
This volume contains the contributions of the Software Engineering (SE) 2016
conference held from 23.02.2016 - 26.02.2016 in Vienna,   Austria.

The SE proceedings contain extended abstracts from the scientific program, the
technology transfer program, and the workshop program.

ISSN 1617-5468
ISBN 978-3-88579-646-6

Gesellschaft für Informatik e.V. (GI)

publishes this series in order to make available to a broad public
recent findings in informatics (i.e. computer science and informa-
tion systems), to document conferences that are organized in co-
operation with GI and to publish the annual GI Award dissertation.

Broken down into
• seminars
• proceedings
• dissertations
• thematics
current topics are dealt with from the vantage point of research and
development, teaching and further training in theory and practice.
The Editorial Committee uses an intensive review process in order
to ensure high quality contributions.

The volumes are published in German or English.

Information: http://www.gi.de/service/publikationen/lni/

252

GI-Edition
Lecture Notes
in Informatics

Jens Knoop, Uwe Zdun (Hrsg.)

Software Engineering 2016

Fachtagung des GI-Fachbereichs
Softwaretechnik

23.–26. Februar 2016
Wien

Proceedings

Je
n

s
K

n
o

o
p

, U
w

e
Z

d
u

n
 (

H
rs

g.
):

So
ft

w
ar

e
En

gi
n

ee
ri

n
g

20
16

3026907_GI_P_252_Cover.indd 1 04.02.16 16:16

Jens Knoop, Uwe Zdun (Hrsg.)

Software Engineering 2016

23.–26. Februar 2016
Wien, Österreich

Gesellschaft für Informatik e.V. (GI)

Lecture Notes in Informatics (LNI) - Proceedings
Series of the Gesellschaft für Informatik (GI)

Volume P-252

ISBN 978-3-88579-646-6
ISSN 1617-5468

Volume Editors
Univ.-Prof. Dr. Jens Knoop

Technische Universität Wien
Argentinierstraße 8, 1040 Wien, Österreich
knoop@complang.tuwien.ac.at

Univ.-Prof. Dr. Uwe Zdun
Universität Wien
Währinger Straße 29, 1090 Wien, Österreich
uwe.zdun@univie.ac.at

Series Editorial Board
Heinrich C. Mayr, Alpen-Adria-Universität Klagenfurt, Austria
(Chairman, mayr@ifit.uni-klu.ac.at)
Dieter Fellner, Technische Universität Darmstadt, Germany
Ulrich Flegel, Hochschule für Technik, Stuttgart, Germany
Ulrich Frank, Universität Duisburg-Essen, Germany
Johann-Christoph Freytag, Humboldt-Universität zu Berlin, Germany
Michael Goedicke, Universität Duisburg-Essen, Germany
Ralf Hofestädt, Universität Bielefeld, Germany
Michael Koch, Universität der Bundeswehr München, Germany
Axel Lehmann, Universität der Bundeswehr München, Germany
Peter Sanders, Karlsruher Institut für Technologie (KIT), Germany
Sigrid Schubert, Universität Siegen, Germany
Ingo Timm, Universität Trier, Germany
Karin Vosseberg, Hochschule Bremerhaven, Germany
Maria Wimmer, Universität Koblenz-Landau, Germany

Dissertations
Steffen Hölldobler, Technische Universität Dresden, Germany
Seminars
Reinhard Wilhelm, Universität des Saarlandes, Germany
Thematics
Andreas Oberweis, Karlsruher Institut für Technologie (KIT), Germany

! Gesellschaft für Informatik, Bonn 2016
printed by Köllen Druck+Verlag GmbH, Bonn

Vorwort
Die Software Engineering-Konferenz findet 2016 in Wien statt. Angelehnt an das aktuelle
Motto der Stadt Wien “SMART CITY WIEN” – so bezeichnen wir unsere Stadt, die den
Herausforderungen des 21. Jahrhunderts begegnet”, lautet das Motto für diese Konferenz:
Software Engineering für Smart Cities.

Software Engineering ist eine praxisorientierte Wissenschaftsdisziplin, deren Ergebnisse in
die Praxis der Softwareentwicklung einfließen sollten. Gleichzeitig geben relevante Fragen
aus der Praxis immer wieder den Anstoß für innovative Forschungsprojekte. Zum Aus-
tausch zwischen den Wissenschaftlern und Praktikern im Bereich des Software Enginee-
ring, bietet die Software Engineering 2016 ein Forum für die deutschsprachige Software
Engineering Community. In parallelen Vortragssitzungen werden Highlights aus der Wis-
senschaft, aus dem praktizierten Technologietransfer und aus der industriellen Praxis be-
richtet. Diese Vortragssitzungen werden eingerahmt von hochkarätigen Keynote-Vorträ-
gen.

Die Konferenzserie SE ist die deutschsprachige Konferenz zum Thema Software Enginee-
ring des Fachbereichs Softwaretechnik der Gesellschaft für Informatik e. V. (GI). Die Or-
ganisatoren der SE 2016 von der Technischen Universität Wien und der Universität Wien,
sowie die Österreichische Computer Gesellschaft (OCG), laden Sie herzlich nach Wien ein.

Im wissenschaftlichen Programm setzt die SE 2016 das erfolgreiche Format der letzten
Jahre fort. Alle Vorträge stellen hochkarätige Forschungsbeiträge vor, die in den vergange-
nen zwei Jahren auf internationalen Spitzenkonferenzen oder in führenden Fachzeitschrif-
ten der Softwaretechnik veröffentlicht wurden.

Das Ziel des wissenschaftlichen Programms ist die Stimulation des wissenschaftlichen Dis-
kurses innerhalb der deutschsprachigen Software Engineering Community sowie die Erhö-
hung des “Impacts” bereits veröffentlichter Ergebnisse.

Alle Einreichungen wurden durch das Programmkomitee ausgewählt und von mindestens
3 Gutachtern begutachtet. Für jeden akzeptierten Beitrag finden Sie eine Kurzfassung im
Umfang von 2 Seiten in diesem Tagungsband, ebenfalls Zusammenfassungen der beiden
eingeladenen Hauptvorträge von Prof. Uwe Aßmann, TU Dresden, und Prof. Wilhelm Has-
selbring, CAU Kiel.

Weiters finden Sie in diesem Tagungsband Zusammenfassungen der akzeptierten Work-
shops, sowie des Technologietransferprogramms.

Wir freuen uns, Sie in Wien begrüßen zu dürfen und wünschen Ihnen eine spannende Soft-
ware Engineering 2016 Tagung!

Wien, im Februar 2016

Jens Knoop, Konferenzvorsitzender

Uwe Zdun, Programmkomiteevorsitzender

Organisationskomitee

Konferenzvorsitzender: Jens Knoop, TU Wien
Leitung des Programmkomitees: Uwe Zdun, Universität Wien
Workshop-Vorsitzender: Wolf Zimmermann, Universität Halle-Wittenberg
Technologietransfer: Michael Felderer, Universität Innsbruck

Wilhelm Hasselbring, Universität Kiel

Programmkomitee wissenschaftliches Programm

Uwe Zdun Universität Wien
Uwe Assmann Universität Dresden
Gregor Engels Universität Paderborn
Michael Goedicke Universität Duisburg-Essen
Wilhelm Hasselbring Universität Kiel
Maritta Heisel Universität Duisburg-Essen
Jens Knoop Technische Universität Wien
Florian Matthes TU München
Klaus Pohl Universität Duisburg-Essen
Ralf Reussner KIT/FZI, Karlsruhe
Dirk Riehle Friedrich-Alexander-Universität Erlangen-Nürnberg

Workshop-Komitee

Wolf Zimmermann Martin-Luther-Universität Halle-Wittenberg
Anne Koziolek Karlsruhe Institute of Technology
Christian Panis Catena, NL
Sibylle Schupp Technische Universität Hamburg-Harburg

Inhaltsverzeichnis

Testing

Lei Ma, Cyrille Valentin Artho, Cheng Zhang, Hiroyuki Sato, Johannes
Gmeiner, Rudolf Ramler
Guiding Random Test Generation with Program Analysis……………………… 15

Mike Czech, Marie-Christine Jakobs, Heike Wehrheim
Just test what you cannot verify!…………………………..… 17

Michael Felderer, Andrea Herrmann
A Controlled Experiment on Manual Test Case Derivation from UML Activ-
ity Diagrams and State Machines.………………………………………………..… 19

Software Construction 1

Yudi Zheng, Lubomír Bulej, Walter Binder
Accurate Profiling in the Presence of Dynamic Compilation…………………… 21

Matthias Keil, Sankha Narayan Guria, Andreas Schlegel, Manuel Ge-
ffken, Peter Thiemann
Transparent Object Proxies for JavaScript...............................………………… 23

Sebastian Proksch, Johannes Lerch, Mira Mezini
Intelligent Code Completion with Bayesian Networks...………………..……..… 25

Performance Modelling and Analysis 1

Axel Busch, Qais Noorshams, Samuel Kounev, Anne Koziolek, Ralf
Reussner, Erich Amrehn
Automated Workload Characterization for I/O Performance Analysis in Vir-
tualized Environments……………...……………………..………………………….. 27

Norbert Siegmund, Alexander Grebhahn, Sven Apel, Christian Kästner
Performance-Influence Models……..………………… 29

Matthias Kowal, Max Tschaikowski, Mirco Tribastone, Ina Schaefer
Scaling Size and Parameter Spaces in Variability-aware Software Perfor-
mance Models……..………………………………….……………………………..… 33

Requirements Engineering

Daniel Méndez Fernández, Stefan Wagner
Naming the Pain in Requirements Engineering: A Survey Design and Ger-
man Results.………………………………………………..………………………….. 35

Patrick Rempel, Patrick Mäder
A Quality Model for the Systematic Assessment of Requirements Traceabil-
ity………………………………………………………………………………………... 37

Eya Ben Charrada, Anne Koziolek, Martin Glinz
Supporting requirements update during software evolution…………………….. 39

Software Construction 2

Florian Rademacher, Martin Peters, Sabine Sachweh
Design of a Domain-Specific Language based on a technology-independent
Web Service Framework……………………………………………………………... 41

David Pfaff, Sebastian Hack, Christian Hammer
Learning how to Prevent Return-Oriented Programming Efficiently………….. 43

Stefan Winter, Oliver Schwahn, Roberto Natella, Neeraj Suri, Domenico
Cotroneo
No PAIN, No Gain? The Utility of PArallel Fault Injections…………………… 45

Performance Modelling and Analysis 2

Samuel Kounev, Fabian Brosig, Philipp Meier, Steffen Becker, Anne
Koziolek, Heiko Koziolek, Piotr Rygielski
Analysis of the trade-offs in different modeling approaches for performance
prediction of software systems………………………………………………………. 47

Florian Zuleger, Ivan Radicek, Sumit Gulwani
Feedback Generation for Performance Problems in Introductory Program-
ming Assignments……………………………………………………………………... 49

Robert Heinrich, Philipp Merkle, Jörg Henß, Barbara Paech
Integrating business process simulation and information system simulation
for performance prediction………………………………………………………….. 51

Empirical Software Engineering 1

Ingo Scholtes, Pavlin Mavrodiev, Frank Schweitzer
From Aristotle to Ringelmann: A large-scale analysis of team productivity
and coordination in Open Source Software projects…………………………… 53

Marco Kuhrmann, Claudia Konopka, Peter Nellemann, Philipp Diebold,
Juergen Muench
Software Process Improvement: Where Is the Evidence?.................................. 55

Harald Störrle
Cost-effective evolution of research prototypes into end-user tools: The
MACH case study……………………………………………………………………... 57

Software Construction 3

Ben Hermann, Michael Reif, Michael Eichberg, Mira Mezini
Getting to Know You: Towards a Capability Model for Java………………… 59

Krishna Narasimhan, Christoph Reichenbach
Copy and Paste Redeemed…………………………………………………………… 61

Michael Eichberg, Ben Hermann, Mira Mezini, Leonid Glanz
Hidden Truths in Dead Software Paths……………………………………………. 63

Empirical Software Engineering 2

Michael Klaes
Effekte modellbasierter Test- und Analyseverfahren in Unternehmen - Ergeb-
nisse einer großangelegten empirischen Evaluation mittels industrieller Fall-
studien……………………………………………………………………………... 65

Yulia Demyanova, Thomas Pani, Helmut Veith, Florian Zuleger
Empirical Software Metrics for Benchmarking of Verification Tools…………. 67

Guido Salvaneschi, Sven Amann, Sebastian Proksch, Mira Mezini
An Empirical Study on Program Comprehension with Reactive Programming 69

Business Process Engineering

Henrik Leopold, Jan Mendling, Artem Polyvyanyy
Supporting Process Model Validation through Natural Language Generation 71

Kathrin Figl, Ralf Laue
Kognitive Belastung als lokales Komplexitätsmaß in Geschäftsprozessmodel-
len……………………………………………………………………………………….. 73

Fabian Pittke, Henrik Leopold, Jan Mendling
Automatic Detection and Resolution of Lexical Ambiguity in Process Models 75

Product Lines

Jan Schroeder, Daniela Holzner, Christian Berger, Carl-Johan Hoel, Leo
Laine, Anders Magnusson
Design and Evaluation of a Customizable Multi-Domain Reference Architec-
ture on top of Product Lines of Self-Driving Heavy Vehicles – An Industrial
Case Study……………………………………………………………………………… 77

Maxim Cordy, Patrick Heymans, Axel Legay, Pierre-Yves Schobbens,
Bruno Dawagne, Martin Leucker
Counterexample Guided Abstraction Refinement of Product-Line Behav-
ioural Models………………………………………………………………………….. 79

Malte Lochau, Johannes Bürdek, Stefan Bauregger, Andreas Holzer,
Alexander von Rhein, Sven Apel, Dirk Beyer
On Facilitating Reuse in Multi-goal Test-Suite Generation for Software
Product Lines………………………………………………………………………….. 81

Empirical Software Engineering 3

Janet Siegmund, Norbert Siegmund, Sven Apel
How Reviewers Think About Internal and External Validity in Empirical Soft-
ware Engineering……………………………………………………………………... 83

Ulrike Abelein, Barbara Paech
Understanding the Influence of User Participation and Involvement on Sys-
tem Success – a Systematic Mapping Study……………………………………….. 85

Florian Fittkau, Alexander Krause, Wilhelm Hasselbring
Hierarchical Software Landscape Visualization for System Comprehension:
A Controlled Experiment…………………………………………………………….. 87

Modelling and Model-Driven Development

Philipp Niemann, Frank Hilken, Martin Gogolla, Robert Wille
Extracting Frame Conditions from Operation Contracts……………………… 89

Sven Wenzel, Daniel Poggenpohl, Jan Jürjens, Martín Ochoa
UMLchange - Specifying Model Changes to Support Security Verification of
Potential Evolution……………………………………………………………………. 91

Michael Vierhauser, Rick Rabiser, Paul Grünbacher, Alexander Egyed
A DSL-Based Approach for Event-Based Monitoring of Systems of Systems…. 93

Variability and Evolution 1

Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, Alexan-
der Egyed
Enhancing Clone-and-Own with Systematic Reuse for Developing Software
Variants………………………………………………………………………………… 95

Jörg Liebig, Sven Apel, Andreas Janker, Florian Garbe, Sebastian Oster
Morpheus: Variability-Aware Refactoring in the Wild…………………………... 97

Steffen Vaupel, Gabriele Taentzer, Rene Gerlach, Michael Guckert
Model-Driven Development of Platform-Independent Mobile Applications
Supporting Role-based App Variability……………………………………………. 99

Software Verification

Moritz Sinn, Florian Zuleger, Helmut Veith
A Simple and Scalable Static Analysis for Bound Analysis and Amortized
Complexity Analysis…………………………………………………………………... 101

Shahar Maoz, Jan Oliver Ringert
GR(1) Synthesis for LTL Specification Patterns…………………………………. 103

Dirk Beyer, Matthias Dangl, Daniel Dietsch, Matthias Heizmann, An-
dreas Stahlbauer
Witness Validation and Stepwise Testification across Software Verifiers…….. 105

Variability and Evolution 2

Birgit Vogel-Heuser, Alexander Fay, Ina Schaefer, Matthias Tichy
Evolution of Software in Automated Production Systems: Challenges and Re-
search Directions……………………………………………………………………… 107

Patrick Mäder, Alexander Egyed
Do developers benefit from requirements traceability when evolving and
maintaining a software system? .. 109

Joachim Schramm, Patrick Dohrmann, Marco Kuhrmann
Development of Flexible Software Process Lines with Variability Operations:
A Longitudinal Case Study…………………………………………………………... 111

Keynotes

Wilhelm Hasselbring
Continuous Software Engineering…………..……………………………………… 113

Uwe Aßmann
Working with Robots in Smart Homes and Smart Factories - Robotic Co-
Working………………………………………………………………………………… 115

Workshops

Michael Felderer, Wilhelm Hasselbring
SE FIT: Software Engineering Forum der IT Transferinstitute......................... 117

Andreas Krall, Ina Schaefer
ATPS 2016: 9. Arbeitstagung Programmiersprachen…………......................... 119

Constantin Scheuermann, Andreas Seitz
CPSSC: 1st International Workshop on Cyber-Physical Systems in the Con-
text of Smart Cities... 121

Horst Lichter, Bernd Brügge, Dirk Riehle
CSE 2016: Workshop on Continuous Software Engineering….......................... 123

Robert Heinrich, Reiner Jung, Marco Konersmann, Eric Schmieders
EMLS16: 3rd Collaborative Workshop on Evolution and Maintenance of
Long-Living Software Systems.. 125

Alexander Schlaefer, Sibylle Schupp, André Stollenwerk
FS-MCPS: 2nd Workshop on Fail Safety in Medical Cyber-Physical Systems 127

Rüdiger Weißbach, Jörn Fahsel, Andrea Herrmann, Anne Hoffmann,
Dieter Landes
LehRE: 2. Workshop „Lehre für Requirements Engineering“........................... 129

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 15

Guiding Random Test Generation with Program Analysis

Lei Ma1, Cyrille Artho2, Cheng Zhang3, Hiroyuki Sato4, Johannes Gmeiner5 and Rudolf
Ramler6

Abstract: Random test generation is effective in creating method sequences for exercising the
software under test. However, black-box approaches for random testing are known to suffer from
low code coverage and limited defect detection ability. Analyzing the software under test and
using the extracted knowledge to guide test generation can help to overcome these limitations. We
developed a random test case generator augmented by a combination of six static and dynamic
program analysis techniques. Our tool GRT (Guided Random Testing) has been evaluated on real-
world software systems as well as Defects4J benchmarks. It outperformed related approaches in
terms of code coverage, mutation score and detected faults. The results show a considerable im-
provement potential of random test generation when combined with advanced analysis techniques.

Keywords: Random testing, program analysis, static and dynamic analysis.

Random approaches for testing object-oriented programs can effectively generate se-
quences of method calls to execute the objects of the system under test (SUT). The test
data for input parameters are either constant values in case of primitive data types or
objects retuned by already generated method sequences, which can be used as inputs for
further test generation. The generation process incrementally builds more and longer test
sequences by randomly selecting methods and reusing previously generated method
sequences (that return objects) as input until a time limit is reached.

While being highly automated and easy to use, random testing may suffer from low code
coverage and limited defect detection ability when applied to real-world applications. It
is considered unlikely that random approaches are able to exercise all “deeper” features
of a reasonably-sized program by mere chance. These limitations are due to the adoption
of a black-box approach without using application-/implementation-specific knowledge.
Mining and leveraging information about the SUT can provide a valuable aid to guide
random testing and, thus, to overcome such limitations.

We developed an approach for random test generation, Guided Random Testing (GRT)
[Ma15], which has been augmented by an ensemble of six static and dynamic program
analysis techniques. They are used to extract and incorporate information on program

1 University of Tokyo, Japan, malei@satolab.itc.u-tokyo.ac.jp
2 National Institute of Advanced Industrial Science and Technology (AIST), Japan, c.artho@aist.go.jp
3 University of Waterloo, Canada, c16zhang@uwaterloo.ca
4 University of Tokyo, Japan, schuko@satolab.itc.u-tokyo.ac.jp
5 Software Competence Center Hagenberg (SCCH), Austria, johannes.gmeiner@scch.at
6 Software Competence Center Hagenberg (SCCH), Austria, rudolf.ramler@scch.at

16 Lei Ma et al.

types, data, and dependencies in the various stages of the test generation process. The
overall effectiveness of GRT results not only from applying each of the individual tech-
niques, but also from their combination and orchestration. Program information is ex-
tracted by some components at specific steps and passed to others to facilitate their tasks.

Fig. 1 shows the different techniques and how they are interacting. First, the SUT is
statically analyzed. Constant mining extracts constant values to create a diverse yet ap-
plication-specific input data set for test generation. The diversity is further increased by
applying input fuzzing and by favoring methods that change the state of input objects as
a side effect of their execution, which is determined by Impurity analysis. Information
about dependencies between methods is used by the technique Detective for constructing
method sequences returning input objects that are not in main object pool. Elephant
brain manages all the objects stored in the main object pool including exact type infor-
mation. Coverage information is recorded throughout test generation and is used by
Bloodhound to select methods not well covered so far. Orienteering estimates the execu-
tion time of each method sequence to accelerate the overall generation process.

Fig. 1: Static and dynamic program analysis techniques included in GRT.

GRT has been evaluated on 32 real-world projects and, when compared to other tools
(Randoop and EvoSuite), outperformed major peer techniques in terms of code coverage
(by 13%) and mutation score (by 9 %). On the four studied benchmarks from Defects4J,
which contain 224 real faults, GRT also showed better fault detection capability, finding
147 faults (66 %). Furthermore, in an in-depth evaluation on the latest versions of ten
popular open source projects, GRT successfully detected over 20 previously unknown
defects that were confirmed by the developers.

The results indicate that random testing has not yet reached its limits. There is still a
considerable potential for further improving random test generation approaches by in-
corporating advanced analysis techniques – a path we plan to follow in our future work.

References

[Ma15] Ma, L.; Artho, C.; Zhang, C.; Sato, H.; Gmeiner, J.; Ramler, R.: GRT: Program-
Analysis-Guided Random Testing. Proc. 30th IEEE/ACM Int. Conf. on Automated
Software Engineering (ASE 2015), Lincoln, Nebraska, USA, November 2015.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 17

Just test what you cannot verify!1

Mike Czech2 Marie-Christine Jakobs3 Heike Wehrheim4

Abstract: Software verification is an established method to ensure software safety. Nevertheless,
verification still often fails, either because it consumes too much resources, e.g., time or memory, or
the technique is not mature enough to verify the property. Often then discarding the partial verifica-
tion, the validation process proceeds with techniques like testing.

To enable standard testing to profit from previous, partial verification, we use a summary of the ver-
ification effort to simplify the program for subsequent testing. Our techniques use this summary to
construct a residual program which only contains program paths with unproven assertions. After-
wards, the residual program can be used with standard testing tools.

Our first experiments show that testing profits from the partial verification. The test effort is reduced
and combined verification and testing is faster than a complete verification.

Keywords:combination verification and validation, conditional model checking, static analysis, test-

ing, slicing

1 Overview

Although automatic software verification and its tool support evolved in recent years, soft-

ware verification still fails. The verified property may be beyond the capabilities of a tool

or its verification requires too many resources, e.g., time and memory. Thus, verification

cannot be applied in an “on-the-fly” context in which validation should be carried out in a

small amount of time and probably on a device with restricted resources. To still gain con-

fidence in the software, after a failed verification, further validation techniques like testing

are applied which often discard the previous, partial verification results.

