
cbe

A. Heuer et al. (Hrsg.): BTW 2019 – Workshopband,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 1

Computation Offloading in JVM-based Dataflow Engines

Haralampos Gavriilidis1

Abstract: State-of-the-art dataflow engines, such as Apache Spark and Apache Flink scale out on
large clusters for a variety of data-processing tasks, including machine learning and data mining
algorithms. However, being based on the JVM, they are unable to apply optimizations supported by
modern CPUs. On the contrary, specialized data processing frameworks scale up by exploiting modern
CPU characteristics. The goal of this thesis is to find the sweet spot between scale-out and scale-up
systems by offloading computation from dataflow engines to specialized systems. We propose two
computation offloading methods, reason about their applicability, and implement a prototype based
on Apache Spark. Our evaluation shows that for compute-intensive tasks, computation offloading
leads to performance improvements of up to a factor of 2.5x. For certain UDF scenarios, computation
offloading performs worse by up to a factor of 3x: our microbenchmarks show that 80% of the time is
spent on serialization operations. By employing data exchange without serialization, computation
offloading achieves performance improvements by up to 10x.
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1 Introduction

Dataflow engines are a popular tool for large-scale data processing, due to their user-friendly
programming interfaces and their ability to scale-out on clusters. Through their numerous
application programming interfaces (APIs), dataflow engines provide domain-specific
abstractions for a variety of data processing tasks, such as relational processing, graph
processing, and machine learning. Dataflow programs consist of chained data processing
operators, while custom functionality is added by user-defined functions (UDFs). State-of-
the-art dataflow engines, such as Apache Spark [Za12] and Apache Flink [Al14] provide
their standard APIs in JVM-based programming languages, e.g. Scala and Java, since they
are built on the JVM. JVM-based languages are a convenient choice for users, because of
their higher-level abstractions, but at the same time are incapable of applying lower-level
optimizations supported by modern CPUs [Cr15; Es18]. Additionally, in the case of big
data applications, the garbage collection of a large number of objects causes execution stalls
[Ng16]. On the contrary, specialized processing frameworks, such as database systems
[Ne11] and numerical libraries are built using lower-level programming languages, and
therefore provide better support for CPU-specific optimizations. To enhance dataflow
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engines with native performance, we propose to offload computations from the JVM to
native runtimes. We describe the applicability of computation offloading in current systems,
and discuss the challenges of such an integration. More specifically, we make the following
contributions:

• We propose two methods for computation offloading in state-of-the-art dataflow
engines and describe a prototype implementation on Apache Spark.
• We evaluate our approaches with microbenchmarks and end-to-end benchmarks using

several types of UDFs.

2 Background

In this section we give a brief overview of dataflow engines and the JVM memory model.

2.1 Dataflow Engines

In the following we describe the main characteristics of state-of-the-art dataflow engines,
such as Apache Spark [Za12] and Apache Flink [Al14].
Programming Model. Dataflow engines employ distributed collection processing, in-
troduced by the MapReduce paradigm. Users implement dataflow programs by chaining
second-order functions, such as map and reduce. Custom functionality is added by UDFs.
Higher-level APIs offer domain-specific operators, e.g. for relational processing, graph
processing and machine learning. Each operator describes a transformation to the dataset.
The composed operator tree forms a directed graph, used for optimization and execution.
Architecture and Execution Model. Dataflow engines use the master/worker model in
a shared-nothing environment. Each worker node runs a JVM instance, which is used
to execute processing tasks. Workers receive processing instructions and execute them
independently. Intermediate computation results are exchanged between workers through
their network interface. During execution, workers store and process data in memory, and
move it to the disk only when it exceeds the memory size. The discussed dataflow engines
implement the iterator model, where every physical operator is executed element-wise for
all data records. For failed computations, dataflow engines use recovery mechanisms, such
as lineage graphs and snapshots.

2.2 JVM Heap and Off-Heap

The JVM memory is organized around objects. New objects are created on the Heap, which
is periodically scanned by the garbage collector. The garbage collector organizes objects
based on their age and cleans unreferenced objects. Next to the Heap, JVM applications have
access to the Off-Heap. Binary data residing on the Off-Heap is accessed as in lower-level
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languages, using memory pointers. Since the Off-Heap is not managed by the JVM, it is
not subject to garbage collection. However, it is necessary to implement manual memory
management within applications to avoid JVM crashes.

3 Computation Offloading in Dataflow Engines

In this section, we describe our computation offloading approach by the example of UDF
processing. First, we analyze the current UDF processing method in dataflow engines
and discuss potential bottlenecks. Second, we discuss two mechanisms for data exchange
between a worker JVM process and a native process. Finally, we describe the implementation
of our computation offloading prototype in Apache Spark.

