fig. 1). It combines,
aligns and extends the other ontologies. The ontology imports the ODRL, DPA, and FOAF
(“Friend of a Friend”) ontology [BM14] and optionally one or more STO ontologies, and
recursively imports all other shown ontologies.

The DCPAC ontology aligns the DCAT ontology with the ODRL ontology by declaring
the classes dcat:Distribution and dcat:Resource to be subclasses of odrl:Asset.
This enables the definition of access control permissions for these DCAT classes and
subclasses with the ODRL vocabulary. Another contribution is the alignment of PROV-
O with the ODRL ontology by declaring the PROV-O class prov:Agent as subclass of
odrl:Party, hence enabling all instances of prov:Agent to undertake roles in access control
permissions. Additionally, the DCPAC ontology defines new subclasses of dcat:Dataset
and prov:Activity, which allow for distinguishing different types of datasets and activities.

The DCPAC ontology is associated with a SHACL shapes definition file that defines a
comprehensive set of SHACL constraints [KK17]. They can define cardinalities and type
restrictions on properties, and regular expressions on the allowed values of string properties.
Also complex constraints can be defined as SPARQL-based graph patterns. A SHACL
engine can process the constraints and validate the consistency of the knowledge graph
(ABox). That improves the integrity and quality and prevents issues.

3.4 The core vocabulary

This Section provides a short explanation of the core vocabulary of the DCPAC ontology
and the primary imported vocabularies, which are explained in the previous sections. For
the explanation, we refer to Fig. 2, which shows the main ontology classes as well as the
most important object properties and datatype properties. The stereotypes shown for some
of the classes in Fig. 2 contain their superclasses and hence their alignment to the other
ontologies described in the previous sections.
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Fig. 2: The main classes and properties of the semantic data lake catalog ontology (TBox)

The DCAT ontology classes are shown in the center and bottom left of Fig. 2. The overall data
catalog of the data lake is represented by one instance of class dcat:Catalog. It can contain
many dcat:Dataset instances, one per resource in the data lake, e.g. raw data files, HBase
or Hive tables, or RDF-based knowledge graphs. An instance of class dcat:Distribution
models a specific representation of a dataset, comprising a specific serialization or schematic
arrangement. Different distributions can exist for the same dataset, and are accessible via a
URL (dcat:downloadURL). The data catalog and the datasets can each have several data
distribution services (dcat:DataDistributionService), which are endpoints that provide
access. They are accessible via an endpoint URL (dcat : endpointURL).

The PROV-O classes and properties shown in the top right part of Fig. 2 are used for
modeling the provenance of the data catalog and its datasets (both declared as subclasses
of prov:Entity), and for defining agents (e.g. person, software agent) they are attributed
to (prov:wasAttributedTo) or that were involved in the activity of creating the dataset.
Activities (prov:Activity) are initiated by agents (prov:wasAssociatedWith), create new
datasets (prov:wasGeneratedBy), have an start and end time, and can use other datasets as
input (prov:used).

Access control is defined by classes and properties from the ODRL ontology. An
odrl:Permission can define an access rule for groups of agents (odrl:Party-Collection)
to datasets, their distributions and/or data distribution services (odrl:target). The allowed
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actions (odrl:Action), such as display, read, modify, delete, are defined as skos: Concept
and attached via odrl:action.

SKOS finally is applied for defining the semantics of the content of a dataset. Therefore, the
catalog refers to one or more sets of SKOS concepts (skos:ConceptScheme) that can be used
for semantically tagging datasets. The defined SKOS tags can be either directly linked to a
dataset (dcat: theme), or they can be bundled and linked as a collection (skos:Collection),
which enables the reuse of (large) sets of SKOS tags.

The overall ontology vocabulary accomplished by the DCPAC ontology constitutes a
vocabulary developed and harmonized by a broad community and standardized in most of
the parts. It enables an interoperable representation and exchange of information beyond the
limits of a specific data lake in place. The vocabulary is widely domain independent, with
the only exception being the SKOS tags ontologies, which make it customizable towards
particular domains of interest.

4 Semantic data lake for automotive data

At Bosch, we have built a semantic data lake for our automotive data as a centralized platform
for the engineering and testing of our autonomous driving applications. The architecture
of our data lake is shown in Fig. 3. It stores large amounts of data collected from test
drives, which involves the logging of hundreds of sensor readings that are being logged
each millisecond, but also includes the vehicle configuration, driving maneuvers, weather
conditions and other related information. This data quickly accumulates to Petabytes of
data, which is stored in large Hadoop-based data stores.