Within the Collaborative Research Centre SFB 901 at the University of Paderborn we

developed two orthogonal approaches to combine verification and testing [CJW15]. Our

idea is to consider the partial verification during testing and only test paths which have not

been fully verified. To use standard testing techniques we build a new program for testing,

the residual program, which contains only the non-verified paths. Both approaches start

with a verification tool that keeps track of its (abstract) state space exploration in terms

of an abstract reachability graph (ARG). If the verification tool stops with an uncomplete

verification, it generates a condition as proposed in conditional model checking [Be12].

1 This work was partially supported by the German Research Foundation (DFG) within the Collaborative Re-

search Centre “On-The-Fly Computing” (SFB 901).
2 Universität Paderborn, Institut für Informatik, Warburger Str. 100, 33098, Paderborn, mczech@mail.upb.de
3 Universität Paderborn, Institut für Informatik, Warburger Str. 100, 33098, Paderborn,

marie.christine.jakobs@upb.de
4 Universität Paderborn, Institut für Informatik, Warburger Str. 100, 33098, Paderborn, wehrheim@upb.de

18 Mike Czech, Marie-Christine Jakobs und Heike Wehrheim

This condition is related to the ARG and describes in a graph manner which program paths

are proven correct and which remain. Next, our approaches use the condition to construct

the residual program. Afterwards, the residual program is tested.

Our first approach computes its residual program via a product combination of the program

and condition, excluding paths of the condition which are proven correct. Thus, due to e.g.

loop unwindings during verification, the residual program’s structure may differ from the

original program. It is only a semantical subprogram.

Our second approach constructs a syntactical subprogram which contains all statements

that influence the assertions which have not been fully verified. These assertions are all

assertions on the unexplored paths in the condition and become the slicing criteria for

dependence based slicing. At last, dependence based slicing builds the residual program.

We can easily combine our two approaches. First, we apply the product construction tech-

nique to construct an intermediate residual program. Second, the set of all assertions in the

intermediate residual program becomes our slicing criterion. Finally, we slice the interme-

diate residual program to obtain the final residual program for testing.

In our experiments, we used the verification tool CPACHECKER [BK11] for partial ver-

ification, Frama-C [Cu12] for slicing and the concolic test tool KLEE [CDE08]. On our

small benchmark suite, the combination of verification and testing was mostly faster than

complete verification. Additionally, the two slicing based approaches reduced the test ef-

fort (number of tests and program size) but none always outperformed the other.

Our proposed combinations of verification and testing demonstrate that testing benefits

from previous partial verification.

References

[Be12] Beyer, Dirk; Henzinger, Thomas A.; Keremoglu, M. Erkan; Wendler, Philipp: Conditional
Model Checking: A Technique to Pass Information Between Verifiers. In: FSE. FSE ’12.
ACM, pp. 1–11, 2012.

[BK11] Beyer, Dirk; Keremoglu, M.Erkan: CPAchecker: A Tool for Configurable Software Veri-
fication. In (Gopalakrishnan, Ganesh; Qadeer, Shaz, eds): CAV. volume 6806 of LNCS.
Springer, pp. 184–190, 2011.

[CDE08] Cadar, Cristian; Dunbar, Daniel; Engler, Dawson: KLEE: Unassisted and Automatic Gen-
eration of High-coverage Tests for Complex Systems Programs. In: OSDI. OSDI’08.
USENIX Association, pp. 209–224, 2008.

[CJW15] Czech, Mike; Jakobs, Marie-Christine; Wehrheim, Heike: Just Test What You Cannot
Verify! In (Egyed, Alexander; Schaefer, Ina, eds): FASE, volume 9033 of LNCS, pp.
100–114. Springer Berlin Heidelberg, 2015.

[Cu12] Cuoq, Pascal; Kirchner, Florent; Kosmatov, Nikolai; Prevosto, Virgile; Signoles, Julien;
Yakobowski, Boris: Frama-C. In (Eleftherakis, George; Hinchey, Mike; Holcombe, Mike,
eds): SEFM. volume 7504 of LNCS. Springer, pp. 233–247, 2012.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 19

Errors Made During Manual Test Case Derivation from
UML Activity Diagrams and State Machines:
Results of a Controlled Experiment

Michael Felderer1, Andrea Hermann2

1 Overview

This talk presents our recent Information and Software Technology journal article
[FH15] on a controlled experiment on manual test case derivation from UML activity
diagrams and state machines. Manual test case derivation from behavioral models like
UML activity diagrams or state machines is frequently applied in practice. But this kind
of manual test case derivation is error-prone and knowing these errors makes it possible
to provide guidelines to reduce them. The objective of the study presented in this talk
therefore is to examine which errors are possible and actually made when manually
deriving test cases from UML activity diagrams or state machines and whether there are
differences between these diagram types. We investigate the errors made when deriving
test cases manually in a controlled student experiment. The experiment was performed
and internally replicated with overall 84 participants divided into three groups at two
institutions. As a result of our experiment, we provide a taxonomy of errors made and
their frequencies. In addition, our experiment provides evidence that activity diagrams
have a higher perceived comprehensibility but also a higher error-proneness than state
machines with regard to manual test case derivation. This information enables the
development of guidelines for manual test case derivation from UML activity diagrams
and state machines which help to make manual test case derivation less error-prone and
are also discussed in this talk.

2 References

[FH15] Felderer, M.; Herrmann, A.: Manual test case derivation from UML activity diagrams
and state machines: A controlled experiment. Information & Software Technology,
61:1-15, 2015.

1 University of Innsbruck, Innsbruck, Austria, michael.felderer@uibk.ac.at
2 2Herrmann & Ehrlich, Stuttgart, Germany, herrmann@herrmann-ehrlich.de

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 21

Accurate Profiling in the Presence of Dynamic Compilation

Yudi Zheng1, Lubomı́r Bulej2, Walter Binder3

Abstract: Many programming languages are implemented on top of a managed runtime system,
such as the Java Virtual Machine (JVM) or the .NET CLR, featuring an optimizing dynamic (just-in-
time) compiler. Programs written in those languages are first interpreted (or compiled by a baseline
compiler), whereas frequently executed methods are later compiled by the optimizing dynamic
compiler.

Common feedback-directed optimizations [AHR02] performed by state-of-the-art dynamic compilers,
such as the optimizing compiler in the Jikes RVM [Ar00] or Graal [Op], include method inlining
and stack allocation of objects based on (partial) escape analysis [Ch99, SWM14], amongst others.
Such optimizations result in compiled machine code that does not perform certain operations present
at the bytecode level. In the case of inlining, method invocations are removed. In the case of stack
allocation, heap allocations are removed and pressure on the garbage collector is reduced.

Many profiling tools are implemented using bytecode instrumentation techniques, inserting profiling
code into programs at the bytecode level. However, because dynamic compilation is transparent
to the instrumented program, a profiler based on bytecode instrumentation techniques is not aware
of the optimizations performed by the dynamic compiler. Prevailing profilers based on bytecode
instrumentation suffer from two serious limitations: (1) over-profiling of code that is optimized (and in
the extreme case completely removed) by the dynamic compiler, and (2) perturbation of the compiler
optimizations due to the inserted instrumentation code.

We present a novel technique to make profilers implemented with bytecode instrumentation techniques
aware of the optimization decisions of the dynamic compiler, and to make the dynamic compiler
aware of inserted profiling code. Our technique enables profilers which collect dynamic metrics that
(1) correspond to an execution of the base program without profiling (w.r.t. the applied compiler
optimizations), and (2) properly reflect the impact of dynamic compiler optimizations.

We implement our approach in a state-of-the-art Java virtual machine and demonstrate its significance
with concrete profilers. We quantify the impact of escape analysis on allocation profiling, object
lifetime analysis, and the impact of method inlining on callsite profiling. We illustrate how our
approach enables new kinds of profilers, such as a profiler for non-inlined callsites, and a testing
framework for locating performance bugs in dynamic compiler implementations.

This work was originally presented at OOPSLA’15 [ZBB15], where it received a Distinguished Paper
Award as well as an endorsement from the Artifact Evaluation Committee for having submitted an
easy-to-use, well-documented, consistent, and complete artifact4. In the meantime, the work has been
integrated into the Graal project.

1 Università della Svizzera italiana (USI), Faculty of Informatics, Switzerland, yudi.zheng@usi.ch
2 Università della Svizzera italiana (USI), Faculty of Informatics, Switzerland, lubomir.bulej@usi.ch; Charles

University, Faculty of Mathematics and Physics, Czech Republic
3 Università della Svizzera italiana (USI), Faculty of Informatics, Switzerland, walter.binder@usi.ch
4 http://dag.inf.usi.ch/software/prof.acc/

22 Yudi Zheng et al.

Acknowledgments

The research presented here has been supported by Oracle (ERO project 1332), by the

Swiss National Science Foundation (project 200021 141002), by the European Commis-

sion (contract ACP2-GA-2013-605442), and by the Charles University institutional funding

(SVV). We especially thank Thomas Würthinger and Lukas Stadler for their support with

Graal.

References

[AHR02] Arnold, Matthew; Hind, Michael; Ryder, Barbara G.: Online Feedback-directed Optimiza-
tion of Java. In: Proc. 17th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications. OOPSLA ’02. ACM, pp. 111–129, 2002.

[Ar00] Arnold, Matthew; Fink, Stephen; Grove, David; Hind, Michael; Sweeney, Peter F.: Adap-
tive Optimization in the Jalapeño JVM. In: Proc. 15th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications. OOPSLA ’00.
ACM, pp. 47–65, 2000.

[Ch99] Choi, Jong-Deok; Gupta, Manish; Serrano, Mauricio; Sreedhar, Vugranam C.; Midkiff,
Sam: Escape Analysis for Java. In: Proc. 14th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications. OOPSLA ’99. ACM, pp.
1–19, 1999.

[Op] OpenJDK: , The Graal Compiler Project. http://openjdk.java.net/projects/
graal/.

[SWM14] Stadler, Lukas; Würthinger, Thomas; Mössenböck, Hanspeter: Partial Escape Analysis
and Scalar Replacement for Java. In: Proc. IEEE/ACM International Symposium on Code
Generation and Optimization. CGO ’14. ACM, pp. 165:165–165:174, 2014.

[ZBB15] Zheng, Yudi; Bulej, Lubomı́r; Binder, Walter: Accurate Profiling in the Presence of
Dynamic Compilation. In: Proc. 30th ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. OOPSLA ’15.
ACM, pp. 433–450, 2015.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 23

Transparent Object Proxies for JavaScript

Matthias Keil1, Omer Farooq1, Sankha Narayan Guria2, Andreas Schlegel1, Manuel

Geffken1, and Peter Thiemann1

Abstract:

This work appeared in the conference proceedings of the European Conference on Object-Oriented
Programming, ECOOP 2015.

One important question in the design of a proxy API is whether a proxy object should inherit the
identity of its target. Apparently proxies should have their own identity for security-related appli-
cations whereas other applications, in particular contract systems, require transparent proxies that
compare equal to their target objects.

In this work we examine the issue with transparency in various use cases for proxies, discuss different
approaches to obtain transparency, and propose two designs that require modest modifications in the
JavaScript engine and cannot be bypassed by the programmer.

The JavaScript Proxy API embodies a design decision that reveals the presence of proxies

in some important use cases. This decision concerns object equality. Proxies are opaque,

which means that each proxy has its own identity, different from all other (proxy or non-

proxy) objects.

Given opaque proxies, an equality test can be used to distinguish a proxy from its target as

demonstrated in the following example:

1 var target = { /∗ some object ∗/ };
2 var handler = { /∗ empty handler ∗/ };
3 var proxy = new Proxy (target, handler);
4 proxy===target; // evaluates to false

Even though target and proxy behave identically, they are not considered equal. Thus, in

a program that uses object equality, the introduction of a proxy along one execution path

may change the meaning of the program without even invoking an operation on the proxy

(which may behave differently from the same operation on the target).

Equality for opaque proxies works well under the assumption that proxies and their tar-

gets are never part of the same execution environment. But the assumption that proxies

never share their execution environment with their targets is not always appropriate. One

prominent use case is the implementation of a contract system.

Two examples for such systems are the contract framework of Racket [FFP14, Chapter 7]

and TreatJS for JavaScript [KT15]. Both systems implement contracts on objects with spe-

1 University of Freiburg, Freiburg, Germany, {keilr,schlegea,geffken,thiemann}@informatik.uni-freiburg.de
2 Indian Institute of Technology Jodhpur, Jodhpur, India, sankha@iitj.ac.in

24 Matthias Keil et al.

cific wrapper objects, Racket’s chaperones or impersonators [St12] and JavaScript proxies,

respectively. But this may chang the semantics of a program and thus it violates a ground

rule for monitoring: a monitor should never interfere with a program conforming to the

monitored property.

Our ECOOP paper [Ke15] shows that a significant number of object comparisons would

fail when mixing opaque proxies and their target objects, e.g. when gradually adding con-

tracts to a program. As neither the transparent nor the opaque implementation of proxies

is appropriate for all use cases, we propose an alternative designs for transparent proxies

that is better suited for use cases such as certain contract wrappers and access restricting

membranes.

We use object capabilities to create proxies in a particular realm and to create an equal-

ity function that only reveals proxies for that realm. A new realm constructor returns a

new transparency realm represented by an object that consists of a fresh constructor for

transparent proxies (named Constructor) and an equals function revealing proxies of that

realm.

5 var realm = TransparentProxy.createRealm();
6 var proxy == realm.Constructor(target, handler);
7 proxy===target; // true

8 realm.equals(proxy, target); // false

The proxy proxy is transparent with respect to equality unless someone uses the realm.

equals method. The realm.equals method is a capability that represents the right to reveal

proxies of that realm. In addition, the realm also contains a constructor for realm-aware

weak maps and weak sets.

References

[Bo15] Boyland, John Tang, ed. 29th European Conference on Object-Oriented Programming,
ECOOP 2015, July 5-10, 2015, Prague, Czech Republic, volume 37 of LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[FFP14] Flatt, Matthew; Findler, Robert Bruce; PLT: . The Racket Guide, v.6.0 edition, March
2014. http://docs.racket-lang.org/guide/index.html.

[Ke15] Keil, Matthias; Guria, Sankha Narayan; Schlegel, Andreas; Geffken, Manuel; Thiemann,
Peter: Transparent Object Proxies in JavaScript. In: (Boyland) [Bo15], pp. 149–173.

[KT15] Keil, Matthias; Thiemann, Peter: TreatJS: Higher-Order Contracts for JavaScripts. In:
(Boyland) [Bo15], pp. 28–51.

[St12] Strickland, T. Stephen; Tobin-Hochstadt, Sam; Findler, Robert Bruce; Flatt, Matthew:
Chaperones and impersonators: run-time support for reasonable interposition. In (Leavens,
Gary T.; Dwyer, Matthew B., eds): Proceedings of the 27th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012. ACM, pp.
943–962, 2012.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 25

Intelligent Code Completion with Bayesian Networks

Sebastian Proksch1, Johannes Lerch1, and Mira Mezini1

Abstract: Code completion is an integral part of modern Integrated Development Environments
(IDEs). Intelligent code completion systems can reduce long lists of type-correct proposals to rel-
evant items. In this work, we replace an existing code completion engine named Best-Matching
Neighbor (BMN) by an approach using Bayesian Networks named Pattern-based Bayesian Network
(PBN).We use additional context information for more precise recommendations and apply cluster-
ing techniques to improve model sizes and to increase speed.

We compare the new approach with the existing algorithm and, in addition to prediction quality, we
also evaluate model size and inference speed. Our results show that the additional context informa-
tion we collect improves prediction quality, and that PBN can obtain comparable prediction quality
to BMN, while model size and inference speed scale better with large input sizes.

Keywords: Recommender System, Static Analysis, Machine Learning, Evaluation

1 Motivation

Code completion systems are an integral part of modern Integrated Development Envi-

ronments (IDEs). They reduce the amount of typing required, thus accelerating coding,

and are often used by developers as a quick reference for the Application Programming

Interface (API), because they show which fields and methods can be accessed in a certain

context.

Traditional code completion systems determine the static type of the variable on which the

developer triggers the completion and propose all type-correct methods to the developer.

Such a list is often very long with many irrelevant items. More intelligent code completion

systems reduce this list to relevant items. They extract a feature vector that describes the

current edit location, match this feature vector to released source code found in reposito-

ries, and propose relevant methods based on the identified example code.

The prediction quality of intelligent code completion systems mainly depends on the avail-

able features, the number of analyzed repositories, and the underlying model that calcu-

lates the proposals. To further enhance the results of existing code completion approaches,

more repositories need to be analyzed in order to see more examples and more features

need to be extracted to have a more precise description of the context. Both results in a

rapidly growing size of the available input and not all existing approaches scale well.

Existing completion engines are typically evaluated based on their prediction quality. As

the code completion engine is supposed to be used by end users on machines with limited

1 Technische Universität Darmstadt, Fachbereich Informatik, Fachgebiet Softwaretechnik, Hochschulstr. 10,

64289 Darmstadt, Deutschland, <lastname>@st.informatik.tu-darmstadt.de

26 Sebastian Proksch et al.

resources, it is also necessary to consider memory consumption of the underlying mod-

els and computation speed. The three quality dimensions - prediction quality, prediction

speed, and model sizes - are not orthogonal and the mutual effect they have on each other

must be considered. The hypothesis is that prediction quality is increased by considering

more features of the structural context. However, this will presumably increase the model

size and negatively affect prediction speed. We need code completion engines that provide

a good tradeoff between these quality dimensions or are even configurable along them.

2 Contributions

This paper contributes towards tackling these problems and presents advances to the state

of the art in intelligent code completion systems in three ways:

(1) We extended the static analysis of the best-matching neighbor approach (BMN) and

extracted more context information. We show that this indeed improves prediction quality

by up to 3% at the cost of significantly increased model sizes by factor 2 and more.

(2) We introduced a new approach for intelligent code completion called pattern-based

bayesian network (PBN), a new technique to infer intelligent code completions that en-

ables to reduce model sizes via clustering. We introduced a clustering approach for PBN

that enables to trade-off model size for prediction quality.

(3) We extended the state-of-the-art methodology for evaluating code completion systems.

We perform comprehensive experiments to investigate the correlation between prediction

quality and different model sizes. We show that clustering can decrease the model size

by as much as 90% with only minor decrease of prediction quality. We also perform a

comprehensive analysis of the effect of input data size on prediction quality, speed and

model size. Our experiments show that prediction quality increases with increased input

data and that both the model size and prediction speed scales better with the input data size

for PBN compared to BMN.

We have released downloadable artifacts to allow replication of our results.2 The released

artifacts includes the dataset used in the paper and the complete source code (i.e., all in-

telligent code completion engines and the evaluations). We encourage other researches to

compare their results based on the same data set.

3 Summary

Our results show that the additional context information we collect improves prediction

quality, especially for queries that do not contain method calls. We also show that PBN

can obtain comparable prediction quality to BMN, while model size and inference speed

scale better with large input sizes.

2 http://www.st.informatik.tu-darmstadt.de/artifacts/pbn/

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 27

Automated Workload Characterization for I/O

Performance Analysis in Virtualized Environments

Axel Busch1, Qais Noorshams2, Samuel Kounev3, Anne Koziolek4, Ralf Reussner5, Erich

Amrehn6

Modern applications, such as mail servers, file servers, or video servers show highly I/O-

intensive workload patterns. Their huge data volumes require powerful storage infrastruc-

tures. These applicarions are increasingly deployed in virtualized environments due to

cost efficiency aspects. Nevertheless, consolidating several applications on one shared in-

frastructure introduces complex performance implications due to mutual interferences. To

consolidate several applications while respecting certain Service Level Agreements ne-

cessitates a predicion of these implications up front. Such a prediction, however, requires

tailored performance models that in turn require a significant amount of expertise to create

the models [Kr12, Kr11]. Moreover, their accuracy depends on the quality of the input

parameters which are often unclear how they could be determined [CH11]. We adress this

discrepancy in our work. We develop an automated workload characterization approach

to extract workload models [Ko09] that are representations of the main aspects of I/O-

intensive applications in virtualized environments. We have tailored our approach to ena-

ble a non-invasive and lightweight monitoring, yet with a level of abstraction such that the

parameters are practically obtainable. To evaluate our approach, we perform a comprehen-

sive evaluation demonstrating its workload modeling performance for common business

workloads using two case studies. The case studies demonstrate typical real-worl scenari-

os, such as consolidation of several workloads on one machine, and workload migration

between two systems.

Our approach analysis the low-level read and write request that are generated by a high-

level workload, such as a file server workload. The requests’ properties are described by

a formalized set of metrics (determined from one of our previous works [NKR13]). These

metrics are particularly build for modeling I/O-intensive workloads in virtualized environ-

ments. Once extracted, the values are mapped to our reference benchmark, the Flexible

File System Benchmark (FFSB). FFSB allows to emulate the original low-level workload

on the target system.

The metrics set is comprised of six metrics: The average file size determining the space of

the files physically allocated on the disk, limiting sequential requests. The file set size con-

1 Karlsruhe Institute of Technology, busch@kit.edu
2 Karlsruhe Institute of Technology, noorshams@kit.edu
3 University of Wuerzburg, samuel.kounev@uni-wuerzburg.de
4 Karlsruhe Institute of Technology, koziolek@kit.edu
5 Karlsruhe Institute of Technology, reussner@kit.edu
6 IBM Research&Development, amrehn@de.ibm.com

28 Axel Busch et al.

siders the total allocated space that influences the locality of requests, and other strategies,

such as data placement and caching strategies. Further, we include the workload intensity

that determines the running of parallel jobs accessing the disks. The request mix determi-

nes the ration between read and write requests, while the average request size models the

average size of each read and write request that is accessed sequentially. Finally, the disk

access pattern is represented by a heuristic algorithm extracting the ratio of sequential and

parallel accesses.

Our approach uses the aforementioned metrics to extract the workload characteristics. For

an automated execution, we formalized and implemented our metrics set in the Storage

Performance Analyzer (SPA). SPA is a tool allowing to extract the workload characteristics

automatically using a certain set of metrics.

For our evaluation, we use two state-of-the-art high performant virtualization environ-

ments, namely an IBM SYSTEM Z, equipped with a DS8700 storage system, and a SUN

FIRE X4440 server system. We use two real-world workloads, namely a mail server and

a file server workload. We generated our workloads using Filebench, a storage system

benchmark that is widely used in the performance modeling community [Kr12, Ah07].

The extracted results are then used in two different scenarios, namely a migration and ad-

ditionally a consolidation scenario. In the first, we used FFSB with the metric values of

the file server workload to estimate its performance on the Sun Fire system. In the second,

we emulate both workloads on the Sun Fire system at the same time. Again, it should be

mentioned that both workloads are characterized on the IBM system. For the migration

scenario we could show a prediction error of 21.59 % for read, and 20.98 % error for the

write requests. In case of the consolidation scenario, we demonstrate 12.95 % error for

read and 24.52 % for write requests. Both scenarios show the applicability of our approach

that benefits in a fast and low-overhead estimation of an I/O-intensive workload that does

not rely on complex performance prediction models. The demonstrated accuracy should

be sufficient for initial estimations of the workload behaviour.