3.1 Current UDF Processing

UDFs are important building blocks of dataflow programs. Depending on the semantics
of the surrounding operator, UDFs are either applied on single elements or on groups of
elements. In JVM-based dataflow engine APIs, UDFs are implemented in Java or Scala.
During distributed execution, workers deserialize binary data received from their network
interface before processing the UDF, as illustrated in Fig. 1. Incoming data is deserialized
from the Off-Heap memory to the Heap, before processing the UDF. Subsequently, the
UDF result is serialized from the Heap to the Off-Heap memory, and sent over the network
interface. We observe three performance bottlenecks in the current UDF processing method.

Fig. 1: Current UDF processing method. Fig. 2: UDF computation offloading.

First, instead of directly processing the data, workers must deserialize it and transform it
into objects2. Second, because of the dataflow engine execution model, data is serialized

2 Memory management in Flink: https://flink.apache.org/news/2015/05/11/Juggling-with-Bits-and-Bytes.html
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row-wise. This means that for every row on the Off-Heap, the respective object will be
created on the Heap. Garbage collection of a large number of objects leads to execution stalls
[Ng16]. Third, the JVM runtime hinders lower-level optimizations, e.g. SIMD instructions,
supported by modern CPUs [Cr15; Es18].

3.2 UDF Offloading Architecture

In the following, we describe an architecture for moving UDF computations from the JVM to
native environments. Executing the UDF in a native environment avoids the deserialization
operations, the garbage collection overhead, and allows for optimized processing using
CPU-specific instructions. The architecture of our approach is depicted in Fig. 2. Using a
shared memory area, the worker is able to exchange data between the the JVM and a native
process. The UDF is offloaded from the JVM task executor to a native task executor. We
propose two methods to exchange data between the JVM and the native runtime.

Fig. 3: Off-Heap data exchange. Fig. 4: On-Heap data exchange.

Off-Heap Offloading. During the off-heap data exchange method illustrated in Fig. 3, the
Off-Heap memory is used as a shared memory region between the worker JVM and the
native process. Since languages such as C and C++ process binary data, it is not necessary
to transform the data before UDF execution in the native process. By exchanging a memory
pointer, the native process has access to the data on the Off-Heap. A disadvantage of this
method, is that native UDF execution is carried out directly on network buffers. This means
that if the data is serialized row-wise in the network buffers, no optimizations for columnar
processing can be applied. Moreover, network buffers contain metadata, such as event logs,
next to the data records, which hinders efficient memory access during UDF processing.
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On-Heap Offloading. To address the limitations of the off-heap method regarding data
formats, we introduce the on-heap method. As illustrated in Fig. 4, after receiving and
deserializing the data to the JVM Heap, the objects are serialized to the JVM Off-Heap,
through the offloading component. The result of the native UDF is written to the JVM
Off-Heap. Subsequently, the offloading component deserializes the result binary data to the
Heap, which is then serialized again by the worker to send it over the network interface. An
advantage of the on-heap approach is that its implementation is possible without altering
the dataflow engine core. Moreover, since a custom serializer is provided in the offloading
component, it is possible to choose the format for UDF processing, instead of being bound
to the format in the network buffer. A disadvantage of the discussed approach is the
overhead of the mediating computation offloading component. On the one hand, it allows to
choose between data formats for improving the UDF performance. On the other hand, the
intermediate serialization and deserialization operations lead to significant performance
overhead, as we discuss in the next section.

The main advantage of the off-heap method is that serialization operations are completely
avoided. However, it is not possible to implement it within current systems, without
changing system components. On the contrary, the on-heap method is applicable without
any modifications. The main disadvantage of the on-heap method, is the overhead of
the intermediate serialization operations, which allow to change the data format before
processing. Converting the data to a columnar format, is beneficial for certain operations, e.g.
aggregations that reference few columns of a dataset. Additionally, aggregation UDFs have
a small result size, a property that minimizes the on-heap’s intermediate serialization step
overhead. Furthermore, using the on-heap method, efficient memory access is guaranteed
in the native UDF, since the offloading component serializes only necessary record data.

3.3 Prototype on Spark

We implement our on-heap offloading prototype on top of Apache Spark. We use the interface
of the mapPartitions operator to implement the computation offloading component, which
serializes and deserializes all intermediate input and output data. For the serialization
operations we use the ByteBuffer library3, which allows to create ByteBuffer objects
on the Off-Heap (DirectBuffer objects). We use custom row and column serialization
for data exchange. For the row-oriented serialization, we write all input element attributes
consequently to one DirectBuffer, while for the column-oriented serialization we use as
many DirectBuffer objects as input columns. For our prototype, we implement UDFs in C,
and compile them to shared libraries using gcc. We use the Java Native Interface4 (JNI), a
framework for embedding native applications within the JVM runtime, to register the native
functions in our prototype. Data exchange is established by serializing data to DirectBuffer
objects and passing pointers and the input data size as the native function parameters.