During the ingestion and processing of new incoming data, the data lake catalog population
service is triggered, which automatically creates a semantic description and layer on top of
the data. The semantic layer is stored and managed as knowledge graph in the semantic data
lake catalog using the vocabulary defined by the semantic data lake catalog ontology (see
Section 3). Therefore, the data lake catalog population service reads the available metadata
on the ingested data assets and constructs the relevant semantic data by aligning, annotating
and enriching the input data with DCPAC concepts. The resulting knowledge graph forms a
semantic layer on the data lake assets and describes their content, provenance and access
rights. This information plays a crucial role in the semantic data lake, as it semantically
describes the stored data and hence turns it into valuable information and information assets.
It allows an in-depth tracking of provenance related aspects of the data, and a definition of
access rights on the data assets.

The semantic data lake catalog is a key-component of the data lake architecture, as it handles
and controls the retrieval and access of information. It enables a semantic search of data and
improves findability. Data can be found faster, better and automatically even by machines,
which enables advanced data analytics use cases. The overall data reuse is much higher,
which ultimately results in less test drives and related effort and cost.
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Fig. 3: Data lake architecture and role of semantic data lake catalog knowledge graph

5 Ontology-driven self-adaptive frontends

Now that more and more applications are using knowledge graphs as representation layer
for data and information, new ontology-driven software architectures for self-adaptive
frontends become feasible and are gaining momentum. This is doable due to knowledge
graphs containing both the data as well as its rich semantically defined schema, which
can describe domain knowledge, laws and constraints in a detailed way. Applications and
frontends can utilize this knowledge, without the need of duplicating or repeating that inside
their code. In an ideal scenario, business logic and expert knowledge can reside completely
on the knowledge graph, and the applications and frontends can be independent of the
model, domain or even use case.

As a first step into that direction, we have implemented self-adaptive frontends that can
dynamically render information from a knowledge graph in a generic way. An example web
frontend can be seen in Fig. 4, which shows information from the semantic data lake catalog
of our semantic data lake (see Fig. 3). What information is to be shown where and how is
defined by views on the knowledge graph. We followed the proposal of Tim Berners-Lee
[Ti19] and used a combination of SHACL shapes and forms in order to define different views
on a graph in a generic, expressive way. Dynamically at start up, the frontends request the
view from the knowledge graph to be rendered. They receive all required information, such
as the classes to be shown as tabs in the header and their labels in the required language, the
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properties to be shown for each class, their type, cardinalities, datatypes, range, supported
languages, their ordering in the frontend, as well as the properties that can be used for
filtering the instances, along with their filter operators and possible values. But also, who
has read access or who can change, create or delete instances is controlled by the knowledge
graph.
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Fig. 4: Ontology-driven self-adaptive web frontend showing the semantic data lake catalog

Such ontology-driven self-adaptive frontends can dynamically render views on knowledge
graphs. We believe that the initial overhead of realizing such next-generation ontology-driven
software architectures and applications will pay off quickly, not only since changes of the
underlying model do not require any changes at the frontend.

6 Conclusion

Semantic technologies and knowledge graphs are experiencing a high demand and are
gaining strong momentum. The shift from ML and DL to symbolic approaches goes along
with a fundamental paradigm shift: from the use of raw data to the use of knowledge in Al.
The massive amounts of data in a data lake are only of value if the context of the data is
semantically well described and its provenance is defined. We have realized a semantic data
lake for automotive data, in which ontologies and knowledge graphs fulfil this role and are
of utmost importance. Knowledge graphs enable us to search data based on rich semantics
(context and provenance). Moreover, they also allow intelligent agents to automatically
search and access the data, and thus, contribute to a significantly higher data reuse, which
ultimately results in less test drives, and related efforts and costs.
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With knowledge graphs as novel representation layer for data and information, new ontology-
driven software architectures become feasible. We have implemented ontology-driven
self-adaptive frontends that dynamically render information from a knowledge graph in
a generic way. In an ideal scenario, both business logic and expert knowledge can reside
completely in the knowledge graph, and the applications and frontends can be fully reused
across domains and use cases. This will allow us to move from developing applications and
frontends via coding (i.e. writing programs) towards modeling, where we define the views
on the information and business logic in the knowledge graph itself.
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