Literaturverzeichnis

[Ah07] Ahmad, Irfan: Easy and Efficient Disk I/O Workload Characterization in VMware ESX
Server. IEEE Computer Society, 2007.

[CH11] Chiang, Ron C.; Huang, H. Howie: TRACON: interference-aware scheduling for data-
intensive applications in virtualized environments. SC’11, New York, NY, USA, 2011.

[Ko09] Kounev, Samuel: Wiley Encyclopedia of Computer Science and Engineering - chapter
Software Performance Evaluation. Wiley-Interscience and John Wiley & Sons Inc., 2009.

[Kr11] Kraft, Stephan; Casale, Giuliano; Krishnamurthy, Diwakar; Greer, Des; Kilpatrick, Peter:
IO Performance Prediction in Consolidated Virtualized Environments. ICPE, 2011.

[Kr12] Kraft, Stefan: Performance Models of Storage Contention in Cloud Environments. Jour-
nal of Software and Systems Modeling (SoSyM), 2012.

[NKR13] Noorshams, Qais; Kounev, Samuel; Reussner, Ralf: Experimental Evaluation of the
Performance-Influencing Factors of Virtualized Storage Systems. Springer Berlin Hei-
delberg, 2013.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 29

Performance-Influence Models for Highly Configurable

Systems

Norbert Siegmund1, Alexander Grebhahn2, Sven Apel3, Christian Kästner4

1 Introduction

The original paper has been published in the proceedings of ESEC/FSE 2015 [SGAK15].

End-users, developers, and administrators are often overwhelmed with the possibilities

to configure a software system. In most systems today, including databases, Web servers,

video encoders, and compilers, hundreds of configuration options can be combined, each

potentially with distinct functionality and different effects on quality attributes. The sheer

size of the configuration space and complex constraints between configuration options

make it difficult to find a configuration that performs as desired, with the consequence that

many users stick to default configurations or only try changing an option here or there. This

way, the significant optimization potential already present in many of our modern software

systems remains untapped. Even domain experts and the developers themselves often do

not (fully) understand the performance influences of all configuration options and their

combined influence when options interact.

Our goal is to build performance-influence models (and models of other measurable quality

attributes, such as energy consumption) that describe how configuration options and their

interactions influence the performance of a system (e.g., throughput or execution time of

a benchmark). A distinctive feature of our approach is that we consider both binary and

numeric options and that we do not solely target prediction accuracy. Performance-influence

models are meant to ease understanding, debugging, and optimization of highly configurable

software systems. For example, a user may identify the best performing configuration from

the model and a developer may compare an inferred performance-influence model with her

own mental model to check whether the system behaves as expected.

2 Approach

Our approach is to infer a performance-influence model for a given configurable system in

a black-box manner, from a series of measurements of a set of sample configurations using

1 University of Passau, Germany
2 University of Passau, Germany
3 University of Passau, Germany
4 Carnegie Mellon University, USA

30 Norbert Siegmund et al.

machine learning. That is, we benchmark a given system multiple times in different config-

urations and learn the influence of individual configuration options and their interactions

from the differences between the measurements. Conceptually, a performance-influence

model is simply a function from a configuration c2C to a performance measure P : C !R,

where performance can be any measurable property that produces interval-scaled data. All

performance-influence models are of the following form:

P(c) = b0 + Â
i2O

fi(c(i))+ Â
i.. j2O

Fi.. j(c(i)..c(j)) (1)

where b0 represents a minimum, constant base performance shared by all configurations,

as determined during learning; Âi2O fi(c(i)) represents the sum of the influences of all

individual options; Âi.. j2O Fi.. j(c(i)..c(j)) is the sum of the influences of all interactions

among all options. This structure allows us to easily see the influence of an individual

option or an interaction between options from the model.

Learning.We use stepwise linear regression to learn the function of a performance-influence

model from a sample set of measured configurations. To reduce the dimensionality problem

of handling a very large number of options and interactions, we use feature subset selection

to incrementally learn the model. The key challenge of using linear regression is to identify

the relevant terms to be used as independent variables; a term represents the (possibly non-

linear) influence of one or multiple configuration options. Conceptually, any combination of

options may cause a distinct performance interaction [SKK+12], which would render any

learning approach useless, as there is no common pattern. In practice, however, performance

behavior is usually more tractable in that only few interactions contribute substantially to

the overall performance. In our previous work, we found that relevant interactions do not

emerge randomly between configuration options, but form a hierarchy [SvRA13]. Thus, we

perform our learning hierarchically and incrementally: Starting with an empty model, our

algorithm selects one term in each iteration until improvements of model accuracy become

marginal or a threshold for expected accuracy is reached. The term to be added stems from a

number of candidate terms. The initial candidates are only the individual option influences,

which are then extended by candidates representing interactions between options that have

been found already to contribute to performance, and additional functions (e.g., logarithmic

or quadratic) representing the influence of numeric options.

Sampling.We divide the configuration space along binary and numeric configuration options

and apply structured sampling heuristics to them. For binary sampling, we use heuristics

developed in previous work that aim at selecting configurations such that we can learn

the influences of individual options and of pair-wise interactions. For sampling numeric

options, we use a number of experimental designs, including fractional factorial designs

and optimal designs. We found that the Plackett-Burman design provides a sweet spot

between measurement effort and accuracy of the learned model. The separately selected

configurations for binary and numeric options are combined using the cross product.

Experiments. Our approach is able to build reasonably accurate performance models of

configuration spaces of real-world systems, including compilers, multi-grid solvers, and

video encoders. In a series of experiments with configurable systems with up to 1031

Performance-Influence Models for Highly Configurable Systems 31

configurations, we found that few measurements are sufficient to build fairly accurate

models (19 % prediction error, on average). The performance-influence models learned

by our approach can explain the performance variation between configurations with a

few dozen terms describing the influence of individual options and another dozen terms

describing interactions. Finally, while accuracy is important, simple models are important,

too. Views on a performance-influence model can be used to isolate influences of individual

options and their interactions.

References

[SGAK15] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. Performance-
Influence Models for Highly Configurable Systems. In Proc. ESEC/FSE, pages 284–294.
ACM, 2015.

[SKK+12] Norbert Siegmund, Sergiy Kolesnikov, Christian Kästner, Sven Apel, Don Batory,
Marko Rosenmüller, and Gunter Saake. Predicting Performance via Automated Feature-
Interaction Detection. In Proc. ICSE, pages 167–177. IEEE, 2012.

[SvRA13] Norbert Siegmund, Alexander von Rhein, and Sven Apel. Family-Based Performance
Measurement. In Proc. GPCE, pages 95–104. ACM, 2013.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft fr Informatik, Bonn 2016 33

Scaling Size and Parameter Spaces in Variability-aware

Software Performance Models

Matthias Kowal1, Max Tschaikowski2, Mirco Tribastone3, Ina Schaefer4

Abstract: Model-based software performance engineering often requires the analysis of many in-
stances of a model to find optimizations or to do capacity planning. These performance predictions
get increasingly more difficult with larger models due to state space explosion as well as large pa-
rameter spaces since each configuration has its own performance model and must be analyzed in
isolation (product-based (PB) analysis). We propose an efficient family-based (FB) analysis using
UML activity diagrams with performance annotations. The FB analysis enables us to analyze all con-
figurations at once using symbolic computation. Previous work has already shown that a FB analysis
is significant faster than its PB counterpart. This work is an extension of our previous research lifting
several limitations.

1 Coxian Distributions and PB-Evaluation of PAADs
Performance Annotated Activity Diagrams (PAAD) capture the workflow of a software

system and enhance it with performance-related properties [KST14]. An example can be

found in Fig. 1a. Each node represents a service center in the software system, e.g. CPUs,

web server and so forth, and has the following performance annotations at its corners:

vectors for the service time distribution (top left and right values), number of clients at

that node during the initial condition (bottom left) and number of servers (bottom right).

Edges connect the nodes and are annotated with probabilities denoting the likelihood of a

job to take that path. We can construct a continuous-time Markov chain (CTMC), where

the length of either vector denotes the actual number of states in the CTMC (or stages

of the distribution). The left vector provides the rate of the exponential residence time

at each state, while the right vector contains the probability with which a service process

moves from one state to the next. The time between entering the first state and exiting from

any other state gives us a non-exponential distribution for the service at the specific node.

Fig. 1b shows the CTMC for such a Coxian distribution. The services will be exponentially

distributed with 2/6+2/6 = 2/3 in state 1 and enter state 2 with a probability of 1/2 en-

countering an additional delay of 1/3. Coxian distributions provide better representations

of real-world software systems, since they can be seen as a composition of exponential

stages and are able to approximate any given general distribution [St09]. In addition, we

can now simulate parallelism with multiple servers that are available at a node. Both as-

pects remove a restriction of our previous work in [KST14]. The calculation of the steady

state throughput for such Coxian-distributed multi-server nodes is a non-trivial task that

involves solving the system of Ordinary Differential Equations (ODE) given by RTT = T .

R is the routing probability matrix and T determines the ODE throughputs. In the PB anal-

ysis, we have to solve it for each variant in isolation, which is inefficient. Mean service

times as well as number of servers and clients also play role in the calculation of T , but

their relation to the ODE system is omitted here.

1 Technische Universität Braunschweig, Germany
2 IMT Institute for Advanced Studies Lucca, Italy
3 IMT Institute for Advanced Studies Lucca, Italy
4 Technische Universität Braunschweig, Germany

34 Matthias Kowal et al.

2

1

3

5
(½,1)

1.0

1.0

0.7

0.3

(2,1)

1

3

2

120

0

0

0

(1,½)

(⅔,⅓)

(½,1)

(½,1)

(½,1)
4

0

(½,¼) (½,1)

2

1.0

0.5

0.5

(,)2 5 1 5

Routing
Probability

#-Clients#-Clients#-Clients

#-Servers

Service Time
Distribution
Service TimeService Time

(a) A Performance Annotated Activity Diagram

1 2
2/6

2/6

1/3

(b) Coxian CTMC for node 3.

Figure 1: Running Example

2 Variability and FB-Evaluation

A FB analysis is only reasonable if variability is included into the PAADs. Similar to

our previous work, we applied the principle of delta modeling (DM) in which deltas can

add, remove or modify PAAD elements. Given a specific core PAAD, we can generate any

variant of the system by applying the respective deltas [Sc10]. The FB analysis relies on

the construction of a 150%-model or super-variant. This model is built by merging the

core and all deltas into one large model. Each PAAD element that is changed by a delta

is represented as a symbol in the 150%-model and not its concrete value, e.g. removing

the edge between node 3 and 5 would modify the probability between node 3 and 4 to 1.0

(cf. Fig. 1a) and result in two symbolic parameters in R. Again, we can construct the ODE

system, but solve it symbolically this time, which has to be done just once. The steady state

throughputs T are now calculated by plugging the concrete values for the desired variant

into the parametrized expressions. The FB analysis is faster compared to the PB one and

gets even more efficient for larger networks or an increasing number of variants.

References

[KST14] Kowal, Matthias; Schaefer, Ina; Tribastone, Mirco: Family-Based Performance Analysis
of Variant-Rich Software Systems. In: FASE 2014. pp. 94–108, 2014.

[Sc10] Schaefer, Ina: Variability Modelling for Model-Driven Development of Software Product
Lines. In: VaMoS. pp. 85–92, 2010.

[St09] Stewart, William J.: Probability, Markov Chains, Queues, and Simulation. Princeton Uni-
versity Press, 2009.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 35

Naming the Pain in Requirements Engineering:

A Survey Design and German Results

Daniel Méndez Fernández1 Stefan Wagner2

Abstract: This paper summarises the results published in Information and Software Technology in
January 2015. Although researchers are investigating requirements engineering with a plethora of
empirical studies, a broad empirical basis is still missing. To get a foundation about the state of the
practice in RE, we propose a distributed family of open and reproducible surveys. The instrument
is based on a theory that integrates a set of hypotheses inferred from our experiences and available,
isolated studies. We test each hypothesis in our theory and identify further candidates to extend the
theory by correlation and Grounded Theory analysis. Our results from Germany reveal, for example,
a tendency to improve RE via internally defined qualitative methods rather than relying on normative
approaches like CMMI. The survey design proved itself useful and is, at present, now employed in
14 countries in total (see also our website: www.re-survey.org). We found that surprisingly many
aspects of the status quo and the problems are similar in the surveyed countries. Yet, there are also
notable differences. We will report on both the survey design and the detailed results from Germany,
and we will give an outlook on the results of the current world-wide replications of the survey.

Keywords: Requirements Engineering, Survey Research, Family of Surveys

1 Introduction

Requirements engineering (RE) is a key to successful development projects as the elic-

itation, specification and validation of precise and stakeholder-appropriate requirements

are critical determinants of software & system quality [Br06]. Although the importance

of a high quality RE has been recognised for many years, we can still observe industry

struggling in defining and applying a high quality RE [Me12]. The diversity of how RE

is performed in various industrial environments, each having its particularities in the do-

mains of application or the software process models used, renders process improvement

and, in particular, empirical research difficult.

Our long-term research objective is to establish an open and externally valid set of em-

pirical findings about practical problems and needs in RE that allows us to steer future

research in a problem-driven manner. To this end, we conduct a continuously and inde-

pendently replicated, globally distributed survey on RE that investigates the state of the

practice including the status quo, experienced problems as well as related causes and ef-

fects. Here, we report the design of the family of surveys on RE and the results obtained

from its initial start in Germany (73 completed questionnaires). Our instrument relies on

an initial theory obtained from available RE studies and is used to generate hypotheses

1 Technische Universität München, Garching, Daniel.Mendez@tum.de
2 University of Stuttgart, stefan.wagner@informatik.uni-stuttgart.de

36 Daniel Méndez Fernández et al.

which we test during the results analysis. The results gathered from open questions are

further used to already extend our initial theory using Grounded Theory analysis. Further-

more, we investigate patterns in statistically significant correlations to find further candi-

date hypotheses for the theory. Finally, we will give an outlook on the results of the current

world-wide replications of the survey. We published the full details of the design and the

results from Germany in [MFW15].

2 Survey Design and Results from Germany

We can only give two examples of research questions from the survey design and the

results from Germany. For example, we had the research question: How is RE defined,

applied, and controlled? One hypothesis in this area was the mainly, Requirements are

elicited via workshops.Using the results from Germany, we could corroborate this hypoth-

esis. Another research question was: Which contemporary problems exist in RE, and

what implications do they have? We found that incomplete or hidden requirements was

the top-rated problem in RE practice followed by moving targets and time boxing.

3 Outlook

At present, we are in the process of finalising the second round of surveys which includes

Germany again but has replications all over the world. It has not been a direct replication,

but we refined and extended the underlying theory based on the results reported here as

well as the discussions with all collaborators. We found that surprisingly many aspects of

the status quo and the problems are similar in the surveyed countries. Yet, there are also

notable differences. For example, we investigated the differences in RE problems between

Brazilian and German countries in more detail [Me15] and found that moving targets pose

a bigger problem in German companies while Brazilian companies have more problems

with human collaboration.

References

[Br06] Broy, M.: Requirements Engineering as a Key to Holistic Software Quality. In (Levi, A.;
Savas, E.; Yenigun, H.; Balcisoy, S.; Saygin, Y., eds): Proceedings of the 21th Interna-
tional Symposium on Computer and Information Sciences (ISCIS 2006). volume 4263.
Springer-Verlag Berlin, pp. 24–34, 2006.

[Me12] Mendez Fernandez, D.; Wagner, S.; Lochmann, K.; Baumann, A.; de Carne, H.: Field
Study on Requirements Engineering: Investigation of Artefacts, Project Parameters, and
Execution Strategies. Information and Software Technology, 54(2):162–178, 2012.

[Me15] Mendez Fernandez, D.; Wagner, S.; Kalinowski, M.; Schekelmann, A.; Tuzcu, A.; Conte,
T.; Spinola, R.; Prikladnicki, R.: Naming the Pain in Requirements Engineering: Com-
paring Practices in Brazil and Germany. IEEE Software, 32(5):16–23, Sept 2015.

[MFW15] Méndez Fernández, D.; Wagner, S.: Naming the Pain in Requirments Enginering: A De-
sign for a global Family of Surveys and First Results from Germany. Information and
Software Technology, 57:616–643, 2015.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 37

Supporting the Systematic Assessment

of Requirements Traceability - A Quality Model

Patrick Rempel1 and Patrick Mäder2

Abstract: Traceability is an important quality of software requirements and allows to describe and
follow their life throughout a development project. The importance of traceable requirements is re-
flected by the fact that requirements standards, safety regulations, and maturity models explicitly
demand for it. In practice, traceability is created and maintained by humans, which make mistakes.
In result, existing traces are potentially of dubious quality but serve as the foundation for high impact
development decisions. We found in previous studies that practitioners miss clear guidance on how
to systematically assess the quality of existing traces. In this paper, we review the elements involved
in establishing traceability in a development project and derive a quality model that specifies per
element the acceptable state (Traceability Gate) and unacceptable deviations (Traceability Problem)
from this state. We describe and formally define how both, the acceptable states and the unaccept-
able deviations can be detected in order to enable practitioners to systematically assess their project’s
traceability. We evaluated the proposed model through an expert survey. Participating experts con-
sidered the quality model to be complete and attested that its quality criteria are of high relevance.
However, experts weight the occurrence of different traceability problems with different criticality.
This information is useful for practitioners to quantify the impact of traceability problems and to
prioritize the assessment of traceability elements.

Keywords: requirements traceability; traceability quality model; problem classes; assessment

1 Motivation and Challenges

Requirements traceability is a critical element of any rigorous software development pro-

cess. It provides support for numerous software engineering tasks. However, achieving

purposed and trustworthy traceability remains a challenge, which is not yet solved. In in-

dustrial practice, traceability is created and maintained by humans who make mistakes

[RMK13]. The resulting traceability is often of dubious quality but serves as the founda-

tion for high impact development decisions. Developing safety-critical systems requires

the compilation of safety cases arguing that a system is safe for use, which typically

involves traceability [Kel99]. In previous studies [RMKC14, MJZC13], we investigated

projects that struggled with problems such as a lack of compliance or latent safety risk,

which were caused by incomplete or missing traceability data. When reflecting on the re-

sults of those previous studies, we realized that no classification of traceability problems

was available to systematically assess traceability for structural deficiencies. This lack of a

well-defined problem classification makes it difficult for software practitioners to generate

an understanding of possible traceability problems and how to recognize them.

1 Technische Universität Ilmenau, Software Systems Group, Ilmenau, Germany, patrick.rempel@tu-ilmenau.de
2 Technische Universität Ilmenau, Software Systems Group, Ilmenau, Germany, patrick.maeder@tu-ilmenau.de

38 Patrick Rempel et al.

2 A Requirements Traceability Quality Model

In this presentation we propose an enumeration of potential traceability quality problems

along with an enumeration of possible conformance assessment results. The entire work

has been published at [RM15]. A traceability assessment refers to determining the degree

of traceability fulfillment and can lead to four possible results. First, the fulfilling set fully

conforms with the set of required data. This kind of result is represented in our quality

model by the traceability gate elements. Second, the fulfilling set is incomplete, because it

misses data in order to fully conform with the set of required data. This state is represented

in our quality model by the problem category missing traceability. Third, the fulfilling set

is redundant, because it contains superfluous data, not necessary to conform with the set

of required data. This state is represented in our quality model by the problem category

superfluous traceability. Fourth, the fulfilling set is incomplete and redundant, and thus a

composite problem category of missing traceability and superfluous traceability.

3 Results and Conclusions

We conducted a survey with 13 traceability experts to evaluate the completeness and use-

fulness of the proposed model. The participants considered the proposed assessment model

to be complete and attested the model high practical relevance. Traceability problems re-

lated to completeness were consistently rated as more important than problems related to

appropriateness. We assume this pattern is attributed to the differing problem implications.

Problems related to the quality attribute appropriateness imply that unnecessary effort was

spent. Problems related to the quality attribute completeness imply that traceability based

decisions are made on incomplete data. Especially, within the context of safety critical

software, this can be a potential threat to the functional safety of a system.

Acknowledgments We are funded by the German Ministry of Education and Research

(BMBF) grant 01IS14026B.

References

[Kel99] T. Kelly. Arguing safety-a systematic approach to managing safety cases. York, 1999.

[MJZC13] Patrick Mäder, Paul L. Jones, Yi Zhang, and Jane Cleland-Huang. Strategic Traceability
for Safety-Critical Projects. IEEE Software, 30(3):58–66, May 2013.

[RM15] Patrick Rempel and Patrick Mäder. A quality model for the systematic assessment of
requirements traceability. In Proc. 23rd IEEE International Requirements Engineering
Conference, pages 176–185, 2015.

[RMK13] Patrick Rempel, Patrick Mäder, and Tobias Kuschke. An empirical study on project-
specific traceability strategies. In Proceedings of the 21st IEEE International Require-
ments Engineering Conference, pages 195–204. IEEE, 2013.

[RMKC14] Patrick Rempel, Patrick Mäder, Tobias Kuschke, and Jane Cleland-Huang. Mind the
gap: assessing the conformance of software traceability to relevant guidelines. In Proc.
36th International Conference on Software Engineering ICSE, pages 943–954, 2014.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 39

Supporting Requirements Update during Software

Evolution

Eya Ben Charrada1 Anne Koziolek2 Martin Glinz3

Abstract: Keeping the requirements specification up-to-date is crucial for several maintenance and
evolution tasks. Nevertheless, due to time and budget constrains, software maintainers usually apply
changes to the code only and leave the requirements unchanged, so they rapidly become obsolete
and useless. In this work, we propose an approach for automatically identifying what requirements
are likely to be impacted when the code is changed. We use a two-step approach. First, we identify
the code changes that are likely to have an impact on requirements based on some heuristics. Second,
we trace the relevant changes back to the requirements in order to identify those that are likely to
be impacted [?]. The output of the tracing is a list of requirements that are sorted according to their
likelihood of being impacted. We applied our approach to three case studies and could identify for
each case between 70% and 100% of the impacted requirements within a list that includes less than
20% of the total number of requirements in the specification [?]. We are currently exploring ways to
extend the approach to other types of software artifacts such as tests.

Keywords: Requirements evolution, requirements update, impact analysis, traceability, artifact syn-

chronization

1 Department of Informatics, University of Zurich, Switzerland, charrada@ifi.uzh.ch
2 Department of Informatics, Karlsruhe Institute of Technology, Germany, koziolek@kit.edu
3 Department of Informatics, University of Zurich, Switzerland, glinz@ifi.uzh.ch

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 41

Eine Domänenspezifische Sprache für die

technologieübergreifende Bereitstellung von Web Services

Florian Rademacher1 Martin Peters1 Sabine Sachweh1

Abstract: Web Services realisieren geräteunabhängige Datenschnittstellen zur Kommunikation von
Web-Applikationen mit Internet-Clients, wie Smartphone-Apps, und Maschinen im Industrie-4.0-
Kontext. In der Mehrzahl werden diese Schnittstellen entweder mit Hilfe des REST-Paradigmas und
Standards des World Wide Web (WWW) oder des SOAP-Protokolls und XML-Nachrichten imple-
mentiert.
Der Beitrag stellt eine Domänenspezifische Sprache (Domain-Specific Language; DSL) für die ef-
fiziente, technologieübergreifende Entwicklung von Web Services vor. Ein Codegenerator überführt
die DSL-Angaben in Java-Code, welcher auf einem erweiterbaren Framework basiert, das Unter-
schiede zwischen verschiedenen Web-Service-Technologien abstrahiert.