3 https://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html
4 https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
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Our prototype uses pre-compiled compute kernels implemented in C. To build optimized
kernels for the native task executor, lower-level libraries that make use of specialized
hardware and SIMD instructions can be used, e.g. Intel MKL5, BLAS6. For arbitrary UDF
support, it is necessary to extend the prototype with a compiler component, which translates
UDFs to lower-level representations. Furthermore, to implement the off-heap approach in
current systems, UDF interfaces which provide access to serialized buffers for the native
task executor are necessary7, for both row and columnar formats.

4 Evaluation

In this section, we evaluate the performance of our proposed computation offloading
approach. We first present a set of Java microbenchmarks that measure the performance
of standard UDF processing compared to the on-heap and off-heap offloading methods.
Furthermore, we evaluate our prototype on Apache Spark in several UDF scenarios.

4.1 Microbenchmarks

We conduct a set of Java microbenchmarks to get insights about the performance of the
standard approach and our introduced offloading methods.
Setup. We execute our benchmarks on a machine with an Intel(R) Xeon(R) E5530 CPU
(16 cores) with a clock rate of 2.40GHz and 20 GB of main memory, running Ubuntu 14.04.
For the benchmarks we use Java version 1.8 and Scala version 2.11 with the Hotspot VM
25.181-b13. We initialize the JVM with 10 GB memory. We use GCC to compile C code
to native libraries and provide the compilation flags -O3 -march=native -mtune=native,
which enable vectorization among other optimizations. We perform the microbenchmarks
using JMH8, a benchmarking library for Java. We fork each experiment three times, perform
ten warmup iterations and then execute the experiment five times. We report the average
execution time of five repetitions.
Offloading Approaches. To evaluate our offloading approaches, we implement UDFs of
two types, a euclidean distance function that is applied to two fields of every row, and an
aggregation function that sums all elements of all rows. For a fixed data size of 500MB
containing integers, we scale the number of rows and columns. For example, the 2 column
dataset has 62,500,000 rows, while the 10 column dataset has 12,500,000 rows.

We present the results of the two UDF microbenchmarks in Fig. 5. The standard UDF
processing method involves deserialization, processing and serialization on the JVM. The
off-heap UDF method involves only processing in C, while the on-heap method involves the

5 https://software.intel.com/en-us/mkl
6 http://www.netlib.org/blas/
7 Current Spark and Flink both support relational operations on serialized data, but not for UDFs
8 http://openjdk.java.net/projects/code-tools/jmh/
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Fig. 5: Standard UDF processing compared to Off-heap and On-Heap computation offloading.

standard serialization and deserializations on the JVM, processing in C and an additional
serialization step for the intermediate results, as described in Sect. 3. For the distance UDF,
we observe that the off-heap method outperforms the standard approach by up to a factor of
10x, for a dataset of two columns. The performance gap drops while increasing the column
size, since a larger column size means less created JVM objects, and hence less serialization
overhead. The on-heap method performs almost 1.5x worse than the standard method, since
it involves additional serialization operations for the intermediate result. We observe the
same results for the sum UDF. The performance gap between the off-heap and the standard
method is larger, a result possibly explained by faster aggregation processing in C.
Standard UDF Analysis. In order to explain the performance of the standard UDF
processing method, we microbenchmark all three involved operations in the distance
function: deserialization of the input, processing, and serialization of the output. The
results are shown in Fig. 6. We observe that for a dataset size of 500MB the performance
for processing a two-column dataset is 2x worse than the performance of processing a
ten-column dataset. The detailed results show that when the column number is increased,
the serialization and deserialization overhead is minimized, and the processing performance
is increased. When the number of columns is increased, the number of rows is decreased,
hence less objects are created and less serialization and deserialization overhead is created.
Nevertheless, for ten-column datasets, the execution time of serialization and deserialization
operations attribute to 80% of the overall UDF execution time.

