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Abstract: We investigate some well known graph theoretic problems from a game
theoretic point of view. To coloring and matching problems we associate binary payoff
games where the players are the vertices of the graph. Solutions to the graph problems
correspond to action profiles of the game, where all players get payoff 1. We show,
that there exist rules for the choice of action in the repeated play of these games, that
converge to the solution of the graph problems. Although the convergence is slow, this
shows, that the problems can be solved with almost no information on the underlying
graph.

1 Introduction

Many classical graph problems, that are well observed for the case, that the underlying
graph is part of the input become much more challenging if the graph is an existing net-
work and there is no global instance to solve the problem. It is the task of the nodes which
are the decision makers to solve the problem, using only information on their neighbor-
hood in the network. Starting with the pioneering work of Linial [Li92] a rich literature of
what can be done and what cannot be done using only such local information emerged in
the field of distributed computing. However, to the best of the author’s knowledge there
is no generally accepted definition of local algorithms. Some authors restrict the knowl-
edge of one agent to some small part of the graph near the vertex corresponding to the
agent[An07], others allow each vertex only to communicate with its immediate neigh-
bors [LOWO08, KMWO04]. We propose an approach inspired by the paper of Kearns et
al[KSMO6] on an experimental study of social network behavior. Their idea is, that the
agents corresponding to the nodes of the network graph have no common goal but each of
them has a selfish incentive and the solution of the graph problem corresponds to a Nash
equilibrium or other suitable solutions of a game that reflects these incentives. In their
study the authors investigated the usual vertex coloring problem and the test subjects cor-
responding to the vertices of the graph got money if they where successful in choosing a
color distinct of the colors chosen in the neighborhood in one round of the game. Recently,
Chaudhuri et al. [CCJO08] theoretically investigated this game. They could show, that if the
number of colors is at least A + 2, then with high probability 1 — § the graph is colored
properly within O(log(n/d) rounds, where n denotes the number of vertices.

We propose to generalize the idea by investigating for which graph problems it is possi-
ble to design such a game, where the players are the vertices of the graph and a solution
of the game is a solution for the graph problem. Moreover, the payoff function for each
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player should depend only on the actions of the neighbors or be at least easily accessible.
Computing pure Nash equilibria of games on graphs can be very hard even if centralized
computation is possible [DT07, ZCT08]. We are interested in wether there exist adaption
rules for the players such that the repeated play converges to a solution of the game. The
information used for the adaption process are only the received payoff and the action of a
player in one round. This defines a new concept of local computability of graph problems
which reflects the possibility of self organization of large networks without global knowl-
edge.

In the present paper we investigate some coloring and matching problems fitting to the
framework. Our results show, that very simple algorithms converge to optimal solutions
of the problem, but it may take a lot of time.

2 Preliminaries

Throughout this paper we consider simple finite graphs G = (V, E), where V = [n] =
{1,...,n}. A proper k-coloring of G is a function ¢ : V' — [k] such that for all edges
ij € E we have c(i) # c(j). We identify such a coloring with the n dimensional vector
(c(7))iem)- The smallest number k such that G’ has a proper k-coloring c is called the
chromatic number x (G).

Problem 1 (VERTEX COLORING)
Given a graph G and the chromatic number & = x(G) compute a proper k-coloring ¢ of
G

A well-known extension of this problem is the list coloring problem. Apart from the graph
G we are given a list assignment | : V — 2N, where [(i) C N denotes the set of admissible
colors for the vertex ¢ € V. A proper [- coloring of G is a function ¢ : V' — N with the
property that c(i) € I(i) forall i € V and c(i) # ¢(j) for all edges ij € E. G is called
l-colorable if there exists a proper [ coloring of G.

Problem 2 (VERTEX LIST COLORING)
Given a graph G and a list assignment [ such that G is [ colorable compute a proper [-
coloring c of G

If [(i) = [k] for all vertices ¢ € V this is equivalent to problem 1.

A matching of G is a subset M C E of edges with the property, that no two edges of M
have an end vertex in common. M is maximal if all edges outside M have an end vertex in
common with an edge in M. A maximum matching is a maximal matching with maximum
cardinality and a perfect matching is a matching M where every vertex ¢ € V is an end
vertex of an edge in M.
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Problem 3 (PERFECT MATCHING)
Given a graph G containing a perfect matching compute a perfect matching of G.

Note that while deciding whether a given graph is k-colorable is NP-complete [GJ79], a
maximum matching can be found in polynomial time [Ed65].

A finite game I' = (N, A, u) consists of

e Aset N ={1,...,n} of players.
e For every player i € N aset A’ of actions and A = A! x ... x A™.

e A payoff function u = (ui)ie[n} where u? : A — R denotes the payoff function of
player <.

An element a' € A is called action and an element a = (al,...,a™) € A is an action

profile. The payoff function associates to every possible action profile a payoff for every

player. Let S be a subset of players. By (a~7, b°) we denote the action profile, where each

player i € S chooses action b* € A® and all players i ¢ S choose a’ € A*. A (pure) Nash

equilibrium of I is an action profile a € A where no player has an intention to deviate, i.e.