Keywords: Domänenspezifische Sprachen, Codegenerierung, Web Services

1 Einführung

Die Gruppe der über das Internet kommunizierenden Geräte wächst in zunehmendem Ma-

ße und wird zugleich immer heterogener. Neben Computern und Smartphone-Apps nutzen

mittlerweile auch Maschinen und Sensoren im Rahmen einer Industrie 4.0 Technologi-

en für den Datenaustausch über das Internet. Web Services stellen ein etabliertes Mit-

tel für den geräteunabhängigen Datenaustausch dar. Das auf WWW-Standards aufbauen-

de REST-Paradigma und das XML-basierte SOAP-Protokoll sind dabei die am weitesten

verbreiteten Web-Service-Technologien [GK13]. Während SOAP in Szenarien mit hohen

Anforderungen bspw. an die Übertragungsqualität zum Einsatz kommt, werden REST-

Schnittstellen für eine effiziente Kommunikation über das HTTP eingesetzt [PZL08].

Der Beitrag stellt eine DSL für die technologieübergreifende Entwicklung von Web Ser-

vices vor. Sie basiert auf dem in [RPS15] eingeführten Framework, mit dem Entwickler

Geschäftslogik parallel über beliebige Web-Service-Technologien, bspw. für Smartphone-

Apps via REST und für Maschinen via SOAP, anbieten können.

2 Spezifikation der Domänenspezifischen Sprache

Abbildung 1 zeigt das semantische UML-Modell der DSL. Es basiert auf den Abstraktio-

nen des Frameworks aus [RPS15] und beschreibt die Sprachkonstrukte als Klassen und ih-

re Beziehungen als Assoziationen. Pakete kapseln semantische Sprachbereiche. So enthält

das Types-Paket das Typsystem der Sprache. Es erlaubt die Konstruktion strukturierter

1 Fachhochschule Dortmund, Fachbereich Informatik, Otto-Hahn-Straße 23, 44227 Dortmund,

vorname.nachname@fh-dortmund.de

42 Florian Rademacher, Martin Peters, Sabine Sachweh

Datentypen und Listen aus primitiven Basistypen. Das Services-Paket definiert Konzepte

zur Modellierung von Web Services. Im Kontext der DSL ist ein Service ein benanntes

Element, welches einen spezifischen Request entgegennimmt und eine bestimmte Respon-

se produziert. Das Interfaces-Paket ermöglicht die Assoziation einer technologieneutralen

Service-Beschreibung mit Web-Service-Technologien wie REST oder SOAP.

TypeInstance
name : String
type : Type

** *

«enumeration»
Ht tpMethod

GET
POST
PUT
DELETE

RestInterface
method : HttpMethod
path : String
mimeType : String

SoapInterface

Mapping
request : Boolean
response : Boolean
both : Boolean

ServiceInterface

Interfaces

TypeInstance
name : String
type : Type

* BasicType* ListTypeStructureType

Type
name : String

Types

Response

RequestService
name : String

Services

f ield type>
0..1

1..*

1..*
1..*

nested list>

0..1

0..1

Abb. 1: Semantisches Modell der DSL

Listing 1 enthält Teile der aus dem Modell abgeleiteten DSL-Grammatik. Listing 2 zeigt

einen mit der DSL modellierten Web Service, der per REST und SOAP verfügbar und

Teil der Fallstudie aus [RPS15] ist. Ein Codegenerator überführt in der DSL vorliegenden

Service: ’service’ name = ID ’:’ otoName = ’receives’ otoVariables =

TypeInstances itoName = ’returns’ itoVariables = TypeInstances

interfaces += ServiceInterface (interfaces += ServiceInterface)⇤ ’;’ ;

ServiceInterface: name = ’interface’ type = (RestInterface | SoapInterface)

(mapping = MappingSpec)? ;

RestInterface: name = ’rest’ ’method’ method = HttpMethod ’path’

path = STRING ’handles’ mime = MimeSpec ;

SoapInterface: {SoapInterface} name = ’soap’ ;

List. 1: Auszug der DSL-Grammatik

service UpdateParameterValue:

receives long wtsId, String paramName,

Date timestamp, String value

returns int returnCode

interface rest method put

path "wts/{wtsId}/{paramName}"
handles "application/json"

interface soap;

List. 2: Beispiel-Service

Code in Framework-basierten Java-Code. Hierbei findet eine Transformation für jede kon-

krete Klasse aus Abbildung 1 statt. Die Geschäftslogik eines Services muss anschließend

in einer Platzhaltermethode implementiert werden. Sie ist dann durch das Framework im-

plizit über alle spezifizierten Web-Service-Technologien verfügbar. In einer erweiterten

Fallstudie mit 25 Web Services, die parallel mittels REST und SOAP aufrufbar sein soll-

ten, konnten aus 252 Zeilen DSL-Code 4384 Zeilen Java-Code generiert werden [RPS15].

Die im Folgenden implementierte Geschäftslogik umfasste 789 Zeilen Java-Code. Somit

konnten rund 81% des Gesamtsystems automatisch erzeugt werden.

Literaturverzeichnis

[GK13] Gulden, Markus; Kugele, Stefan: A concept for generating simplified RESTful interfaces.
In: Proceedings of the 22nd international conference on World Wide Web. International
World Wide Web Conferences Steering Committee, S. 1391–1398, 2013.

[PZL08] Pautasso, Cesare; Zimmermann, Olaf; Leymann, Frank: RESTful Web Services vs.
”Big”Web Services: Making the Right Architectural Decision. In: Proceedings of the
17th international conference on World Wide Web. ACM, S. 805–814, 2008.

[RPS15] Rademacher, Florian; Peters, Martin; Sachweh, Sabine: Design of a Domain-Specific Lan-
guage Based on a Technology-Independent Web Service Framework. In: Software Archi-
tecture, S. 357–371. Springer, 2015.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 43

Learning how to prevent return-oriented programming

efficiently

David Pfaff 1 Sebastian Hack1 Christian Hammer1

1 Extended Abstract

The discovery of recent zero-day exploits against Microsoft Word, Adobe Flash Player and

Internet Explorer demonstrate that return-oriented programming (ROP) is the most severe

threat to software system security. Microsoft’s 2013 Software Vulnerability Exploitation

trend report found that 73% of all vulnerabilities are exploited via ROP. The core idea of

ROP is to exploit the presence of so-called gadgets, small instruction sequences ending

in a return instruction. By chaining gadgets together, an attacker is able to build complex

exploits. The apparent popularity of ROP is explained by its power to bypass most con-

temporary exploit mitigation mechanisms, such as data execution prevention (DEP) and

address space layout randomization (ASLR). DEP and similar page-protection schemes

prevent the execution of injected binary code, but ROP re-uses code already present in the

executable memory segments, eliminating the need to inject code. ASLR randomizes the

location of most libraries and executables, however, finding code segments left in a few

statically known locations is often enough to leverage a ROP attack. Since the inception

of ROP by Shacham [Sh07], research on ROP resembles an arms race: emerging defense

techniques are continuously circumvented by increasingly subtle attacks [CW14].

In our paper [PHH15], we take a novel, statistical approach on detecting ROP programs.

Modern microprocessors spend most of their circuits on machinery that optimizes the exe-

cution of programs generated by compilers from “high-level” languages. Among this ma-

chinery are caches, translation look-aside buffers, branch predictors, and so on. To assist

programmers in detecting performance problems, a modern CPU can record several hun-

dred different kinds of micro-architectural events that occur during program execution

(e.g. mispredicted branches, L1 cache misses, etc.). These events are counted by the CPU

in special registers, the so-called hardware performance counters (HPCs).

In this paper, we claim and experimentally verify that the execution of a ROP program

triggers such hardware events in a significantly different way than a conventional program

that has been generated by a compiler. Essentially, micro-architectural events are a side

channel by which a ROP program becomes distinguishable from a normal program at run

time. There are several considerations that support this hypothesis: First, ROP programs

use only indirect jumps (returns) to control the program flow. Common processor heuri-

stics to detect the target of the return are useless in a ROP program because they do not

1 CISPA, Saarland University, lastname@cs.uni-saarland.de

44 David Pfaff et al.

follow the call/return policy. Second, ROP gadgets are small and scattered all over the code

segment. Thus, there is no spatial locality in the executed code which should be observable

in counters relevant to the memory subsystem.

We exploit the deviant micro-architectural behavior of ROP programs by training (using

existing ROP exploits and benign programs) a support vector machine (SVM) based on

profiles of hardware performance counters. Note, that despite our intuition we did not

short-list any HPC types for training. We receive a classifier to distinguish ROP from

benign programs and use it in a monitor kernel module that tracks the evolution of the per-

formance counters and classifies them periodically. If the classifier detects a ROP program,

defensive actions, like killing the process, can be taken.

We quantitatively evaluate the performance impact of HadROP on benign program runs

using the SPEC2006 benchmark: HadROP incurs a run time overhead of 5% on average

and of 8% in the worst case. We also establish the effectiveness and practical applicabi-

lity of HadROP in several case studies that show that HadROP detects and prevents the

execution of a ROP payload of an in-the-wild exploit on Adobe Flash Player, 25 new

ROP payloads generated by the ROP-payload generator Q that exploit manually injected

vulnerabilities in GNU coreutils, Blind ROP [Bi14] of an nginx web server and multiple

recent enhancements [CW14, Da14] that allow ROP to bypass previous hardware-assisted

detection schemes. HadROP detects and prevents those attacks in any practical scenario.

References

[Bi14] Bittau, Andrea; Belay, Adam; Mashtizadeh, Ali; Mazieres, David; Boneh, Dan: Hacking
blind. In: Proceedings of the 35th IEEE Symposium on Security and Privacy, S&P. 2014.

[CW14] Carlini, Nicholas; Wagner, David: ROP is Still Dangerous: Breaking Modern Defenses.
In: 23rd USENIX Security Symposium (USENIX Security 14). USENIX Association,
San Diego, CA, pp. 385–399, August 2014.

[Da14] Davi, Lucas; Sadeghi, Ahmad-Reza; Lehmann, Daniel; Monrose, Fabian: Stitching the
Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow Integrity Protection. In:
23rd USENIX Security Symposium (USENIX Security 14). USENIX Association, San
Diego, CA, pp. 401–416, August 2014.

[PHH15] Pfaff, David; Hack, Sebastian; Hammer, Christian: Learning How to Prevent Return-
Oriented Programming Efficiently. In: Engineering Secure Software and Systems, pp.
68–85. Springer, 2015.

[Sh07] Shacham, Hovav: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In: Proceedings of the 14th ACM conference on Computer
and Communications Security. ACM, pp. 552–561, 2007.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 45

No PAIN, No Gain?

The Utility of PArallel Fault INjections

Stefan Winter1 Oliver Schwahn1 Roberto Natella2 Neeraj Suri1 Domenico Cotroneo2

Abstract: The article reports on interferences between concurrent fault injection test executions.

Keywords: Software fault injection, robustness testing, test interference

Software Fault Injection (SFI) emulates defects in software components to assess the ro-

bustness of other software components they interact with. After such defects have been

introduced, the software composition is exposed to a workload and the effects of the intro-

duced defect on the component under assessment are monitored. SFI tests entail relatively

long execution times for three reasons: (1) They operate on a fully integrated software

system, which entails corresponding loading and initialization times. (2) To activate the

introduced defects and assess their impact on possibly complex component interactions,

the execution of complex workloads is required. (3) After each SFI test execution, the

entire software system under test (SUT) needs to be reset to a known fault-free state to

prevent residual side effects of injected faults from affecting subsequent tests. Especially

the last point entails significant execution time overhead. As the possible effects of an in-

jection cannot be predicted (if they could, no SFI tests were needed), resetting the SUT

usually requires a complete termination and re-initialization, sometimes even of its execu-

tion environment (e.g., the test machine’s file system) if it can be affected by the injected

fault.

To improve test throughput, we propose to exploit parallel hardware and execute SFI tests

concurrently. While this appears to be a simple and straight-forward solution, it is based

on an assumption of non-interference between SFI tests. In a paper [Wi15] that we pre-

sented at ICSE this year, we experimentally evaluated this assumption. We executed SFI

tests on the Android OS kernel by injecting faults into the SD card driver. To contain the

effects of fault activations during these tests, the system was executed in an emulator that

was reset after each test. We repeated the tests with varying degrees of concurrency by

instantiating varying numbers of emulator instances. To assess, whether concurrency has

an effect on the experiment outcome, we compared the result distributions for the varying

degrees of concurrency. Our initial results showed significant deviations for higher degrees

of concurrency, indicating that an unreflected replication of SUT instances threatens the

validity of test results. We identified the SUT instances’ competition for shared system

resources and the resulting execution latency increases, which directly affected some of

1 Technische Universität Darmstadt, DEEDS Group, Hochschulstr. 10, 64289 Darmstadt, Germany,

{sw | os | suri}@cs.tu-darmstadt.de
2 Federico II University of Naples, DIETI, via Claudio 21, 80125 Naples, Italy,

{roberto.natella | cotroneo}@unina.it

46 S. Winter, O. Schwahn, R. Natella, N. Suri, D. Cotroneo

the employed test oracles, as the root cause for the observed deviations. We then devised

a pre-test measurement approach to adjust these oracles for the concurrent execution of a

given number of SUT instances on a given test machine. Using this approach, we were able

to execute up to 44 SFI tests concurrently without any significant test result deviations on

a machine with 16 CPU cores and 64 GiB main memory. The highest throughput for this

configuration was 157 experiments per hour with 36 concurrent instances, a more than 12-

fold throughput increase compared to sequential test execution. For this configuration we

also observed the lowest correlation between the degree of concurrency and the test result

distribution in a c2 test for independence, which indicates that the initially observed result

deviations were indeed caused by performance interference of concurrent test executions.

Besides the direct impact of our result on SFI and other robustness testing approaches,

where performance sensitive oracles are used to detect so-called hang failures, our result

indicates that test parallelization requires careful analysis to obtain valid results when-

ever tests rely on execution latencies. For example, any JUnit tests that use the timeout

parameter or Timeout rule would be similarly affected. An interesting observation from

our experiments was that the SUT initialization contributed significantly to the observed

test latencies. This is not surprising, as we used heavy-weight isolation measures to make

test executions as independent as possible from each other by running them in (almost,

as our results show) completely isolated environments. This opens up the possibility for a

trade-off: Performance interference decreases with less isolation, which on the other hand

increases the risk for other types of test interference [Zh14].

While our pre-test measurement approach proved effective for time-dependent oracle ad-

justment, it required the execution of around 800 tests for reliable predictions. Our goal

is to reduce this calibration overhead and, ideally, devise an analytical model for accurate

predictions of safe time-dependent oracles and achievable concurrency degrees for a given

test type and test machine configuration, that do not even require additional test executions

for calibration. To achieve this, we need to better understand the root causes behind latency

increases. We hope the related research to also shed some light on the factors that caused

throughput to degrade when more than 36 concurrent SUT replica were instantiated in our

experiments and to guide hardware and scheduler configuration for better test throughput.

Acknowledgments: This research has been supported in part by DFG GRK 1362, CASED,

EC-SPRIDE, EC H2020 #644579, CECRIS FP7 (GA no. 324334), and SVEVIA MIUR

(PON02 00485 3487758).

References

[Wi15] Winter, Stefan; Schwahn, Oliver; Natella, Roberto; Suri, Neeraj; Cotroneo, Domenico: No
PAIN, No Gain?: The Utility of PArallel Fault INjections. In: Proceedings of the 37th
International Conference on Software Engineering - Volume 1. ICSE ’15, IEEE Press,
Piscataway, NJ, USA, pp. 494–505, 2015.

[Zh14] Zhang, Sai; Jalali, Darioush; Wuttke, Jochen; Muşlu, Kivanç; Lam, Wing; Ernst,
Michael D.; Notkin, David: Empirically Revisiting the Test Independence Assumption. In:
Proceedings of the 2014 International Symposium on Software Testing and Analysis. ISSTA
2014, ACM, New York, NY, USA, pp. 385–396, 2014.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 47

Analysis of the Trade-offs in Different Modeling

Approaches for Performance Prediction of

Software Systems

Samuel Kounev1, Fabian Brosig2, Philipp Meier3, Steffen Becker4, Anne Koziolek5,

Heiko Koziolek6, and Piotr Rygielski1

Abstract: A number of performance modeling approaches for predicting the performance of modern
software systems and IT infrastructures exist in the literature. Different approaches differ in their
modeling expressiveness and accuracy, on the one hand, and their modeling overhead and costs, on
the other hand. Considering a representative set of established approaches, we analyze the semantic
gaps between them as well as the trade-offs in using them; we further provide guidelines for selecting
the right approach suitable for a given scenario.

Keywords: Modeling, performance prediction, software systems, model transformation

During the last decade, researchers have proposed a number of modeling approaches and

respective model-to-model transformations enabling performance prediction of software

systems, including their computing, storage and network infrastructures [GMS07]. These

transformations map performance-annotated software architecture models into stochastic

models solved by analytical means or by simulation. However, so far, a detailed quan-

titative evaluation of the accuracy and efficiency of different modeling approaches and

solution techniques is missing, making it hard to select an adequate transformation for a

given context [Ba04].

Approaches based on numerical solvers are known to be fast but often limited in expres-

siveness to adequately model many realistic situations. Approaches based on simulation

are known to be more expressive but often have long execution times leading to high

prediction overhead [BHK14]. The intuitively perceived trade-offs between prediction ac-

curacy and solution efficiency in state-of-the-art performance analysis tools are currently

not well understood due to the lack of in-depth quantitative evaluations and comparisons.

Trade-off decisions between prediction accuracy and time-to-result are important in sce-

narios where: (a) a large problem space needs to be explored (e.g., scaling of complex

cloud applications [Sp15]) or (b) when the prediction results need to be available within a

certain time window (e.g., in trigger-based reactive cloud scaling scenarios [HKR13]).

1 Department of Computer Science, University of Würzburg Am Hubland, 97074 Würzburg. E-mail:

{samuel.kounev, piotr.rygielski}@uni-wuerzburg.de
2 MiNODES GmbH, Friedrichstrae 224, 10969 Berlin, German. E-mail: fabian.brosig@minodes.com
3 codecentric AG, Elsenheimerstr. 55a, 80687 München, Germany. E-mail: philstyler@googlemail.com
4 TU Cheminitz, Straße der Nationen 62, 09111 Chemnitz, Germany. E-mail: steffen.becker@tu-chemnitz.de
5 Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe, Germany. E-mail: kozi-

olek@kit.edu
6 ABB Corp. Research, Wallstadter Str. 59, 68526 Ladenburg, Germany. E-mail: heiko.koziolek@de.abb.com

48 Samuel Kounev et al.

We provide an in-depth comparison and quantitative evaluation of the trade-offs in differ-

ent model transformations for performance evaluation of software systems and IT infras-

tructures. The semantic gaps between typical source model abstractions and the different

performance analysis techniques are examined in detail. The accuracy and efficiency of

each transformation are evaluated by considering several case studies representing sys-

tems of different size and complexity.

The presented results and insights gained from the evaluation help software architects and

performance engineers to select the appropriate transformation for a given context, thus

significantly improving the usability of model transformations for performance prediction.

We provide an overview of the results of a recent paper published in [Br15], as well as

some follow-up work at SIMUTools 2015 [RKTG15] focussing on data center networks

[RKZ13]. For networks, similarly to software systems, there exist multiple performance

modeling and solution approaches, so similar trade-offs exist in the selection of a suitable

approach for a given scenario.

References

[Ba04] Balsamo, Simonetta; Di Marco, Antinisca; Inverardi, Paola; Simeoni, Marta: Model-
Based Performance Prediction in Software Development: A Survey. IEEE Trans. on
Software Engineering, 30(5), May 2004.

[BHK14] Brosig, Fabian; Huber, Nikolaus; Kounev, Samuel: Architecture-Level Software Perfor-
mance Abstractions for Online Performance Prediction. Elsevier Science of Computer
Programming Journal (SciCo), Vol. 90, Part B:71–92, September 2014.

[Br15] Brosig, Fabian; Meier, Philipp; Becker, Steffen; Koziolek, Anne; Koziolek, Heiko;
Kounev, Samuel: Quantitative Evaluation of Model-Driven Performance Analysis and
Simulation of Component-based Architectures. IEEE Transactions on Software Engi-
neering (TSE), 41(2):157–175, February 2015.

[GMS07] Grassi, Vincenzo; Mirandola, Raffaela; Sabetta, Antonino: Filling the Gap Between De-
sign and Performance/Reliability Models of Component-based Systems. J. Syst. Softw.,
80(4):528–558, April 2007.

[HKR13] Herbst, Nikolas Roman; Kounev, Samuel; Reussner, Ralf: Elasticity in Cloud Comput-
ing: What it is, and What it is Not. In: Proceedings of the 10th International Conference
on Autonomic Computing (ICAC 2013). USENIX, June 2013.

[RKTG15] Rygielski, Piotr; Kounev, Samuel; Tran-Gia, Phuoc: Flexible Performance Prediction of
Data Center Networks using Automatically Generated Simulation Models. In: Proceed-
ings of the Eighth EAI International Conference on Simulation Tools and Techniques
(SIMUTools 2015). August 2015.

[RKZ13] Rygielski, Piotr; Kounev, Samuel; Zschaler, Steffen: Model-Based Throughput Predic-
tion in Data Center Networks. In: Proceedings of the 2nd IEEE International Workshop
on Measurements and Networking (M&N 2013). pp. 167–172, October 2013.

[Sp15] Spinner, Simon; Herbst, Nikolas; Kounev, Samuel; Zhu, Xiaoyun; Lu, Lei; Uysal,
Mustafa; Griffith, Rean: Proactive Memory Scaling of Virtualized Applications. In:
Proceedings of the 2015 IEEE 8th International Conference on Cloud Computing (IEEE
CLOUD 2015). IEEE, pp. 277–284, June 2015.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 49

Feedback Generation for Performance Problems in

Introductory Programming Assignments

Sumit Gulwani1, Ivan Radiček and Florian Zuleger2

Abstract: Providing feedback on programming assignments manually is a tedious, error prone, and
time-consuming task. In [GRZ14], we motivate and address the problem of generating feedback on
performance aspects in introductory programming assignments. We studied a large number of func-
tionally correct student solutions to introductory programming assignments and observed: (1) There
are different algorithmic strategies, with varying levels of efficiency, for solving a given problem.
These different strategies merit different feedback. (2) The same algorithmic strategy can be im-
plemented in countless different ways, which are not relevant for reporting feedback on the student
program.

We propose a light-weight programming language extension that allows a teacher to define an al-
gorithmic strategy by specifying certain key values that should occur during the execution of an
implementation. We describe a dynamic analysis based approach to test whether a student’s pro-
gram matches a teacher’s specification. Our experimental results illustrate the effectiveness of both
our specification language and our dynamic analysis.

Keywords: Education, MOOCs, performance analysis, trace specification, dynamic analysis.