4.2 Prototype Evaluation

We implement two UDFs using our on-heap offloading approach in Apache Spark, as
discussed in Sect. 3. We use two synthetic datasets that contain elements of type double.
For a fixed size of 5GB, the first dataset has 2 columns, while the second dataset has 10
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Fig. 7: Compute-heavy UDF in Spark

columns. In the prototype, we use a columnar format for data serialization.
Distance UDF. The first UDF, is the euclidean distance function described earlier. For
the two-column dataset, we apply the distance function on both columns, while for the
ten-column dataset we apply the distance function on two columns. Furthermore, for the
ten-column dataset, we apply the distance function on all ten fields, calculating the distance
between two five-dimensional points (for each row). For each input row, the UDF produces
an output row with an additional column, the result of the distance function. The results in
Fig. 8a show that the on-heap computation offloading approach (Spark with offloading) has
similar performance to the standard Spark UDF processing (Spark) only in the case of a
two-column dataset. For the ten-column dataset, the offloading approach performs up to 3x
worse than the standard method. The performance behavior is explained by the intermediate
serialization steps needed for the on-heap approach.
MinMax UDF. The second UDF, is an aggregation that finds the minimum and maximum
elements of a column. As in the previous experiments, we apply the aggregation UDF to
both columns of a two-column dataset, on two columns of a ten-column dataset, and on ten
columns of a ten-column dataset. The results are shown in Fig. 8b. The offloading approach
(Spark with offloading) outperforms the standard Spark UDF processing (Spark) by a factor
of 1.5x for the two column dataset, and by a factor of 1.3x for the ten column dataset when
the UDF references only two columns out of ten. When the UDF references all ten columns
of the ten-column dataset, the performance of the offloading approach is 4.5x worse than the
standard UDF processing. The result of the first two experiments shows that the offloading
is beneficial, despite the intermediate serialization overhead. For the experiment with the
ten-column dataset, we serialize only the two needed columns, this is why the two methods
have similar performance. Nevertheless, when all columns are referenced inside the UDF,
the serialization overhead is too high, and the offloading is not beneficial.
Compute-intensive UDF. In our last experiment, we evaluate our prototype for compute-
intensive UDFs, by applying a distance function on two columns of the two-column dataset,
within an iteration. To increase the UDF workload, we increase the number of iterations.
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We include a factor that changes in each iteration, to avoid potential compiler optimizations.
The results in Fig. 7 show that for a small workload, the performance between the two
approaches is the same, similarly to the previous experiments. However, when the workload
is increased, the performance of Spark with offloading gets a speedup of 2.5x.

Tuple2 2 Fields Tuple10 2Fields Tuple10 10 Fields
0

100

200

300

Tuple & Projection Size

Ru
nt

im
e

(m
s)

Spark
Spark with offloading

(a) Euclidean distance UDF

Tuple2 2 Fields Tuple10 2Fields Tuple10 10 Fields
0

50

100

150

Tuple & Projection Size

Ru
nt

im
e

(m
s)

Spark
Spark with offloading

(b) MinMax UDF

Fig. 8: Computation Offloading prototype evaluation.

4.3 Discussion

The results of our microbenchmarks show that serialization overhead is not negligible,
since it takes up to 80% of the execution time. Off-heap computation offloading is the most
performant approach, compared to the standard and the on-heap offloading approach, since
it does not involve any serialization operations. However, as discussed in Sect. 3 it can not
be implemented in current dataflow engines without altering system core elements. The
benchmarks of our prototype show that it is possible to achieve better performance than the
standard processing method, despite the serialization overhead of the on-heap approach.
This performance is achieved by serializing only necessary fields in the UDF and using a
columnar format for processing. We observe that the overhead of intermediate serialization
operations caused by the on-heap approach is negligible for compute-intensive UDFs, since
in that case computation offloading achieves a speedup of 2.5x.

5 Related Work

To enable native performance in dataflow engines, Essertel et al. propose Flare [Es18], a
code generation approach. Flare accelerates SparkSQL programs, by carrying out execution
and data readers in its own runtime, completely cutting of the Spark execution engine.
Rosenfeld et al. propose a similar approach, where SparkSQL programs are transformed to
database query plans and executed within a database engine [Ro17]. On the contrary, our
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approach does not completely cut off the execution from the dataflow engine runtime, but it
is used to offload specific parts of dataflow programs, e.g. UDFs.
Project Tungsten9 is an effort of Spark developers to enhance the platform with native
performance, by introducing binary processing, explicit memory management and code
generation. However, Project Tungsten is built on the JVM and does not use a separate
native runtime, as we propose in this paper.

6 Conclusion

We proposed an approach to offload computations from a JVM-based dataflow engine
to a native environment. To that end, we described two data exchange mechanisms for
computation offloading, which allow to process UDFs outside the JVM Heap, and to
exploit modern CPU characteristics. Our evaluation showed that computation offloading is
beneficial for compute-intensive UDFs and in certain cases for aggregation UDFs.
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