Vi € NYb' € A" :u'(a) > u'(a™", ")

The games we investigate in this papers have the property that there are only two possible
payoffs 0 and 1. We call such games binary payoff games. We interpret a payoff of 1 as a
win and a payoff of 0 as a loss. An action a® € A’ that ensures a payoff 1 for player 7 in-
dependent of the other player’s actions is called a winning strategy for player 7. An action
profile a® for a subset S of players that ensures a payoff of 1 for all players of S regardless
of the actions of N \ S is called cooperative winning strategy (cws) for the players of S. A
subset S of players having a cooperative winning strategy is called potentially successful.
If the game T is repeated infinitely often, the players may adapt there choice of action.
Depending on the action of a player and the received payoff in one round of the game
I' a probabilistic 1-recall learning rule computes a probability distribution on the set of
actions according to which the action for the next round is chosen. If every player uses
such a learning rule, this induces a Markov chain on the set of action profiles.

We associate binary payoff games corresponding to the three graph problems stated above.
In every case, the players of the game are the vertices of the graph.

COLORING GAMET = (N, A, u)

e N=V
oAiZ[k‘]

e u'(a)=1 & a' #d forallij € E
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That means, every player chooses a color and gets payoff 1 if her color is different from
the colors of the neighbors.

This is the game first introduced by Kearns et al. in [KSMO06]. A proper k-coloring of the
graph corresponds to a Nash equilibrium of the game, since every player gets maximum
payoff. If k > A 4 1 where A is the maximum degree of GG the opposite is also true. To
see this, consider a player who receives payoff 0. The neighbors use at most A different
colors, so the player can choose at least one different color and receive a payoff 1. This
shows, that in a Nash equilibrium a every player must get payoff 1, which means that a
must be a proper coloring.

In [CCJO08] the authors propose a probabilistic 1-recall learning rule, such that the corre-
sponding Markov chain converges to a proper coloring, given that k > A + 2.

If k& < A Nash equilibria do not coincide with proper colorings in general. If G is for
instance the complete graph on V' = [n] with the edge connecting the vertices 1 and 2
missing, the following coloring is a Nash equilibrium: a* = i for 1 < i < n — 1 and
a™ = n — 1. All players apart from n — 1 and n receive payoff 1, and the last two vertices
cannot increase their payoff since all colors appear in their neighborhoods. Nevertheless
the graph is (n — 1)-colorable. If the graph G is the complete bipartite graph K, , the situ-
ation is even worse. There are two proper 2-colorings. But almost every coloring is a Nash
equilibrium. As long as both colors appear in both partite sets, every player gets payoff 0
and cannot increase the payoff, since both colors appear in the neighborhood. That means
there are 22" — 4 - 2" + 6 colorings only 2 of which correspond to proper colorings.

On the other hand, an action profile o for a subset S of players is a cws if and only if
all pairs of adjacent vertices in .S are colored differently and all players outside .S are in
different components than the vertices of S. Otherwise, a vertex outside .S adjacent o a
vertex i € S could choose color a’ and player i looses. That means in case G is connected,
the only potentially successful set of players is the set of all vertices.

The game associated with problem 2 is the following:

LIST COLORING GAMEI'; = (N, A, u)

e N=V
o AP =1(i)
e u'(a)=1 & a' #d forallij € E

Again, every [-coloring of GG corresponds to a Nash equilibrium of the game, but the op-
posite is not true in general. A subset S of players is potentially successful with a cws a®
if every pair (i, j) of adjacent vertices of S is colored differently by a® and for every edge
ij withi € Sand j ¢ S we have a’ ¢ (). We claim that every such partial coloring a*
can be extended to a proper [-coloring of the whole graph G.

If b € A is any action profile corresponding to a proper I-coloring of G, then (b=, a®)
is also a proper [-coloring. This is the case because by definition b* £ b/ for all edges ij
withi,j ¢ S, a® # a’ for all edges ij with i, j € S and for all edges ij with i € S and

152



j & S we have a® # b/ because a® ¢ 1(j).
For the perfect matching problem we consider two different games.

FIRST MATCHING GAME I'; = (N, A, u)
e N=V
e A= N(i)={jeV|ijecE}
e u(a)=1 & FeN@G) :a'=jNdl =i

For an action profile a we consider the set M (a) = {ij € E | a* = jAa’ = i}. Obviously
M (a) is a matching for all action profiles a € A. An action profile is a Nash equilibrium
of I's if and only if M is a maximal matching, and a set S is potentially successfull, if and
only if there exists a matching M such that S is the set of all end vertices of M.