Providing feedback on programming assignments is a very tedious, error-prone, and time-

consuming task for a human teacher, even in a standard classroom setting. With the rise

of Massive Open Online Courses (MOOCs), which have a much larger number of stu-

dents, this challenge is even more pressing. Hence, there is a need to introduce automation

around this task. Immediate feedback generation through automation can also enable new

pedagogical benefits such as allowing resubmission opportunity to students who submit

imperfect solutions and providing immediate diagnosis on class performance to a teacher

who can then adapt her instruction accordingly.

Recent research around automation of feedback generation for programming problems has

focused on guiding students to functionally correct programs either by providing coun-

terexamples (generated using test input generation tools) or generating repairs. However,

non-functional aspects of a program, especially performance, are also important. We stud-

ied several programming sessions of students who submitted solutions to introductory C#

programming problems on the PEX4FUN
3 platform. In such a programming session, a

student submits a solution to a specified programming problem and receives a counterex-

ample based feedback upon submitting a functionally incorrect attempt. The student may

then inspect the counterexample and submit a revised attempt. This process is repeated

1 Microsoft Research, USA
2 TU Wien, Arbeitsbereich Formal Methods in Systems Design, Institut für Informationssysteme 184/4, Fa-

voritenstraße 9–11, 1040 Wien, Austria
3 http://www.pexforfun.com/

50 Sumit Gulwani et al.

until the student submits a functionally correct attempt or gives up. We studied 24 differ-

ent problems, and observed that of the 3993 different programming sessions, 3048 led to

functionally correct solutions. However, unfortunately, on average around 60% of these

functionally correct solutions had (different kinds of) performance problems. In this pa-

per, we present a methodology for semi-automatically generating appropriate performance

related feedback for such functionally correct solutions.

From our study, we made two observations that form the basis of our semi-automatic feed-

back generation methodology. (i) There are different algorithmic strategies with varying

levels of efficiency, for solving a given problem. Algorithmic strategies capture the global

high-level insight of a solution to a programming problem, while also defining key per-

formance characteristics of the solution. Different strategies merit different feedback. (ii)

The same algorithmic strategy can be implemented in countless different ways. These dif-

ferences originate from local low-level implementation choices and are not relevant for

reporting feedback on the student program.

In order to provide meaningful feedback to a student it is important to identify what al-

gorithmic strategy was employed by the student program. A profiling based approach that

measures running time of a program or use of static bound analysis techniques is not suf-

ficient for our purpose, because different algorithmic strategies that necessitate different

feedback may have the same computational complexity. Also, a simple pattern matching

based approach is not sufficient because the same algorithmic strategy can have syntacti-

cally different implementations.

Our key insight is that the algorithmic strategy employed by a program can be identi-

fied by observing the values computed during the execution of the program. We allow the

teacher to specify an algorithmic strategy by simply annotating (at the source code level)

certain key values computed by a sample program (that implements the corresponding al-

gorithm strategy) using a new language construct, called observe. Fortunately, the number

of different algorithmic strategies for introductory programming problems is often small

(at most 7 per problem in our experiments). These can be easily enumerated by the teacher

in an iterative process by examining any student program that does not match any existing

algorithmic strategy.

We propose a novel dynamic analysis that decides whether the student program (also re-

ferred to as an implementation) matches an algorithm strategy specified by the teacher in

the form of an annotated program (also referred to as a specification). Our dynamic anal-

ysis executes a student’s implementation and the teacher’s specification to check whether

the key values computed by the specification also occur in the corresponding traces gener-

ated from the implementation.

References

[GRZ14] Gulwani, Sumit; Radicek, Ivan; Zuleger, Florian: Feedback generation for performance
problems in introductory programming assignments. In: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-22),
Hong Kong, China, November 16 - 22, 2014. pp. 41–51, 2014.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 51

Integrated Performance Simulation of Business Processes

and Information Systems

Robert Heinrich1 Philipp Merkle1 Jörg Henss2 Barbara Paech3

Abstract:Business processes (BPs) and information systems (ISs) mutually affect each other in non-
trivial ways. Quality issues may arise from missing alignment. Although simulation is a powerful
approach to predict the performance of BPs and ISs, current approaches lack their integration in
simulation. We propose a holistic performance prediction approach to adequately reflect the mutual
impact between BPs and ISs in simulation. Applying the approach and tooling in a real-life case
study showed its feasibility and practicability.

Keywords: Business Process, Information System, Alignment, Performance

1 Mutual Quality Impact between Business Processes and

Information Systems

Business process (BP) designs and enterprise information system (IS) designs are often not

well aligned. Missing alignment may result in quality issues at run-time, such as large pro-

cess execution time or overloaded IS resources. The complex interrelations between BPs

and ISs are neither adequately researched so far nor sufficiently considered in development

or operation. Especially interrelations between quality aspects (such as performance, relia-

bility, security, or maintainability) concerned with BP designers and those concerned with

IS developers are not well understood. Frequently, a direct mapping of metrics is difficult

as the representation of a certain quality aspect may differ in the BP and IS domain.

Engineering methods for aligning one domain to the quality objectives of another are miss-

ing. One major reason for insufficient quality engineering is that current approaches lack

an integrated consideration of quality aspects among several domains. Frequently, BPs and

ISs are not well aligned, meaning that BPs are designed without taking IS impact into ac-

count and vice versa [He14]. Neglecting the mutual impact between BPs and ISs leads to

serious issues, e.g. unsatisfied requirements, unreliable decisions, deceleration and rework.

Simulation is a promising approach to predict performance of both, BP and IS designs.

Based on prediction results, design alternatives may be compared and verified against re-

quirements. Thus, BP and IS designs can be aligned to improve performance. Yet, BP sim-

ulation and IS simulation are not adequately integrated in current simulation approaches.

This results in limited prediction accuracy due to neglected interrelations between the BP

and the IS in simulation.

1 Karlsruhe Institute of Technology, {robert.heinrich, philipp.merkle}@kit.edu
2 FZI Forschungszentrum Informatik, henss@fzi.de
3 Heidelberg University, paech@informatik.uni-heidelberg.de

52 Robert Heinrich et al.

5: Actor Resources
& IS Resources

4: Service Effect
Specifications

3: Components

2: ProcessModel

1: Process
Workload

Abb. 1: Overview of the IntBIIS Simulation Layers [He15]

2 Integrated Business IT Impact Simulation (IntBIIS)

The holistic approach IntBIIS [He15] combines performance prediction on software archi-

tecture level and business process level to adequately reflect the mutual impact between

BPs and ISs in simulation. Based on a quality reference model [He14] for BPs, IntBIIS

models and analyzes the mutual performance impact between BPs and ISs building upon

the Palladio approach [BKR09]. While Palladio provides adequate means for analyzing IS

architectures, IntBIIS extends Palladio by modeling constructs and simulation behavior to

analyze BPs and their organizational environment. In this way, the alignment of BP de-

signs and IS designs can be supported by comparing the predicted performance impact of

design alternatives and verifying them against requirements.

Fig. 1 illustrates IntBIIS where elements with a stickman symbol indicate layers and el-

ements introduced as a result of our work. The remaining layers and elements are taken

from the Palladio reference simulator. A run of the integrated simulation starts at the top-

most layer with simulating time-variant workloads. The workloads trigger the traversing

of an action chain of actor steps and system steps specified in the BP model (layer 2). For

actor steps a suitable actor resource is requested (layer 5, left) to process the step accord-

ing to a predefined scheduling policy. For system steps resource demands are not issued

directly, but emerge as the system request propagates through software components (layer

3), their service effect specifications (layer 4), down to hardware resources (layer 5, right).

We evaluated the feasibility and practicability of our approach and tooling by modeling and

simulating a BP and involved ISs in a real-life case study. Comparing our simulation output

to reference values measured in reality and prediction results of another BP simulation tool

indicated that IntBIIS yields accurate simulation results. In experiments we examined the

scalability of IntBIIS and showed its ability to handle long and complex simulation runs.

References

[BKR09] Becker, Steffen; Koziolek, Heiko; Reussner, Ralf: The Palladio component model for
model-driven performance prediction. Journal of Systems and Software, 82:3–22, 2009.

[He14] Heinrich, Robert: Aligning Business Processes and Information Systems: New Ap-
proaches to Continuous Quality Engineering. Springer, 2014. ISBN: 978-3-658-06517-1.

[He15] Heinrich, Robert; Merkle, Philipp; Henss, Jörg; Paech, Barbara: Integrating Business Pro-
cess Simulation and Information System Simulation for Performance Prediction. Intl.
Journal on Software & Systems Modeling, 2015. DOI: 10.1007/s10270-015-0457-1.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 53

From Aristotle to Ringelmann: A large-scale analysis of

team productivity and coordination in Open Source

Software projects

Ingo Scholtes1, Pavlin Mavrodiev2, Frank Schweitzer3

Abstract: The productivity of software development teams, i.e., how their size relates to their out-
put, is an important question for project management. Most studies suggest that teams become less
productive as they grow larger, a phenomenon paraphrased as Brooks’ law in software engineering
and as Ringelmann effect in social psychology. Conversely, a recent study suggests that the produc-
tivity of teams in OSS projects increases as they grow larger. Attributing it to synergetic effects, this
was linked to the Aristotelian quote that “the whole is more than the sum of its parts”. Using data on
58 OSS projects with 580,000 commits by 30,000 developers, we perform a large-scale analysis of
productivity in development teams. We confirm the negative relation previously found by software
engineering research, providing quantitative evidence for the Ringelmann effect. Taking a network
perspective on developer-code associations, we investigate mechanism behind this effect and show
that the magnitude of the productivity decrease is related to the growth dynamics of coordination
networks.

Most of today’s software projects are so complex that they cannot be developed by a single

person, instead requiring large teams of collaborating developers. This necessity of large

teams raises a simple, yet important question: How productive is a team of developers

compared to a single developer? Or, in other words: How much time do n developers need

to finish a project compared to the time taken by a single developer? This question is

of significant importance not only for project management but also for the development

of cost estimation models for software engineering processes. One may naively assume

that the productivity of individual team members is additive, i.e., that, compared to the

time taken by a single developer, n developers will speed up the development time by a

factor of n. However, this misses out two important factors that can give rise to a non-

additive scaling of productivity. First, the collaboration of developers in a team can give

rise to synergy effects, which result in the team being more productive than one would

expect from adding up individual productivities of its members. Under this assumption,

the average output per team member can be increased by adding developers to the team,

a fact that has recently been related to Aristotle’s quote that “the whole is more than

the sum of its parts” [SMG14]. A second, contrary factor that influences the productivity

of developer teams is the communication and coordination overhead which is likely to

increase as teams grow larger. In particular, this can lead to situations where the average

output per team member decreases as the size of the team is increased. Studies showing

that growing team sizes negatively affect productivity can be traced back to early studies

of Maximilian Ringelmann [Ri13]. In the context of software engineering, it can be related

1 Chair of Systems Design, ETH Zürich, CH-8092 Zürich, Switzerland, ischoltes@ethz.ch
2 Chair of Systems Design, ETH Zürich, CH-8092 Zürich, Switzerland, ischoltes@ethz.ch
3 Chair of Systems Design, ETH Zürich, CH-8092 Zürich, Switzerland, ischoltes@ethz.ch

54 Ingo Scholtes et al.

to “Brook’s” law of software project management, which states that “adding manpower to

a late software project makes it later” [Jr75].

Using a data set covering the history of 58 Open Source Software (OSS) projects hosted

on the social coding platform GITHUB, in [SMS15] we quantitatively address the question

how the size of a software development team is related to their productivity. Based on a

time-slice analysis of more than 580,000 commit events over a period of more than 14

years, we analyse the output of projects in terms of code and study how their time-varying

productivity relates to the number of active software developers. Using the distribution of

inter-commit times, we first identify reasonable time windows for the definition of team

size and the analysis of commit activities in OSS projects. We measure the contributions

of individual commits based on a microscopic, textual analysis of commit contents. Our

analysis confirms the intuition that the actual contribution of commits exhibits a large

variation, thus requiring an analysis of commit contents rather than the mere number of

commits. We define a measure for the contribution of developers which is based on the

Levenshtein edit distance [Le66] between consecutive versions of source code files. Using

this fine-grained measure, we quantitatively show that in all of the studied OSS projects

the average productivity of developers decreases as the team size increases, thus providing

quantitative evidence for the Ringelmann effect. Finally, we take a network perspective on

the association between developers and the source code files they have edited. Aiming at a

file-based and language-independent first-order approximation for coordination structures,

we analyse the growth dynamics of co-editing networks constructed from repository data.

For all projects in our data set, we observe a super-linear growth of co-editing networks,

which can be seen as one potential mechanism behind the observed Ringelmann effect.

We argue that both our results as well as our methodology are useful to refine and cali-

brate existing software development cost models based on empirical data from software

development repositories.

References

[Jr75] Jr., Frederick P. Brooks: The Mythical Man-Month. Addison-Wesley, 1975.

[Le66] Levenshtein, Vladimir I: Binary codes capable of correcting deletions, insertions and
reversals. In: Soviet physics doklady. volume 10, p. 707, 1966.

[Ri13] Ringelmann, Maximilan: Recherches sur les moteurs animes: Travail de l’homme. An-
nales de l’Institut National Agronomique, 12(1):1–40, 1913.

[SMG14] Sornette, Didier; Maillart, Thomas; Ghezzi, Giacomo: How Much Is the Whole Really
More than the Sum of Its Parts? 1 + 1 = 2.5: Superlinear Productivity in Collective Group
Actions. PLoS ONE, 9(8):e103023, 08 2014.

[SMS15] Scholtes, Ingo; Mavrodiev, Pavlin; Schweitzer, Frank: From Aristotle to Ringelmann:
A large-scale analysis of team productivity and coordination in Open Source Software
projects. Empirical Software Engineering, 2015. accepted for publication on September
23 2015, to appear.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 55

Software Process Improvement: Where Is the Evidence?

Marco Kuhrmann1, Claudia Konopka2, Peter Nellemann1, Philipp Diebold3 and Jürgen
Münch4

Abstract: Software process improvement (SPI) is around for decades: frameworks are proposed,
success factors are studied, and experiences have been reported. However, the sheer mass of
concepts, approaches, and standards published over the years overwhelms practitioners as well as
researchers. What is out there? Are there new emerging approaches? What are open issues? Still,
we struggle to answer the question for what is the current state of SPI and related research? We
present initial results from a systematic mapping study to shed light on the field of SPI and to draw
conclusions for future research directions. An analysis of 635 publications draws a big picture of
SPI-related research of the past 25 years. Our study shows a high number of solution proposals,
experience reports, and secondary studies, but only few theories. In particular, standard SPI
models are analyzed and evaluated for applicability, especially from the perspective of SPI in
small-to-medium-sized companies, which leads to new specialized frameworks. Furthermore, we
find a growing interest in success factors to aid companies in conducting SPI.

This summary refers to the paper Software Process Improvement: Where Is the Evidence? [Ku15].
This paper was published as full research paper in the ICSSP’2015 proceedings.

Keywords: software process, software process improvement, systematic mapping study

1 Introduction

Software process improvement (SPI) aims to improve software processes and comprises
a variety of tasks, such as scoping, assessment, design and realization, and continuous
improvement. Several SPI models compete for the companies’ favor, success factors to
support SPI implementation at the large and the small scale are studied, and numerous
publications report on experiences in academia and practice. SPI is considered an
important topic. However, SPI is a diverse field: On the one hand, a number of standards
is available, e.g., ISO/IEC 15504 or CMMI but, on the other hand, these standards are
criticized often [St07]. In a nutshell, the different facets of SPI and the corresponding
research provide a huge body of knowledge on SPI.

Problem. The field of SPI evolved for decades and provides a vast amount of
publications addressing a huge variety of topics. Still, we see new method proposals,
research on success factors, and experience reports. However, missing is a big picture

1 University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark, {kuhrmann,pnel}@mmmi.sdu.dk
2 4Soft GmbH, Mittererstr. 3 80336 Munich, Germany, claudia.konopka@4soft.de
3 Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany, philipp.diebold@iese.fhg.de
4 University of Helsinki, Department of Computer Science, Gustaf Hällströmin katu 2b, FI-00014 Helsinki,

Finnland, juergen.muench@cs.helsinki.fi

56 Marco Kuhrmann et al.

that illustrates where SPI gained a certain level of saturation and where are still hot
topics and unresolved issues calling for more investigation.

Objective, Method, and Contribution. To better understand the state of the art in SPI,
we aim to analyze the whole publication flora to draw a big picture on SPI. As research
method, we opted for a combination of the well-known Systematic Literature Review
and Mapping Study instruments. We contribute initial findings from a comprehensive
literature study in which we analyze 635 papers from 25 years of SPI-related research.

2 Results

In total, in our study, we obtained 635 papers on SPI published between 1989 and 2013.
Most papers (≈2/3) were categorized as solution proposal (n=244) or philosophical paper
(n=214). However, the result set also contains a number of evaluation research (n=102)
and experience papers (n=70) showing the field of SPI still moving. The classification
shows that lessons learned (n=290, 46%) and frameworks (n=235, 37%) make the
majority of the contributions. Other categories are barely represented, e.g., tools (n=36),
models (n=24), and theories (n=12). Most of the solution proposals focus on frameworks
(n=167), i.e., 26% of all papers propose a new SPI framework. The largest share of the
philosophical papers is devoted to lessons learned (n=155, i.e., 24%). Yet, the result set
also points to some new trends, e.g., SPI in the context of agile software development
and in the context of small-to-medium-sized companies.

3 Conclusion

The field of SPI suffers from missing evidence: Proposed solutions are barely evaluated
for their feasibility, studies comparing and analyzing proposed solutions for their
advantages and disadvantages are missing, and testable theories are—if at all—in the
construction phase awaiting confirmation. Furthermore, our study reveals some trends in
SPI-related research: We found growing interest over the recent years in SPI for SME’s
and adopting agile principles for SPI. Also, we found an increasing number of secondary
studies of which some already started to collect, structure, and generalize knowledge.

References

[Ku15] Kuhrmann, K.; Konopka, C.; Nellemann, P.; Diebold, P.; Münch, J.: Software Process
Improvement: Where is the Evidence? Proc. of Int. Conf. on Software and System
Process, ACM, New York, NY, pp. 107-116, 2015.

[St07] Staples, M.; Niazi, M.; Jeffery, R.; Abrahams, A.; Byatt, P.; Murphy, R.: An
exploratory study of why organizations do not adopt CMMI. Journal of Systems and
Software, 80(6):883–895, 2007.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 57

Cost-Effective Evolution of Research Prototypes into

End-User Tools: The MACH case study

Harald Störrle1

Abstract: Much of Software Engineering research hinges on an implementation as a proof-of-
concept. The resulting tools are often quite prototypical, to the degree of having little practical bene-
fit. The Model Analyzer/Checker (MACH) is a case study in turning a set of research prototypes for
analyzing UML models into a tool that can be used in research and teaching, by a broad audience.
We document how the requirements and constraints of an academic environment influence design
decisions in software tool development. We argue that our approach while perhaps unconventional,
serves its purpose with a remarkable cost-benefit ratio. This paper is a summary of [St15].

Background For the purposes of research and publication, there is little value in pol-

ishing the usability, stability, portability, extensibility, or performance of a tool, as there is

only ever one user of the tool. However, this excludes independent replication, benchmark-

ing, human-factors studies (e.g., observing real users actually using the tool), tool usage

in teaching settings, or commercial dissemination. Turning a research prototype into a

“proper” tool, however, implies substantial engineering effort with little contribution to

the research being conducted. Delegating the task to a student as a thesis project may not

be possible, or may prove not successful. All too often, the researcher ends up abandoning

the further dissemination of a strand of research for lack of resources.

Objective In this particular case, the author’s research work focuses on advanced op-

erations on UML models that are beyond the scope of existing modeling tools. Over the

years, many small exploratory prototypes have been created, each of which requires a high

degree of expertise to use, and presents only a negligible contribution to a modeler. Thus,

the objective of MACH was to create a single integrated tool from a set of prototypes to

realize synergies, encapsulate it with a user interface to make it accessible to a wide range

of users, and, most of all, do all this with as little cost as possible.

Method We focus on academic stakeholders, thus justifying the assumptions that (1)

MACH users have some understanding of models and the underlying concepts, (2) they

have sufficient motivation to use the tool even if its user interface is less polished than

commercial end user software.

Driven by the main rationale of rapid prototyping, most of the prototypes mentioned above

have been implemented using the PROLOG programming language. Long-term usage of

the resulting code, usage by third parties, or long-term-evolution of the code base was

not considered at the time of creation. Thus, creating MACH tried to achieve three goals:

(1) Combine most or all of the existing prototypes into a single tool; (2) make the major

functions available to students and colleagues; but (3) strictly limit the effort in creating

1 Department of Applied Mathematics and Computer Science,Technical University of Denmark,hsto@dtu.dk

58 Harald Störrle

the tool to the bare minimum. We mapped these goals into ten requirements, designed a

solution, and evaluated the tool repeatedly in various classes taught by the author.

Result MACH is implemented in PROLOG and provides a command-line user inter-

face, both of which are relatively exotic choices, today. MACH can be obtained online at

www.compute.dtu.dk/~hsto. There is an online demonstration of MACH 0.93 avail-

able via the SHARE platform at [St14], including samples and a manual. No installation

is required. MACH uses a set of utility functions and a common file format glued together

the following advanced analysis and checking procedures on (UML) models.

• Clone Detection important task in the quality assurance of models, where we often

find duplicate model fragments, arising through thoughtless “copy-paste modeling”.

• Model Version Control is as effective as the weakest link in the chain, typically

the way differences are presented to human modelers. We have proposed a novel

approach and tested it in controlled experiments, but lacked in vivo user studies to

provide more reliable evidence.

• Model size and similarity metrics are necessary to assess the size and nature of

a model. It is straightforward to use the frequency distribution of model element

types, and visualize it as a histogram.

In addition to the features described above, MACH provides a number of supportive func-

tions that are essential for doing practical work, such as navigating the directory tree,

loading models, handling aliases, command history, file name completion, a help system,

and so on. Usage experience so far suggests that our approach serves its purpose.

Conclusions By sticking to an “exotic” high-level language like PROLOG, offering only

a simple text interface with ASCII-graphics, and abandoning the idea of a tight, high-

productivity integration into an existing tool framework like Eclipse RCP, we can achieve

the core goals of deploying research results quickly to a broader audience, while keeping

the required effort at the absolute minimum. The approach may be unconventional, but it

offers a unique cost-benefit ratio.

We believe this is a viable path for other researchers faced with similar challenges. We

hope that our experience will help others make their research prototypes available to larger

audiences with reasonable effort, for the benefit of the entire scientific community.

References

[St14] Störrle, Harald: , MACH 0.93. online, 2014. http://is.ieis.tue.nl/staff/pvgorp/
share/?page=ConfigureNewSession&vdi=XP-TUe_XP_SWIPL.vdi.

[St15] Störrle, Harald: Cost-Effective Evolution of Research Prototypes into End-User Tools: The
MACH case study. Science of Computer Programming, 2015. in print.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 59

Getting to Know You: Towards a Capability Model for Java

Ben Hermann1 Michael Reif2 Michael Eichberg3 and Mira Mezini4

Abstract: Developing software from reusable libraries lets developers face a security dilemma: Ei-
ther be efficient and reuse libraries as they are or inspect them, know about their resource usage,
but possibly miss deadlines as reviews are a time consuming process. In this paper, we propose a
novel capability inference mechanism for libraries written in Java. It uses a coarse-grained capa-
bility model for system resources that can be presented to developers. We found that the capability
inference agrees by 86.81% on expectations towards capabilities that can be derived from project
documentation. Moreover, our approach can find capabilities that cannot be discovered using project
documentation. It is thus a helpful tool for developers mitigating the aforementioned dilemma.

1 Summary

The efficiency of software development largely depends on an ecosystem of reuse [Bo99,

Gr93]. Numerous software libraries are available that solve various problems ranging from

numerical computations to user interface creation. The safe use of these libraries is an

exigence for the development of software that meets critical time-to-market constraints.

However, when including software libraries into their products software developers entrust

the code in these libraries with the same security context as the application itself regard-

less of the need for this excessive endorsement. For instance, a system that makes use

of a library of numerical functions also enables the library to use the filesystem or make

network connections although the library does not need these capabilities. If the library

contains malicious code it could make use of them. In commonly used languages like Java

no effective mechanism to limit or isolate software libraries from the application code ex-

ists. So developers face a dilemma: Either trust the component and finish the project in

time or be secure, review the library’s source code and possibly miss deadlines.

We propose to consider this excessive assignment of authority as a violation of the Prin-

ciple of Least Privilege [SS75]. The principle states that every program should operate

under the least set of privilege necessary to complete its job. In order to alleviate the de-

scribed dilemma, we introduce an effective mechanism in this paper to detect the actual

permission need of software libraries written in Java.

Drawing inspiration from Android, we construct a capability model for Java. It includes

basic, coarse-grained capabilities such as the authority to access the filesystem or to open a

1 Technische Universität Darmstadt, Fachbereich Informatik Fachgebiet Softwaretechnik, Hochschulstraße 10,

64289 Darmstadt, hermann@cs.tu-darmstadt.de
2 reif@cs.tu-darmstadt.de
3 eichberg@cs.tu-darmstadt.de
4 mezini@cs.tu-darmstadt.de

60 Ben Hermann et al.

network socket. As Java programs by themselves cannot communicate with the operating

system directly, any interaction with those capabilities has to happen through the use of

the Java Native Interface (JNI). By tracking the calls backwards through the call graph, we

produce a capability set for every method of the Java Class Library (JCL) and by the same

mechanism towards methods of a library. We can thus effectively infer the necessary ca-

pabilities of a library using our approach. We can also infer the subset of these capabilities

used by an application, as it may not use every functionality supplied by the library.

As the precision of our approach is directly depending on the precision of the algorithm

used to calculate the call graph of the library, we took several measures to compute a

reasonably precise call graph while not compromising the scalability of the algorithm too

severely. We evaluated our approach by comparing our results against expectations derived

from API documentation. We found that for 70 projects from the Qualitas Corpus [Te10],

that we evaluated against, actual results exceeded expectations and produce a far more ac-

curate footprint of the projects capability usage. Thereby, our approach helps developers to

quickly make informed decisions on library reuse without the need for manual inspection

of source code or documentation.

In our pursuit to mitigate the software developer’s dilemma w.r.t. library reuse, we thus

contribute the following in our paper:

• an algorithm to propagate capability labels backwards through a call graph,

• a labeling of native methods with their necessary capabilities to bootstrap the pro-

cess,

• a collection of efficient analysis steps to aid the precision of common call-graph

algorithms,

• an evaluation of the algorithm against extracted capability expectations from docu-

mentation.

We provide the implementation and all related data of our approach here:

http://www.thewhitespace.de/projects/peaks/capmodel.html

References

[Bo99] Boehm, Barry W: Managing Software Productivity and Reuse. IEEE Computer, 32(9):111–
113, 1999.

[Gr93] Griss, Martin L: Software Reuse: From Library to Factory. IBM Systems Journal,
32(4):548–566, 1993.

[SS75] Saltzer, J.H.; Schroeder, M.D.: The protection of information in computer systems. Pro-
ceedings of the IEEE, 63(9):1278–1308, Sept 1975.

[Te10] Tempero, Ewan; Anslow, Craig; Dietrich, Jens; Han, Ted; Li, Jing; Lumpe, Markus; Melton,
Hayden; Noble, James: Qualitas Corpus: A Curated Collection of Java Code for Empirical
Studies. In: 2010 Asia Pacific Software Engineering Conference (APSEC2010). pp. 336–
345, December 2010.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 61

Copy-Paste Redeemed 1

Krishna Narasimhan2 Christoph Reichenbach3

Abstract: Software evolves continuously. As software evolves, it’s code bases require implementa-
tions of new features. These new functionalities are sometimes mere extensions of existing function-
alities with minor changes. A commonly used method of extending an existing feature into a similar
new feature is to copy the existing feature and modify it. This method of extending feature is called
“Copy-paste-modify”. Another method of achieving the same goal of extending existing feature into
similar feature is abstracting the multiple similar features into one common feature with appropriate
selectors that enable choosing between the features. The advantages of the “Copy-paste-modify”
technique range from speed of development to reduced possibility of breaking existing feature. The
advantages of abstraction vary from user preference to have abstracted code to long term mainte-
nance benefits. In our paper, we describe an informal poll and discuss related work to confirm our
beliefs about the advantages of each method of extending features. We observe a potential com-
promise while developers extend features which are near-clones of existing features. We propose to
address this dilemma by coming up with a novel approach that can semi-automatically abstract near-
clone features and evaluate our approach by building a prototype in C++ and abstracting near-clone
methods in popular open source repositories.

Keywords: Refactoring, Software clones, Static analysis, Software evolution, Abstraction

1 Introduction

Programmers frequently employ copy-paste-modify as a method of implementing exten-

sions to features. Although copy-paste-modify yields quicker results with minimal damage

to existing code, it results in bloated code space with redundant code. This is a headache

for maintenance as readability is reduced and bug fixing is tedious is a bug in the ini-

tial near-clone is propagated to the copy pasted extensions. On the abstraction, provides

maintenance friendly code occupying less code space. But, manual abstraction is hard. We

propose to resolve this discrepancy with a novel approach that can abstract features from

near-clones, thereby allowing developers to quickly extend features by employing copy-

paste as a method of extending features and invoking a refactoring which will provide the

best possible abstraction.

2 Informal Poll

We conducted an informal poll with five programmers of varying experience with C++

programming ranging from 2 months to 10 years in order to determine which method of

1 A summary of the publication by the same name in ASE 2015
2 Goethe Universitı̈t, Informatik, Robert Mayer Strasse 10, 60486 Frankfurt, krishna.nm86@gmail.com
3 Goethe Universitı̈t, Informatik, Robert Mayer Strasse 10, 60486 Frankfurt, reichenbach@em.uni-frankfurt.de

62 Krishna Narasimhan et al.

extending features was easier to develop and which method was preferred for use. For the

initial study, we collected 5 near-clone function pairs from popular open source reposito-

ries, removed one of the functions and asked the programmers to implement the remaining

feature using copy-paste(for one group) and abstraction(for another group). We measured

the time taken and observed that Users find copy paste quicker. We followed the initial

study with a survey on the user preference in the same issue and found out that Users

prefer abstracted versions of code to maintain and use.

3 Merging Algorithm

The merging algorithm takes as input abstract syntax trees of function definitions and

returns a merged function definition. The algorithm identifies the merge points. In the

example, the merge points are the two If conditional branches and the position of ’bParam’.

After identifying the merge points, the algorithm arrives at the best code transformation

pattern to perform the merge. In our example, there are two resolution patterns, one is the

extra parameter and the other an if conditional branch. There are many other possibilities

depending on the type of nodes in the merge point.

4 Experiments

We evaluated our approach by building a prototype in C++ and using the prototype to

merge existing near-clones in popular GitHub open source repositories, including Google’s

Protobuf and Oracle’s Nodedb. Majority of our abstractions were merged into production

code, thereby validating the quality of our abstractions.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 63

Hidden Truths in Dead Software Paths

Michael Eichberg1 Ben Hermann2 Mira Mezini3 and Leonid Glanz4

Abstract: Approaches and techniques for statically finding a multitude of issues in source code
have been developed in the past. A core property of these approaches is that they are usually targeted
towards finding only a very specific kind of issue and that the effort to develop such an analysis is
significant. This strictly limits the number of kinds of issues that can be detected.

In this paper, we discuss a generic approach – based on the detection of infeasible paths in code –
that can discover a wide range of code smells ranging from useless code that hinders comprehension
to real bugs. The issues are identified by computing the difference between the control-flow graph
that contains all technically possible edges and the corresponding graph recorded while performing
a more precise analysis using abstract interpretation.

The approach was evaluated using the Java Development Kit as well as the Qualitas Corpus (a
collection of over 100 Java Applications) and enabled us to find thousands of issues.

1 Overview

Since the 1970s many approaches have been developed that use static analyses to iden-

tify a multitude of different types of issues in source code [Co06, CA01, GYF06]. The

techniques used by these approaches range from pattern matching [Co06] to using for-

mal methods [Co09] and vary widely w.r.t. their precision and scalability. But, they have

in common that each one only targets a very specific kind of issues. Those tools (e.g.,

FindBugs [Co06]) that can identify issues across a wide(r) range of issues are typically

just suits of relatively independent analyses. In all cases, the issues that can be found are

limited to those that are identified by some tool developer.

We present a generic approach that detects control- and data-flow dependent issues in

Java Bytecode without targeting any specific kind of issues per se. The approach applies

abstract interpretation based techniques to analyze the code and while doing so records

the paths that are taken. Afterwards, the analysis compares the recorded paths with the set

of all paths that could be taken according to a naı̈ve control-flow analysis that does not

consider any data-flows. The paths computed by the latter analysis, but not found in the

former graph, are then reported along with a justification why they were not taken.

The rationale underlying this approach is that many issues such as null dereferences or

array index out of bounds accesses lead to executions that leave infeasible paths behind.

1 Technische Universität Darmstadt, Fachbereich Informatik Fachgebiet Softwaretechnik, Hochschulstraße 10,

64289 Darmstadt, eichberg@cs.tu-darmstadt.de
2 hermann@cs.tu-darmstadt.de
3 mezini@cs.tu-darmstadt.de
4 glanz@cs.tu-darmstadt.de

64 Michael Eichberg et al.

Hence, the hypothesis underlying the approach is threefold. First, in well-written code

every path between an instruction and all it’s direct successors is eventually taken, and,

second, a path that will never be taken indicates an issue. Third, a large class of relevant

issues manifests itself sooner or later in infeasible paths.

Though we opted for analyzing the code as precisely as possible, we deliberately limited

the scope of the analysis to make it scalable. We start with each method of a project and

then perform a context-sensitive analysis with a very small maximum call chain size. This

makes the analysis unsound – i.e. we may miss certain issues – but it enables us to use it

for large industrial sized libraries and applications.

To validate our approach we analyzed the Java Development Kit (JDK 1.8.0 25) and also

the applications of the Qualitas Corpus [Te10]. The issues that we found range from seem-

ingly benign issues to serious bugs that will lead to exceptions at runtime or to dead fea-

tures. However, even at first sight benign issues, such as unnecessary checks that test what

is already guaranteed, can have, e.g., an impact in code reviews such code generally hin-

ders comprehension.5

2 Conclusion

The proposed approach is based on the idea that infeasible paths in software are a good

indication of code issues and that a large class of relevant issues manifest themself sooner

or later in infeasible paths. The implementation relies on a new static analysis technique

that exploits abstract interpretation and is parametrized over abstract domains as well as the

depth of call chains to follow inter-procedurally. This enables us to make informed reason-

able trade-offs between scalability and soundness. The validity of the claims is evaluated

by doing a case study of industrial size software; the issues revealed during the case study

constitute themselves a valuable contribution of the paper and are publicly available.

References

[CA01] Cyrille, A.; Armin, B.: Applying Static Analysis to Large-Scale, Multi-Threaded Java
Programs. In: Proceedings of ASWEC ’01. IEEE Computer Society, 2001.

[Co06] Cole, B.; Hakim, D.; Hovemeyer, D.; Lazarus, R.; Pugh, W.; Stephens, K.: Improving
Your Software Using Static Analysis to Find Bugs. In: Companion to OOPSLA ’06.
ACM, 2006.

[Co09] Cousot, P.; Cousot, R.; Feret, J.; Mauborgne, L.; Miné, A.; Rival, X.: Why Does Astrée
Scale Up? Form. Methods Syst. Des., 35(3):229–264, December 2009.

[GYF06] Geay, E.; Yahav, E.; Fink, S.: Continuous Code-quality Assurance with SAFE. In: Pro-
ceedings of PEPM ’06. ACM, 2006.

[Te10] Tempero, E.; Anslow, E.; Dietrich, J.; Han, T.; Li, J.; Lumpe, M.; Melton, H.; No-
ble, J.: Qualitas Corpus: A Curated Collection of Java Code for Empirical Studies. In:
APSEC2010. 2010.

5 The tool and the data set are available for download at www.opal-project.de/tools/bugpicker.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 65

Effekte modellbasierter Test- und Analyseverfahren in Un-
ternehmen: Ergebnisse einer großangelegten empirischen
Evaluation mittels industrieller Fallstudien 1

Michael Kläs2, Thomas Bauer3, Andreas Dereani4, Thomas Söderqvist5, Philipp Helle6

Abstract: Bei der Erstellung eingebetteter Systeme spielen neben modellbasierten Softwareent-
wicklungsverfahren zunehmend auch modellbasierte Prüfverfahren eine Rolle. Entsprechende
Qualitätssicherungstechniken und -werkzeuge verheißend hierbei Kosteneinsparungen und höhere
Produktqualität. Leider existieren derzeit nur wenige empirische Daten, die diesbezügliche Aussa-
gen auch in der Praxis belegen. Der Beitrag stellt daher eine aktuelle unternehmensübergreifende
Studie vor, die den Einfluss modellbasierter Qualitätssicherung im industriellen Kontext auf eine
Reihe von Verbesserungsziele untersucht. Die zugrundeliegenden Daten stammen aus 13 Fallstu-
dien, die im Rahmen eines europäischen Forschungsprojekts bei Unternehmen aus dem Verkehrs-
sektor durchgeführt wurden. Die aggregierten Ergebnisse deuten dabei auf deutliche Kosteneinspa-
rungspotentiale hin, so können die Verifikations- und Validationskosten im Durchschnitt um 29%
bis 34% gesenkt werden. Ebenso können Fehlerbehebungskosten im Mittel um 22% bis 32%
reduziert werden. Vergleichsweise gering sind hingegen die beobachteten Verbesserungen bezüg-
lich Testüberdeckung und Fehlerzahlen, wie auch bezüglich Produkteinführungszeiten.

Keywords: Empirical study, embedded software quality assurance, multiple case study,
GQM+Strategies, quantitative technology evaluation, model-based testing, internal baselines.

1 Einleitung und Forschungsfragen

Der Beitrag basiert auf der Veröffentlichung “A Large-Scale Technology Evaluation
Study: Effects of Model-based Analysis and Testing” von Michael Kläs, Thomas Bauer,
Andreas Dereani, Thomas Söderqvist und Philipp Helle auf der 37. International Con-
ference on Software Engineering (ICSE) 2015 [Kla15].

In dieser wurden die folgenden drei Forschungsfragen untersucht:

1 Teile der hier vorgestellten Arbeiten und Forschungsergebnisse wurden im Rahmen des ARTEMIS Projekts
MBAT (no. 269335), sowie der Projekte ARAMiS (01IS11035) und SPES (01IS12005E) gefördert.

2 Fraunhofer Institute for Experimental Software Engineering (IESE), Data Engineering, Fraunhofer-Platz 1,
67663 Kaiserslautern, michael.klaes@iese.fraunhofer.de

3 Fraunhofer Institute for Experimental Software Engineering (IESE), Embedded System Quality Assurance,
Fraunhofer-Platz 1, 67663 Kaiserslautern, thomas.bauer@iese.fraunhofer.de

4 Daimler AG, Sindelfingen, Germany, andreas.dereani@daimler.com
5 Volvo Group Trucks Technology, Advanced Technology & Research, Gothenburg, Sweden, thom-

as.soderqvist@volvo.com
6 Airbus Group Innovations, Hamburg, Germany, philipp.helle@airbus.com

66 Michael Kläs et al.

• Welche Ziele werden mit einer Einführung von (integrierten) modellbasierten
Analyse- und Testtechnologien (MBAT) bei eingebetteten System in den Do-
mänen Schienen-, Automobil-, und Luftverkehr verfolgt und mit welchen Stra-
tegien sollen diese erreicht werden?

• Wie können angestrebte Verbesserungen quantifiziert und im Rahmen einer
großen, mehrere Einzelfallstudien umfassenden Evaluation beurteilt werden?

• Welche Verbesserungen können durch MBAT Technologien erreicht werden?

2 Vorgehen und Ergebnisse

In der Studie wurden zu Beginn wichtige Verbesserungsziele und Strategien im Umfeld
der (integrierten) Nutzung modelbasierter Analysen und Testverfahren basierend auf
einer Dokumentenanalyse und einer Umfrage bei den potentiellen Fallstudiengebern
erhoben und konsolidiert. Dabei kam eine vereinfachte Variante der GQM+Strategies
Methode [Bas14] zum Einsatz [KBT13]. Das Ergebnis waren GQM+Strategies-Graphen
für fünf Hauptziele mit insgesamt 23 Unterzielen sowie entsprechenden Strategien. Die
konsolidierten Ziele wurden anschließend mit abstrakten Maßen quantifiziert und durch
fallstudienspezifische Messpläne individuell operationalisiert. Entsprechende Daten
wurden anschließend in den verschiedenen Fallstudien erhoben. Um den Vertrau-
lichkeitsanforderungen der Fallstudiengeber nachzukommen, wurde dabei das Konzept
der internen Baselines [KBT13] genutzt bei dem keine absoluten Zahlenwerte sondern
relative Verbesserungen kommuniziert und analysiert werden.

Die aggregierten Ergebnisse zeigen in den Zielbereichen mit Kostenbezug deutliche
Einsparungen bezüglich Fehler- wie auch Qualitätssicherungskosten auf. Hinsichtlich
Markeinführungszeiten und Produktqualität waren eher geringe Effekte zu verzeichnen.
Eine erhoffte Reduktion der Gesamtbetriebskosten der Entwicklungsumgebung konnte
zumindest zum Studienzeitpunkt noch nicht beobachtet werden. Die detaillierten Ergeb-
nisse mit Unsicherheitsintervallen sind in der Publikation [Kla15] zu finden.

Literaturverzeichnis

[Kla15] Kläs, M.; Bauer, T.; Dereani, A.; Söderqvist, T.; Helle, P.: A Large-Scale Technology
Evaluation Study: Effects of Model-based Analysis and Testing. In: Proc. 37th IEEE
International Conference on Software Engineering (ICSE), Florence, S. 119-128, 2015.

[KBT13] Kläs, M.; Bauer, T.; Tiberi, U.: Beyond Herding Cats: Aligning Quantitative Technol-
ogy Evaluation in Large-Scale Research Projects. In: Proceedings of 14th International
Conference on Product-Focused Software Development and Process Improvement
(PROFES), Paphos, Cyprus, Springer, S. 80-92, 2013.

[Bas14] Basili, V.; Trendowicz, A.; Kowalczyk, M.; Heidrich, J.; Seaman, C.; Münch, J.;
Rombach, D.: Aligning Organizations through Measurement - The GQM+Strategies
Approach. Springer-Verlag, 2014.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 67

Empirical Software Metrics for Benchmarking of

Verification Tools

Yulia Demyanova Thomas Pani Helmut Veith und Florian Zuleger1

Abstract: In recent work [De15, PVZ15, DVZ13], we study empirical metrics for software (SW)
source code, which can predict the performance of verification tools on specific types of SW. Our
metrics comprise variable usage patterns, loop patterns, as well as indicators of control-flow com-
plexity and are extracted by simple data-flow analyses. We demonstrate that our metrics are powerful
enough to devise a machine-learning based portfolio solver for SW verification. We show that this
portfolio solver would be the (hypothetical) overall winner of both the 2014 and 2015 International
Competition on Software Verification (SV-COMP). This gives strong empirical evidence for the pre-
dictive power of our metrics and demonstrates the viability of portfolio solvers for SW verification.

Keywords: Software verification, software metrics, portfolio solver, machine learning.

A modern verification tool needs to pick and choose how to combine a multitude of meth-

ods from the fields of model checking, static analysis, shape analysis, SAT solving, SMT

solving, abstract interpretation, termination analysis, pointer analysis etc. The trade-offs

are based on both technical and pragmatic aspects: many tools are either optimized for

specific application areas (e.g. device drivers), or towards the in-depth development of a

technique for a restricted program model (e.g. termination for integer programs).

In [De15] we demonstrate that the results of the annual International Competition on Soft-

ware Verification (SV-COMP) [Be15] can be explained by intuitive metrics on the source

code. In fact, the metrics are strong enough to enable us to construct a portfolio solver

which would (hypothetically) win SV-COMP 2014 and 2015. Here, a portfolio solver is a

SW verification tool that uses heuristic preprocessing to select one of the existing tools.

As an approach to SW verification, portfolio solving brings interesting advantages: (1)

a portfolio solver optimally uses available resources, (2) it can avoid incorrect results of

partially unsound tools, (3) machine learning in combination with portfolio solving allows

us to select between multiple versions of the same tool with different runtime parameters,

(4) the portfolio solver gives good insight into the state-of-the-art in SW verification.

To choose the SW metrics, we consider the zoo of techniques discussed above along with

their target domains, our intuition as programmers, as well as the tool developer reports

in their competition contributions. The obtained metrics are naturally understood in three

dimensions: program variables, program loops, and control flow.

In [De15, PVZ15, DVZ13] we describe metrics which correspond to these dimensions,

and are based on simple data-flow analyses. Our algorithm for the portfolio is based on

1 TU Wien, Arbeitsbereich Formal Methods in Systems Design, Institut für Informationssysteme 184/4, Fa-

voritenstraße 9–11, 1040 Wien, Austria

68 Yulia Demyanova et al.

machine learning using support vector machines (SVMs) [CV95] over the metrics defined

above. Figure 1 depicts our experimental results on SV-COMP’15: Our tool TP is the

overall winner and outperforms all other tools.

blast cas-

cade

cbmc cpa-

che-

cker

pre-

dator-

hp

smack ulti-

mate-

kojak

ulcseq TP

Overall
737

4546

806

5146

684

11936

2228

6288

389

96

1542

8727

1215

7979

273

12563

2511

6260

Medals 1/0/0 0/0/0 1/1/1 2/1/5 1/0/1 2/1/1 0/2/0 0/0/0 1/6/1

Fig. 1: Experimental results for the eight best competition participants in SV-COMP’15Overall, plus

our portfolio TP, given as arithmetic mean of 10 experiments on randomly selected 40% subsets

chosen for testing. The first row shows the Overall SV-COMP score and beneath it the runtime

in minutes. We highlight the Overall gold, silver, and bronze medal in dark gray, light gray and

white+bold font, respectively. The second row shows the number of gold/silver/bronze medals won

in individual categories.

While portfolio solvers are important, we also think that the SW metrics we define in this

work are interesting in their own right. Our results show that categories in SV-COMP have

characteristic metrics. Thus, the metrics can be used to 1) characterize benchmarks not

publicly available, 2) understand large benchmarks without manual inspection, 3) under-

stand presence of language constructs in benchmarks.