SECOND MATCHING GAME T, = (N, A, u)
e N=V
o« Al=N(i)={jeV|ije E}
e u(a)=1 & 3jE€N():a'=jAa’ =iandfork # j a* #i

The set M (a) for an action profile is defined as above. Again a is a Nash equilibrium if
and only if M (a) is a maximal matching. However, the only potentially successful sets
of players are all vertices of one component of G or all vertices of the union of some
components of G, given that G has a perfect matching.

3 Results

We propose the following simple trial and error learning rule for a player 7 the game I's.

1. Choose equiprobably a random color out of [(i) for the action a’ in the first round
of the game.

2. After round ¢ (¢ > 1) keep the current color if round ¢ is won, otherwise choose
equiprobably a random color out of /() for the next round.

Now consider the Markov chain (X;);cn on the state space A where X} denotes the color
chosen by ¢ in round ¢, if all players apply the trial and error rule.

Theorem 1 If all players in the game 'y act according to the trial and error rule, with

probability 1 there is a time T after which X; = c for all t > T, where c is a proper
l-coloring of the graph G.
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Proof. For every proper [-coloring c the set S, = {¢} C A is an absorbing subset of
the state space of the Markov chain (X );cn, i.e. once the trajectory of the Markov chain
hits the set, it will never leave it. This is obvious, since every player gets payoff 1 if all
players choose a color according to c. Since the state space is finite, all we have to show
is, that these are the only minimal absorbing subsets of the space state. Assume there
is a subset S C A which is minimal absorbing, i.e. any trajectory of the Markov chain
hitting S cannot leave S and S contains no proper subset which is absorbing. Thus, no
action profile in S corresponds to a proper [-coloring. Let ¢ be a proper [-coloring and
a an action profile in .S where a maximum number of vertices chooses a color according
to c. Since a is not a proper coloring, there must be an edge ij such that a’ = a’. But
then at least one of the two vertices, say i is not colored according to c. Since both players
loose in a with positive probability 7 changes the color to ¢’ and all other players keep their
colors. That means (a~%,c) is in .S which contradicts the choice of a. Hence, the only
minimal absorbing subsets of A are singeltons corresponding to proper [-colorings of G
which proves the statement of the theorem. O

Since the game I'; is a special case of I'5 the theorem also applies to usual vertex colorings.
For the game I'4 we consider the the following trial and error rule for a player ¢:

1. Choose equiprobably a random neighbor out of N (i) for the action a’ in the first
round of the game.

2. After round t ¢ > 1 keep the current choice if round ¢ is won, otherwise choose
equiprobably a random neighbor out of N (7) for the next round.

We consider the Markov chain (X )y on the state space A where X denotes the neigh-
bor chosen by 7 in round ¢, if all players apply the trial and error rule

Theorem 2 If all players in the game 'y on a graph G having a perfect matching M
act according to the trial and error rule, with probability 1 there is a time T after which
Xy = bforallt > T, where the set M(b) = {ij € E|b" = j Ab = i} is a perfect
matching of the graph G.

Proof. For every action profile b where M (b) is a perfect matching the set {b} is ab-
sorbing, because all players get payoff 1 and will not change their actions. We argue that
these singletons are the only minimal absorbing subsets of A. Suppose there is a differ-
ent minimal absorbing subset .S, then S cannot contain an action profile b where M (b)
is a perfect matching. For a perfect matching M let b € A be the action profile with
b = j & ij € M Let a be an element of S with a maximum number of players i
with a® = b%. Since M (a) is no perfect matching there is an edge 4j such that a’ = j
and a7 # . Thus both players get payoff 0 in @ and may change their actions in the next
round. For at least one of both players, say i a’ # b’. But then with positive probability
the action profile in the next round is (¢, b") € S which contradicts the choice of S.
Thus, the only minimal absorbing subsets of the state space are singletons corresponding
to perfect matchings, which proves the statement of the theorem. O
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Remark

If all players in the game 'y on a connected graph G without a perfect matching M act
according to the trial and error rule, with probability 1 the play of no player will converge
to a constant play.

Theorem 3 If all players in the game I's on a graph G without isolated vertices act ac-
cording to the trial and error rule, with probability 1 there is a subset S of players and a
time T after which X = b® for allt > T, where the set M (b) = {ij € E | b' = jAY =
i} is a maximal matching of the graph G and S is the set of all end vertices of M (b).

The proof of Theorem 3 is similar to that of Theorem 2 and is omitted here.

4 Concluding Remarks

The results of the paper show that graph problems can be solved using learning algorithms
in suitable binary payoff games. Morover, the information on the structure of the graph,
needed by the players of the game is very little. In fact, they need nothing more than
the own payoff and therefore do not even have to be able to observe the actions of the
neighbors directly. On the other hand, convergence needs a lot of time. But since the
coloring problems are NP-complete, efficient algorithms were not to be expected. The
results seem to indicate, that the simple trial and error rules lead to convergence to a
desirable outcomes like Nash equilibria or cooperative winning strategies in any binary
payoff game. That this is not the case was shown by an example of Hart and Mas-Colell
(Theorem 1 in [HMO6]).
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