Summarizing, our work makes the following contributions:

• We define software metrics along the three dimensions – program variables, program

loops and control flow – in order to capture the difficulty of program analysis tasks.

• We develop a machine-learning based portfolio solver for software verification that

learns the best-performing tool from a training set.

• We experimentally demonstrate the predictive power of our software metrics in

conjunction with our portfolio solver on the software verification competitions SV-

COMP’14 and SV-COMP’15.

References

[Be15] Beyer, Dirk: Software Verification and Verifiable Witnesses - (Report on SV-COMP
2015). In: TACAS. pp. 401–416, 2015.

[CV95] Cortes, Corinna; Vapnik, Vladimir: Support-vector networks. Machine learning,
20(3):273–297, 1995.

[De15] Demyanova, Yulia; Pani, Thomas; Veith, Helmut; Zuleger, Florian: Empirical Software
Metrics for Benchmarking of Verification Tools. In: CAV. pp. 561–579, 2015.

[DVZ13] Demyanova, Yulia; Veith, Helmut; Zuleger, Florian: On the Concept of Variable Roles
and its Use in Software Analysis. In: FMCAD. pp. 226–229, 2013.

[PVZ15] Pani, Thomas; Veith, Helmut; Zuleger, Florian: Loop Patterns in C Programs. ECEASST,
72, 2015.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 69

An Empirical Study on Program Comprehension with

Reactive Programming

Guido Salvaneschi, Sven Amann, Sebastian Proksch, and Mira Mezini1

Abstract:

Starting from the first investigations with strictly functional languages, reactive programming has
been proposed as the programming paradigm for reactive applications. The advantages of designs
based on this style over designs based on the Observer design pattern have been studied for a long
time. Over the years, researchers have enriched reactive languages with more powerful abstractions,
embedded these abstractions into mainstream languages – including object-oriented languages – and
applied reactive programming to several domains, like GUIs, animations, Web applications, robotics,
and sensor networks. However, an important assumption behind this line of research – that, beside
other advantages, reactive programming makes a wide class of otherwise cumbersome applications
more comprehensible – has never been evaluated. In this paper, we present the design and the results
of the first empirical study that evaluates the effect of reactive programming on comprehensibility
compared to the traditional object-oriented style with the Observer design pattern. Results confirm
the conjecture that comprehensibility is enhanced by reactive programming. In the experiment, the
reactive programming group significantly outperforms the other group.

Keywords: Reactive Programming, Controlled Experiment, Program Comprehension

Reactive applications are a wide class of software that needs to respond to internal or ex-

ternal stimuli with a proper action. Examples of such applications include user-interactive

software, like GUIs and Web applications, graphical animations, data acquisition from

sensors, and distributed event-based systems.

Over the last few years, reactive programming (RP) has gained the attention of researchers

and practitioners for the potential to express otherwise complex reactive behavior in intu-

itive and declarative way. RP has been firstly introduced in Haskell. Influenced by these

approaches, implementations of RP have been proposed in several widespread languages,

including Java, Javascript and Scala. Recently, concepts inspired by RP have been applied

to production frameworks like Microsoft Reactive Extensions (Rx), which received great

attention after the Netflix success story. Finally, a lot of attention in the front-end devel-

opers community is revealed by the increasing number of libraries that implement RP

principles, among others React.js, Bacon.js, Knockout, Meteor, and Reactive.coffee.

The relevance of RP comes from the well-known complexity of reactive applications,

which are hard to develop and understand, because of the mixed combination of data and

control flow. The Observer design pattern is widely used for such applications. It has the

advantage of decoupling observers from observables. But, when it comes to program read-

ability, it does not make things easier, because of dynamic registration, side effects in call-

1 Technische Universität Darmstadt, Fachbereich Informatik, Fachgebiet Softwaretechnik, Hochschulstr. 10,

64289 Darmstadt, Deutschland, <lastname>@st.informatik.tu-darmstadt.de

70 Guido Salvaneschi et al.

backs, and inversion of control. In contrast, RP supports a design based on data flows and

time-changing values: the programmer states which relations should be enforced among

the variables that compose a reactive program and the RP runtime takes care of perform-

ing all the required updates. Dependencies are defined explicitly instead of being hidden

in the control flow. Combination can be guided by types as opposed to callbacks that re-

turn void. Contrarily to the Observer pattern, control is not inverted and less boilerplate

is required, since collecting dependencies and performing the updates is automatized by

the framework. Based on these arguments, it has been argued that RP greatly improves

over the traditional Observer pattern used in OO programming both from the software de-

sign perspective as well as from the perspective of facilitating the comprehensibility of the

software.

Yet, little empirical evidence has been provided in favor of the claimed advantages of RP

– especially enhancement of comprehensibility. Despite the intuition about its potential,

the reactive style is not obviously more comprehensible than the Observer design pattern.

For example, in the Flapjax paper [Me09] a Javascript application based on Observer is

compared against a functionally equivalent RP version. The authors argument that the RP

version is much easier to comprehend. However, the reader is warned that: “Obviously, the

Flapjax code may not appear any ‘easier’ to a first-time reader”. Doubting, at this point,

is legitimate: does RP really make reactive applications easier to read? Also, it is unclear

how much expertise is required to find a RP program “easier” – if ever.

To fill the gap, this paper provides the first empirical evaluation of the impact of RP on pro-

gram comprehension compared to the traditional technique based on the Observer design

pattern. The experiment, based on the REScala language [SHM14], involves 38 subjects

that where divided into an RP group and an OO group. They were shown a reactive appli-

cation and their understanding of the reactive functionalities was measured. To the best of

our knowledge, such a study has never been conducted before. Results show that (1) RP

increases correctness of program comprehension, (2) comprehending programs in the RP

style does not require more time than comprehending their OO equivalent, and (3) in con-

trast to OO where score results are correlated to programming skills, with RP (advanced)

programming skills are not needed to understand reactive applications. The last result sug-

gests that RP lowers the entrance barrier required to understand reactive applications.

References

[Me09] Meyerovich, Leo A.; Guha, Arjun; Baskin, Jacob; Cooper, Gregory H.; Greenberg,
Michael; Bromfield, Aleks; Krishnamurthi, Shriram: Flapjax: A Programming Language
for Ajax Applications. In: Proceedings of the 24th ACM SIGPLAN Conference on Ob-
ject Oriented Programming Systems Languages and Applications. OOPSLA ’09, ACM,
New York, NY, USA, pp. 1–20, 2009.

[SHM14] Salvaneschi, Guido; Hintz, Gerold; Mezini, Mira: REScala: Bridging Between Object-
oriented and Functional Style in Reactive Applications. In: Proceedings of the 13th Inter-
national Conference on Modularity. MODULARITY ’14, ACM, New York, NY, USA,
pp. 25–36, 2014.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 71

Supporting Process Model Validation through Natural

Language Generation

Henrik Leopold1 Jan Mendling2 Artem Polyvyanyy3

The design and development of process-aware information systems is often supported by

specifying requirements as business process models. Although this approach is generally

accepted as an effective strategy, it remains a fundamental challenge to adequately vali-

date these models given the diverging skill set of domain experts and system analysts. As

domain experts often do not feel confident in judging the correctness and completeness

of process models that system analysts create, the validation often has to regress to a dis-

course using natural language. In order to support such a discourse appropriately, so-called

verbalization techniques have been defined for different types of conceptual models. How-

ever, there is currently no sophisticated technique available that is capable of generating

natural-looking text from process models. The reason why a proper process model verbal-

ization technique is still missing might be a result of the difficulty to meet this challenge.

A process model verbalization technique has to serialize the non-sequential structure of

a process model into sequential, yet execution-order preserving, text. In addition, it must

be capable of analyzing the short and grammatically varying labels of process model el-

ements and of annotating them with their semantic components like action or business

object. Furthermore, the verbalization technique needs to handle optionality of certain

pieces of information. In the paper [LMP14], we address this research gap and propose a

technique for generating natural language texts from business process models.

WordNet Stanford
Tagger

BPMN
Process
Model

Linguistic
Information
Extraction

Annotated
RPST

Generation

Text
Structuring

DSynT-
Message

Generation

Message
Refinement

Text Planning Sentence Planning Realization

RealPro-
Realizer

Natural
Language

Text

Abb. 1: Architecture of our Natural Language Generation System

The architecture of our text generation technique is building on the traditional pipeline

concept from natural language generation systems. The basic rationale of the technique

is to utilize the existing information from the model to generate a text. In order to derive

1 VU University Amsterdam, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands, h.leopold@vu.nl
2 WU Vienna, Welthandelsplatz 1, 1020 Vienna, Austria, jan.mendling@wu.ac.at
3 Queensland University of Technology, Brisbane, QLD 4001, Australia

72 Henrik Leopold et al.

a sequence of sentences, we linearize the model via the creation of a tree structure. In

particular, the text generation technique comprises six components (see Figure 1):

1. Linguistic Information Extraction: Extraction of linguistic components from the

process model element labels.

2. Annotated RPST Generation: Linearization of process model through the generation

of a tree structure. In addition, each node is annotated with the linguistic information

from the previous step.

3. Text Structuring: Application of text structuring techniques, such as the insertion of

paragraphs and bullet points, based on the computed tree structure.

4. DSynT-Message Generation: Generation of an intermediate linguistic message struc-

ture for each node of the tree. This component represents the core of the generation

technique.

5. Message Refinement: Refinement of the generated messages through aggregation or

the introduction of referring expressions and discourse markers.

6. RealPro-Realizer: Transformation of intermediate message structures to grammati-

cally correct sentences.

To demonstrate the capability of the proposed technique for generating natural language

texts from process models, we conducted a two-step evaluation. First, we applied our tech-

nique to real-world process models and investigated how the generated texts compare to

textual descriptions created by humans. Second, we studied in how far humans are capable

of making sense of the generated texts. To this end, we asked humans to transform the gen-

erated texts back into process models. The first evaluation step showed that the generated

texts convey the model semantics in a more compact and also syntactically less complex

manner. Due to the design of the technique, the generated texts are closer to the model and

describe the model content and control flow explicitly. The second evaluation step demon-

strated that the generated texts are very informative and can successfully be interpreted by

humans.

Based on our findings, we conclude that the proposed text generation technique has the po-

tential to facilitate the validation discourse between domain experts and process analysts.

First, the generated texts support domain experts in understanding the details of process

models even if they are not familiar with process modeling. Second, the text generation

may also train domain experts in reading and interpreting process models. As long as text

and model are presented together, readers can see and learn about the connection between

model and text. Thus, their overall familiarity with process models can be expected to

increase in the long term.

References

[LMP14] Leopold, Henrik; Mendling, Jan; Polyvyanyy, Artem: Supporting process model valida-
tion through natural language generation. Software Engineering, IEEE Transactions on,
40(8):818–840, 2014.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 73

Kognitive Belastung als lokales Komplexitätsmaß in

Geschäftsprozessmodellen

Kathrin Figl1, Ralf Laue2

Abstract: In unserem Beitrag [FL15] untersuchten wir die Verständlichkeit von Geschäftsprozess-
modellen. Wir ließen Probanden Aufgaben zu Prozessmodellen lösen, in denen durch logisches
Schlussfolgern Fragen zum Modell zu beantworten waren. Neben aus der Literatur bekannten Ein-
flussfaktoren (z.B. Modellierungserfahrung) untersuchten wir, wie sich Metriken, die auf dem Be-
griff der kognitiven Belastung (cognitive load) aufbauen, auf die korrekte Beantwortung von Fragen
auswirken.

Unsere Ergebnisse erlauben eine neue Sicht auf Komplexitätsmetriken für Geschäftsprozessmodelle:
Eine bisher kaum beachtete Variable wurde als relevanter Einflussfaktor für die Modellverständlich-
keit erkannt – die Interaktivität zwischen Modellelementen. Diese kann durch die Zahl der Mo-
dellelemente, die zur Beantwortung einer Frage gemeinsam (in Verbindung zueinander) betrachtet
werden müssen, operationalisiert werden.

1 Komplexitätsmetriken für Geschäftsprozessmodelle

In den letzten Jahren erschien eine Vielzahl von Veröffentlichungen, die sich mit Komple-

xitätsmetriken für Geschäftsprozessmodelle befassten (siehe etwa [RM11]). Eine solche

Metrik soll eine Aussage über die Schwierigkeit, das Geschäftsprozessmodell zu verste-

hen, treffen.

Aktuell verfügbare Metriken erlauben zwar eine Aussage darüber, wie schwer ein Modell

zu verstehen ist, nicht jedoch darüber was genau in einem Prozessmodell zu Verständnis-

problemen beitragen kann. In unserem Artikel [FL15] versuchen wir, das Verständnis von

Modell-Fragmenten aus lokaler Sicht zu bewerten um schwierige Modellfragmente iden-

tifizieren zu können.

Hierzu legten wir 155 Probanden Fragen zu vier Geschäftsprozessmodellen vor, die sie

durch logisches Schlussfolgern beantworten sollten. Typische Fragentypen waren etwa

”
Können A und B gleichzeitig ausgeführt werden?“ oder

”
Muss in jedem Prozessdurchlauf

mindestens einmal C ausgeführt werden?“. Es ist festzustellen, dass zur Beantwortung

einer solchen Frage in der Regel nur ein Ausschnitt aus dem gesamten Modell betrachtet

werden muss. Somit wird Komplexität - abhängig von der zu lösenden Aufgabe - zu einer

lokalen Eigenschaft im Modell.

Um diese zu bewerten, gingen wir von den in der Psychologie gewonnenen Erkenntnissen

zur kognitiven Belastung aus. Sweller [Sw94] führt den Begriff der Interaktivität zwischen

1 Wirtschaftsuniversität Wien, Institut für Wirtschaftsinformatik und Neue Medien, kathrin.figl@wu.ac.at
2 Westsächsische Hochschule Zwickau, Fachgruppe Informatik,ralf.laue@fh-zwickau.de

74 Kathrin Figl et al.

Elementen ein. Dieser beschreibt, ob Elemente gemeinsam wahrgenommen und verstan-

den werden müssen, um ein bestimmtes Problem zu lösen. Eine hohe Interaktivität zwi-

schen Elementen führt zu einer hohen kognitiven Belastung, da die relevanten Elemente

gleichzeitig im Arbeitsgedächtnis gehalten werden müssen.

Als Maß für die kognitive Belastung bei der Beantwortung einer Frage zu einem Geschäfts-

prozessmodell bestimmten wir die Zahl der Konzepte, die zur Beantwortung einer Frage

im Arbeitsgedächtnis gehalten werden müssen. Hierzu nutzten wir eine kanonische Zerle-

gung eines Geschäftsprozessmodells in Modellfragmente, wobei jedes dieser Modellfrag-

mente einem Prozessablauf-Konzept (also etwa
”
parallele Ausführung“ oder

”
Wiederho-

lung“) entspricht. Auf diese Weise führten wir eine lokale Metrik ein, die die Schwierigkeit

der Beantwortung einer bestimmten Frage zum Geschäftsprozessmodell misst.

In der Auswertung unseres Experiments zeigte sich ein signifikanter Zusammenhang zwi-

schen dieser Metrik und der Zahl korrekt beantworteter Fragen. Weiterhin bestätigte sich

das aus anderen Arbeiten bekannte Ergebnis, dass manche Konzepte schwerer zu verstehen

sind als andere. Insbesondere Fragen, zu deren Beantwortung Wiederholungen (Schleifen)

im Geschäftsprozessmodellen zu analysieren waren, wurden häufiger falsch beantwortet.

Da sowohl Schleifen als auch Prozesspfadverzweigungen mit dem Symbol
”
XOR“ mo-

delliert werden, ergibt sich folgende Überlegung: Komplexitätsmetriken, die nur die Zahl

der XOR-Elemente oder die Zahl ihrer Ausgangskanten berücksichtigen (etwa genutzt

in [Sa10]), könnten an Vorhersagekraft gewinnen, wenn sie die zusätzliche Information

miteinbeziehen würden, ob mit einem XOR-Symbol eine Wiederholung oder eine Fallun-

terscheidung modelliert wird.

Da die Interaktivität zwischen Modellelementen einen messbaren Einfluss auf die richtige

Beantwortung von Fragen ausübt, sollte diese Variable auch in zukünftigen Experimenten,

welche die Verständlichkeit von Modellen messen, als Kontrollvariable beachtet werden.

Literaturverzeichnis

[FL15] Figl, Kathrin; Laue, Ralf: Influence factors for local comprehensibility of process models.
International Journal of Human-Computer Studies, 82:96 – 110, 2015.

[RM11] Reijers, Hajo A.; Mendling, Jan: A Study Into the Factors That Influence the Understanda-
bility of Business Process Models. IEEE Transactions on Systems, Man, and Cybernetics,
Part A, 41(3):449–462, 2011.

[Sa10] Sanchez-Gonzalez, Laura; Garcı́a, Félix; Mendling, Jan; Ruiz, Francisco: Quality Assess-
ment of Business Process Models Based on Thresholds. In: On the Move to Meaningful
Internet Systems, Jgg. 6426 in LNCS, S. 78–95. 2010.

[Sw94] Sweller, John: Cognitive load theory, learning difficulty, and instructional design. Learning
and Instruction, 4(4):295 – 312, 1994.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 75

Automatic Detection and Resolution of Lexical Ambiguity

in Process Models (Extended Abstract)

Fabian Pittke1, Henrik Leopold2 , and Jan Mendling3

Process models play an important role in various system-related management activities

including requirements elicitation, domain analysis, software design as well as documen-

tation of databases, business processes, and software systems. However, it has been found

that the correct and meaningful usage of process models appears to be a challenge in practi-

cal settings requiring the usage of automatic model analysis techniques. Up until now, such

automatic quality assurance is mainly available for checking formal properties of process

models. For instance, there is a rich set of analysis techniques to check control-flow-related

properties of process models, such as soundness. There are only a few techniques available

for checking guidelines on text labels with regard to terminological ambiguity. Moreover,

the terminology problem is even more serious in process models since the process model

gives an abstract view of the business process and provides only limited context to de-

tect and resolve ambiguity issues. It is thus the goal of [PLM15] to address the need for

automatic techniques as well as to define detection and resolution technique for textual

ambiguities that improve the terminological quality of a process models and repositories

thereof.

For that purpose, our approach addresses three important issues, i.e. the manual effort,

the missing focus on process model text fragments, and the focus on single models. First,

the required manual effort, refers to the extensive amount of manual work that is required

to detect and resolve ambiguities in process models. The human effort can be tremen-

dous since organizations tend to maintain several hundreds or even thousands of process

models. Second, the missing focus on process model text fragments refers to the fact that

many approaches of ambiguity detection and resolution are tailored to deal with sentences

and phrases taken from a grammatically and syntactically correct natural language text.

However, the elements of process models contain only short textual fragments that do

not exhibit a complete or a correct sentence structure impeding the direct application of

such approaches. Third, the focus on single models relates to the observation that available

techniques consider only single models or smaller units thereof. Hence, these techniques

address ambiguities within a single document or process model. However, since we as-

sume a repository of several process models, the correction of ambiguities on document

level might introduce an inconsistency in another document or model.

Our approach introduces the notion of semantic vectors that represents all the possible

meanings of a term in the context of a process model. A semantic vector interprets the

1 WU Vienna, Welthandelsplatz 1, 1020 Vienna, Austria, fabian.pittke@wu.ac.at
2 VU University Amsterdam, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands, h.leopold@vu.nl
3 WU Vienna, Welthandelsplatz 1, 1020 Vienna, Austria, jan.mendling@wu.ac.at

76 Fabian Pittke et al.

vector dimensions as word meanings and quantifies the occurrence of a particular word

meaning with a score that is non-zero. The higher the score, the more prevailing the re-

spective meaning in the process model. Furthermore, our approach operationalizes lexical

ambiguity by defining necessary and sufficient ambiguity conditions. While the necessary

ambiguity conditions focus on the basic characteristics of lexical ambiguities, the suffi-

cient ambiguity conditions explicitly include the usage context of the respective term. The

rationale is motivated by the fact that only because a term might be ambiguous, this does

not necessarily mean that it actually is. A word is ambiguous only, if the context of the

word is not sufficient to infer the correct meaning.

This logic has been used to define ambiguity detection and resolution techniques. Accord-

ingly, the detection technique makes use of the previous conceptualization and combines

it with the lexical database BabelNet and its integrated word sense disambiguation method

to instantiate the semantic vectors and to evaluate the ambiguity conditions. Furthermore,

the approach groups such process models, in which a specific term is used with a similar

intention, i.e. models with semantic vectors close to each other. The resolution techniques

employs different strategies based on semantic relations that suggest alternative terms for

replacement. These strategies are, for instance, based on the hypernym and hyponym rela-

tions between terms or the specificity of alternative terms. Again, the resolution strategies

make use of the lexical database BabelNet, which provides a rich knowledge base of pos-

sible word meanings and semantic relations between them.

These techniques have been evaluated by using three process model collections from prac-

tice varying in size, domain, and degree of standardization. In particular, the performance

of the detection technique was evaluated by conducting an extensive user experiment. The

experiment involved six native English speakers who provided their interpretation of a

term in a given model. The performance of the resolution technique has been assessed

by quantifying the degree of ambiguity and comparing it before and after applying the

resolution strategies to the test collections. The evaluation with the English native speak-

ers illustrates that the detection technique uncovers a relevant share of ambiguous terms

within the test collections. Moreover, the introduced metrics highlight the positive effect

of the resolution approach, which has lead to a significant reduction of ambiguity.

The results of this research underline the importance of terminological consistency of pro-

cess models and other conceptual models that are affected by terminological inconsisten-

cies, such as goal models, use case models, or feature models. The results also provide

support for the revision of such inconsistent models and repositories and for sustaining

the consistency of language and terminology over a longer period of time. Moreover, the

techniques make an important contribution to existing quality assurance techniques and

represent an important step towards the automated quality assurance of process models.

References

[PLM15] Pittke, Fabian; Leopold, Henrik; Mendling, Jan: Automatic Detection and Resolution of
Lexical Ambiguity in Process Models. IEEE Transactions on Software Engineering,
41(6):526–544, 2015.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 77

Design and Evaluation of a Customizable Multi-Domain

Reference Architecture on top of Product Lines of

Self-Driving Heavy Vehicles – An Industrial Case Study

Jan Schroeder1 Daniela Holzner1 Christian Berger1 Carl-Johan Hoel2 Leo Laine2 Anders

Magnusson2

Abstract: Self-driving vehicles are of high interest for academia and industry at the moment. Par-
ticularly, in the transportation domain they exhibit a huge potential to increase companies’ com-
petitiveness by automating delivery tasks or construction work. This industrial case study reports
on the process of developing and evaluating a multi-domain reference architecture concerned with
commercial transport mission planning, execution, and tracking for self-driving vehicles. Therefore,
internal and external stakeholders as well as development documents were consulted. The result-
ing reference architecture is evaluated based on its underlying non-functional requirements ensuring
early confirmation of compliance with stakeholder needs. A concrete variant of the architecture was
also deployed on a Volvo FMX truck and practically evaluated in an exemplary construction site
setting.
This paper summarizes our work Schroeder et al. [Sc15] published at 2015 ICSE.

Keywords: self-driving vehicles, reference architecture, design, evaluation, variability, case study

1 Goal and Research Questions

Preliminary research revealed that so far no industrial case studies showed the successful

elicitation, integration, and validation of functional requirements (FR) and non-functional

requirements (NFR) for a multi-domain reference architecture supporting transport mis-

sion planning, execution, and tracking. Consequently, the main goal of this study to design

and evaluate such a reference architecture. This goal was divided into the following two

research questions:

1. What are FRs, NFRs, and design patterns for a multi-domain reference architecture

that supports transport mission planning, execution, and tracking?

2. How can the resulting reference architecture be evaluated regarding how well it

accords with the elicited requirements?

1 Chalmers | University of Gothenburg, Department of Computer Science and Engineering, SE-41296 Göteborg,

Sweden, jan.schroder@gu.se, holzner@student.chalmers.se, christian.berger@gu.se
2 Volvo Group Trucks Technology, SE-41296 Göteborg, Sweden, {carl-

johan.hoel,leo.laine,anders.magnusson.3}@volvo.com

78 Jan Schroeder et al.

2 Resulting Process, Architecture Design, and Evaluation

The process starts with an extensive data collection during stakeholder interviews, docu-

ment reviews, and literature reviews. This resulted in unprioritized FRs from customers

and domains, and unprioritized NFRs on the self-driving heavy vehicle systems concerned

with transport mission planning, execution, and tracking. Prioritization in multiple stake-

holder workshops led to concrete functionalities expressed as variations and commonal-

ities necessary for the reference architecture design. The design was expressed in com-

ponent diagrams and feature models enabling automatic product variant generation. The

prioritized NFRs matching the domain needs were incorporated as architectural design

patterns.

The resulting design was evaluated using three methods based on scenarios and mathe-

matical models. Evaluation was performed at two distinct stages throughout the process,

assessing adaptability, changeability, and stability. The first evaluation was done in an early

phase of the architectural design and the second one at the end. The evaluations finalize

the architecture development process and ensure that stakeholders’ expectations towards

the architecture design are fulfilled. Finally a practical evaluation was performed on a test

track using a concrete variant of the reference architecture deployed on a Volvo FMX

truck.

3 Contributions and Conclusions

The reported industrial case study contributes with a complete process for developing and

evaluating reference architectures in the domain of self-driving transport vehicles. It fur-

thermore lists results for each step including functional and non-functional requirements,

and resulting design patterns for a reference architecture for this domain. The resulting de-

sign of the reference architecture is described in form of component diagrams and feature

models. Finally, architectural evaluation is reported for assessing changeability, adaptabil-

ity, stability, and interoperability.

The resulting reference architecture expresses stakeholder requirements as well domain

needs in both functional and non-functional terms. It proved itself being useful in theory

and applicable in practice. The development process and the resulting reference architec-

ture can be considered as role model for comparable industrial settings.

More detailed information on this study can be found in [Sc15].

References

[Sc15] Schroeder, Jan; Holzner, Daniela; Berger, Christian; Hoel, Carl-Johan; Laine, Leo; Mag-
nusson, Anders: Design and Evaluation of a Customizable Multi-domain Reference Archi-
tecture on Top of Product Lines of Self-driving Heavy Vehicles: An Industrial Case Study.
In: Proceedings of the 37th International Conference on Software Engineering - Volume 2.
ICSE ’15, IEEE Press, Piscataway, NJ, USA, pp. 189–198, 2015.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 79

A Primer on Counterexample Guided Abstraction

Refinement of Product-Line Behavioural Models

Maxime Cordy1, Bruno Dawagne2, Patrick Heymans3, Axel Legay4, Martin Leucker5, and

Pierre-Yves Schobbens6

Abstract: The model-checking problem for Software Products Lines (SPLs) is harder than for sin-
gle systems: variability constitutes a new source of complexity that exacerbates the state-explosion
problem. Abstraction techniques have successfully alleviated state explosion in single-system mod-
els. However, they need to be adapted to SPLs, to take into account the set of variants that produce a
counterexample. In this paper, we recall the main ideas of a paper published elsewhere that applies
CEGAR (Counterexample-Guided Abstraction Refinement) and desings new forms of abstraction
specifically for SPLs. Experiments are carried out to evaluate the efficiency of our new abstractions.
The results show that our abstractions, combined with an appropriate refinement strategy, hold the
potential to achieve large reductions in verification time, although they sometimes perform worse.

Keywords: Software Product Lines, Model Checking, CEGAR, Abstraction

Summary7

Software Product Lines (SPLs) are families of similar software systems developed to-

gether. SPL engineering aims to facilitate the development of the members of a family

(called products or variants) by identifying upfront their commonalities and differences.

Variability in SPLs is commonly represented in terms of features, i.e., units of difference

between products that appear natural to stakeholders. The emergence and the increasing

popularity of SPLs have raised the need for SPL-specific quality assurance techniques. In-

deed, engineers have to provide solid evidence that all the products they build satisfy their

intended requirements. Moreover, in case of failure, they should identify which features,

or combinations of features, are responsible for the errors in order to facilitate repair.

Model checking is an automated technique to verify a behavioural model of a system

against a property expressed in temporal logic. It relies on an exhaustive exploration of the

model in search for counterexamples, i.e., executions that violate the property to verify.

Due to its exhaustiveness, model checking is costly in time and memory. When applied

to real systems with a typically huge state space, model checking faces a combinatorial

blow-up called state explosion. The model-checking problem is even harder for SPLs: in

this case, the model checker must either prove the absence of errors or find a counterex-

ample for each variant that can produce a violation. Given that the worst-case number of

products of an SPL is exponential in the number of features, variability dramatically exac-

erbates state explosion. As a consequence, it is not feasible to apply single-system model

1 University of Namur, Belgium, mcr@info.fundp.ac.be 2 University of Namur, Belgium,

bdawagne@student.fundp.ac.be 3 University of Namur, Belgium, phe@info.fundp.ac.be 4 INRIA Rennes,

France, axel.legay@inria.fr 5 University of Lübeck, Germany, leucker@isp.uni-luebeck.de 6 University of

Namur, Belgium, pys@info.fundp.ac.be 7 This paper summarizes the paper published in [Co14]. References

and further details can be found there.

80 Maxim Cordy et al.

checking to the thousands of variants that can compose real-world SPLs. In recent years,

many variability-aware techniques have been designed to address the SPL model checking

problem. These techniques keep track of variability information contained in an SPL be-

havioural model to associate each execution path to the exact set of variants able to produce

it. By doing so, they are able to identify the set of products that violate a given property,

and to report a counterexample of violation for each of them. Moreover, being aware of

variability allows them to check behaviour common to several products only once. One

of the most effective answers to state explosion is model abstraction, which creates more

concise and therefore easier to verify models of the system, typically by merging similar

states. This reduced size often comes at the cost of inaccuracies in the models: A reported

counterexample can therefore be spurious, that is, it exists within the abstract model but

the not in the real, concrete model. In this case, the abstraction must be refined to eliminate

this false positive. Common methods to achieve this refinement make use of the spurious

counterexample itself. They give rise to Counterexample Guided Abstraction Refinement

(CEGAR), i.e. abstraction techniques that iteratively refine an abstract model until either

they find a real counterexample or they can prove the absence of violation.

In spite of their success in single-system model checking, abstraction techniques for SPLs

have received little attention. In [Co14], this gap is filled by proposing SPL-specific ab-

straction procedures based on CEGAR. Applying CEGAR to SPLs is more tedious be-

cause a counterexample can be real for some products and spurious for others. This ob-

servation leads to two refinement strategies: one refines the model as soon as it finds a

spurious counterexample, whereas the other performs the spuriousity check and the re-

finement after the discovery of all counterexamples. As for the abstraction of the model,

we distinguish between (1) state abstraction that only merge states as in single-model ab-

straction, (2) feature abstraction that modifies only the variability information contained

in the model, and (3) mixed abstraction that combines the previous two types. This lat-

ter type is the most complicated to implement, as spuriousness can originate from the

merging of states, the abstraction of features, or both. In [Co14], the correctness of the

approach is proven on the basis of mathematical relations such as simulation relations.

Morover, both abstractions and their combination were implemented in ProVeLines, an

SPL model checker previously developed by some of the authors. Experiments were car-

ried out to evaluate the efficiency of different combinations of refinement strategies and

abstractions. The results tend to show that state abstraction brings performance gains most

of the time, whereas feature abstraction generally results in small losses of performance

but achieve huge decreases of verification time in some cases. Preliminary experiments on

mixed abstraction tend to show that its performance is comparable to that of state abstrac-

tion, although slightly worse on average. Other abstractions of this kind could, however,

be designed as part of future work and yield better results

References

[Co14] Cordy, Maxime; Dawagne, Bruno; Heymans, Patrick; Legay, Axel; Leucker, Martin;
Schobbens, Pierre-Yves: Counterexample Guided Abstraction Refinement of Product-Line
Behavioural Models. In: FSE’14. ACM, Hong Kong, China, November 2014.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 81

On Facilitating Reuse in Multi-goal Test-Suite Generation

for Software Product Lines12

Malte Lochau3, Johannes Bürdek3, Stefan Bauregger3, Andreas Holzer4, Alexander von

Rhein5, Sven Apel5, Dirk Beyer5

Abstract: Software testing is still the most established and scalable quality-assurance technique in
practice today. However, generating effective test suites remains computationally expensive, con-
sisting of repetitive reachability analyses for multiple test goals according to a coverage criterion.
This situation is even worse when it comes to testing of entire software product lines (SPL). An
SPL consists of a family of similar program variants, thus testing an SPL requires a sufficient cov-
erage of all derivable program variants. Instead of considering every product variant one-by-one,
family-based approaches are variability-aware analysis techniques in that they systematically ex-
plore similarities among the different variants. Based on this principle, we propose a novel approach
for automated product-line test-suite generation incorporating extensive reuse of reachability infor-
mation among test cases derived for different test goals and/or program variants. The developed tool
implementation is built on top of CPA/TIGER which is based on CPACHECKER. We further present
experimental evaluation results, revealing a considerable increase in efficiency compared to existing
test-case generation techniques.

Software product line (SPL) engineering aims at developing families of similar, yet well-

distinguished software products built upon a common core platform. The commonality

and variability among the family members (product variants) of an SPL are specified as

features. In this regard, a feature corresponds to user-configurable product characteris-

tics within the problem domain, as well as implementation artifacts being automatically

composeable into implementation variants. The resulting extensive reuse of common fea-

ture artifacts among product variants facilitates development efficiency as well as product

quality compared to one-by-one variant development. However, for SPLs to become fully

accepted in practice, software-quality assurance techniques have to become variability-

aware, too, in order to benefit from SPL reuse principles. In practice, systematic software

testing constitutes the most elaborated and wide-spread assurance technique, being directly

applicable to software systems at any level of abstraction. In addition, testing enables a

controllable trade-off between effectiveness and efficiency. In particular, white-box test

generation consists of (automatically) deriving input vectors for a program under test with

respect to predefined test goals. The derivation of sufficiently large test suites is, therefore,

guided by test selection metrics, e.g., structural coverage criteria like basic block coverage

and condition coverage [Be13]. These criteria impose multiple test goals, thus requiring

sets of test input vectors for their complete coverage [Be13]. In case of mission-/safety-

1 This is a summary of a full article on this topic that appeared in Proc. FASE 2015 [Bü15].
2 This work was partially supported by the DFG (German Research Foundation) under the Priority Programme

SPP1593: Design For Future – Managed Software Evolution.
3 TU Darmstadt, Germany
4 TU Wien, Austria
5 University of Passau, Germany

82 Malte Lochau et al.

critical systems, it is imperative, or even enforced by industrial standards to guarantee a

particular degree of code coverage for every delivered product. Technically, automated

test input generation requires expensive reachability analyses of the program state space.

Symbolic model checking is promising approach for fully automated white-box test gen-

eration using counterexamples as test inputs [Be04]. Nevertheless, concerning large sets

of complex test goals, scalability issues still obstruct efficient test case generation when

being performed for every test goal in separate. This problem becomes even worse while

generating test inputs for covering entire product line implementations. To avoid a variant-

by-variant (re-)generation of test cases potentially leading to many redundant generation

runs, an SPL test-suite generation approach must enhance existing techniques.

In [Bü15], we presented a novel technique for efficient white-box test-suite generation for

multi-goal test coverage of product-line implementations. The approach systematically ex-

ploits reuse potentials among reachability analysis results by means of similarity among

test cases (1) derived for different test goals [Be13], and/or (2) derived for different product

variants [Ci11]. The combination of both techniques allows for an incremental, coverage-

driven exploration of the state space of entire product lines under test implemented in C en-

riched with feature parameters. We implemented an SPL test-suite generator for arbitrary

coverage criteria on top of the symbolic software model checker CPACHECKER [Be13].

We evaluated our technique considering sample SPL implementations of varying size. Our

experiments revealed the applicability of the tool to real-world SPL implementations, as

well as a remarkable gain in efficiency obtained from the reuse of reachability analysis

results. compared to test suite generation approaches without systematic reuse. As a future

work, we plan to improve reuse capabilities by applying multi-property model-checking

techniques of CPACHECKER which allows for reachability analyses of multiple test goals

in a single run.

Literaturverzeichnis

[Be04] Beyer, Dirk; Chlipala, Adam J.; Henzinger, Thomas A.; Jhala, Ranjit; Majumdar, Rupak:
Generating Tests from Counterexamples. In: ICSE. pp. 326–335, 2004.

[Be13] Beyer, Dirk; Holzer, Andreas; Tautschnig, Michael; Veith, Helmut: Information Reuse for
Multi-goal Reachability Analyses. In: ESOP, pp. 472–491. Springer, 2013.

[Bü15] Bürdek, Johannes; Lochau, Malte; Bauregger, Stefan; Holzer, Andreas; von Rhein, Alexan-
der; Apel, Sven; Beyer, Dirk: Facilitating Reuse in Multi-Goal Test-Suite Generation for
Software Product Lines. In: FASE. Springer, 2015.

[Ci11] Cichos, Harald; Oster, Sebastian; Lochau, Malte; Schürr, Andy: Model-based Coverage-
Driven Test Suite Generation for Software Product Lines. In: MoDELS. Springer, pp.
425–439, 2011.

How Reviewers Think About Internal and External Validity

in Empirical Software Engineering

Janet Siegmund⇤ Norbert Siegmund† Sven Apel‡

Abstract: Empirical methods have grown common in software engineering, but there is no
consensus on how to apply them properly. Is practical relevance key? Do in-ternally valid
studies have any value? Should we replicate more to address the trade-off between internal and
external validity? We asked the key players of software-engineering research, but they do not
agree on answers to these questions.

The original paper has been published at the International Conference on Software En-

gineering 2015 [SSA15]. Empirical research in software engineering came a long way.

From being received as a niche science, the awareness of its importance has increased. In

2005, empirical studies were found in about 2% of papers of major venues and confer-

ences, while in recent years, almost all papers of ICSE, ESEC/FSE, and EMSE reported

some kind of empirical evaluation, as we found in a literature review. Thus, the amount of

empirically investigated claims has increased considerably.

With the rising awareness and usage of empirical studies, the question of where to go with

empirical software-engineering research is also emerging. New programming languages,

techniques, and paradigms, new tool support to improve debugging and testing, new vi-

sualizations to present information emerge almost daily, and claims regarding their merits

need to be evaluated—otherwise, they remain claims. But, how should new approaches

be evaluated? Do we want observations that we can fully explain, but with a limited gen-

eralizability, or do we want results that are applicable to a variety of circumstances, but

where we cannot reliably explain underlying factors and relationships? In other words, do

researchers focus on internal validity and control every aspect of the experiment setting,

so that differences in the outcome can only be caused by the newly introduced technique?

Or, do they focus on external validity and observe their technique in the wild, showing a

real-world effect, but without knowing which factors actually caused the observed differ-

ence?

This tradeoff between internal and external validity is inherent in empirical research. Due

to the options’ different objectives, we cannot choose both. Deciding for one of these

options is not easy, and existing guidelines are too general to assist in making this decision.

With our work, we want to raise the awareness of this problem: How should we address

the tradeoff between internal or external validity? In the end, every time we are planning

an experiment, we must ask ourselves: Do we ask the right questions? Do we want pure,

⇤University of Passau, siegmunj@fim.uni-passau.de
†University of Passau, siegmunn@fim.uni-passau.de
‡University of Passau, apel@uni-passau.de

External – 51%Balance – 29%Internal – 20%

[internal] would
show no value to

[the] SE communityWithout internal
validity, the results
cannot be trusted

[With internal validity] you might
get a more 'reliable' result, but the
result could not be used to explain
anything about the real world

[…] we first need to clearly
control [confounding

factors] before eventually
being able to generalise

include two studies [in a paper],
one maximizing internal validity

and the other maximizing external

Fig. 1: Preferences for internal vs. external validity among program-committee and editorial-board

members.

ground research, or applied research with immediate practical relevance? Is there even a

way to design studies such that we can answer both kinds of questions at the same time,

or is there no way around replications (i.e., exactly repeated studies or studies that deviate

from the original study design only in a few, well-selected factors) in software-engineering

research?

To understand how the key players of software-engineering research would address this

problem, we conducted a survey among the program-committee members of the major

software-engineering venues of the recent years [SSA15]. In essence, we found that there

is no agreement and that the opinions of the key players differ considerably (illustrated in

Fig. 1). Even worse, we also found a profound lack of awareness regarding the tradeoff

between internal and external validity, such that one reviewer would reject a paper that

maximizes internal validity, because it “[w]ould show no value at all to SE community”.

When we asked about replication, many program-committee members admitted that we

need more replication in software-engineering research, but also indicated that replications

have a difficult stand. One reviewer even states that replications are “a good example of

hunting for publications just for the sake of publishing. Come on.”

If the key players cannot agree on how to address the tradeoff between internal and external

validity (or even do not see this tradeoff), and admit that replication—a well-established

technique in other disciplines—would have almost no success in software-engineering re-

search, how should we move forward? In the original paper, we shed light on this question,

give insights on the participants’ responses, and make suggestions on how we can address

the tradeoff between internal and external validity.

References

[SSA15] Janet Siegmund, Norbert Siegmund, and Sven Apel. Views on Internal and External Valid-
ity in Empirical Software Engineering. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 9–19. IEEE CS, 2015.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,
Lecture Notes in Informatics (LNI),, Gesellschaft für Informatik, Bonn 2016 85

Understanding the Influence of User Participation and
Involvement on System Success – a Systematic Mapping
Study

Ulrike Abelein1, Barbara Paech1

Abstract: Context: User participation and involvement in software development are considered to
be essential for a successful software system. We think it is important to analyze user participation
and involvement in software engineering comprehensively to encourage further research in this
area. Objectives: We investigate the evidence on effects of user participation and involvement on
system success and we explore which methods are available in literature. Methods: A systematic
mapping study was conducted. The systematic search yielded 3,698 hits, from which we identified
289 unique papers. Results: Based on the empirical evidence of the surveys and meta-studies, we
developed a meta-analysis of structural equation models. The analysis of the proposed solutions
from the method papers revealed a wide variety of user participation and involvement.

Keywords: User Participation, User Involvement, Software Development, Systematic Mapping
Study, Literature Review, Meta-Analysis

In the paper [AP15] we describe a systematic mapping study that examines the influence
of User Participation and Involvement (UPI) on system success. We followed the
guidelines of [KCh07]. The objective of the study was twofold. First, we wanted to
figure out if an increase of UPI increases system success. Second, we wanted to identify
the characteristics of methods that increase UPI within software development.
To validate the effect of UPI, we used meta-analytical techniques. We extracted the
researched aspects, correlation data, variation, and number of participants for validation
from 86 studies. The most important finding is that the vast majority of the derived
correlations showed a positive effect, thus we can conclude that aspects of the
development process and human aspects have a positive effect on system success. In
addition, we found that most studies with negative correlations were published more
than 10 years ago. These results increase the confidence that UPI is beneficial to system
success, which is an important finding for other researchers that develop methods to
increase UPI in software development. Nevertheless, the large variation of correlations
shows the complexity of measuring and studying UPI. Another important contribution of
this paper is the developed classification of the aspects of UPI. This classification can
support researchers interested in studying the aspects of UPI.

From the 36 methods papers, an important finding is that all software development

1 Institute of Computer Science, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg,
Germany, {abelein, paech}@informatik.uni-heidelberg.de

86 Ulrike Abelein et al.

activities are influenced by the methods, but only few methods focus on the design and
implementation activity. This insight can support other researchers in the identification
of existing research gaps for methods that aim to increase UPI. In addition, an important
contribution of this paper is the structured overview of practices with method examples.
The overview shows that practices derived from the solutions have a wide variety in all
software activities. The overview is particularly helpful for practitioners, who want to
use existing practices and methods to increase UPI in software development. In addition,
it can also be valuable to other researchers to understand the state-of-the-art research of
UPI methods in software development. The comparison between aspects researched by
the surveys and the targeted aspects from the methods reveals that methods for user
participation and involvement target similar categories as the surveys. In addition, they
target mostly the success factor system quality, which differs from the survey papers that
mostly research user satisfaction. The analysis of the validation context revealed that
most methods were validated in a public environment.

Overall, we conclude that the systematic mapping study shows a positive correlation of
various aspects of UPI on system success. However, there is still no common conceptual
model to measure and validate this effect. We identified a broad variety of methods to
increase UPI in software development, but they have been validated mostly in smaller
projects and in the public sector areas. We therefore suggest to further research and
develop new methods for other contexts. Especially in large-scale information
technology projects, UPI is not a common practice [A02]. As a follow up to this paper
we developed the UDC-LSI method to enhance user-developer communication in large-
scale IT [A15]. The analysis of aspects did indicate only little focus on organizational
factors or system attributes. However, when we consider large information technology
projects within big companies, these projects are heavily influenced by factors such as
the complexity of the system and the managerial culture of the organization. Thus, we
emphasized those aspects in our UDC-LSI method. In addition, our method also focuses
on the software design and implementation activity, as the study reveals that only few
methods focus on UPI in these activities, even though within these activities a lot of
important decisions are made.

References

[A15] Abelein U.: User-Developer Communication in Large-Scale IT projects. Südwestdeutscher
Verlag für Hochschulschriften, 2015.

[AP15] Abelein, U.; Paech, B.: Understanding the Influence of User Participation and
INvolvement on System Success: a Systematic Mapping Study, Empirical Softwrae
Engineering, vol. 20, p. 28-81, 2015.

[A02] Alleman G.: Agile project management methods for ERP. In: Wells D, Williams L (eds)
Extreme Programming and Agile Methods, pp 70–88. Springer Verlag, 2002.

[KCh07] Kitchenham B.; Charters S.: Guidelines for performing systematic literature reviews in
oftware engineering, doi: 10.1.1.117.471, 2007

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 87

Hierarchical Software Landscape Visualization

Florian Fittkau1, Alexander Krause2, Wilhelm Hasselbring2

Abstract: An efficient and effective way to comprehend large software landscapes is required. The
current state of the art often visualizes software landscapes via flat graph-based representations of
nodes, applications, and their communication. In our ExplorViz visualization, we introduce hier-
archical abstractions aiming at solving typical system comprehension tasks fast and accurately for
large software landscapes. To evaluate our hierarchical approach, we conduct a controlled experi-
ment comparing our hierarchical landscape visualization to a flat, state-of-the-art visualization. In
addition, we thoroughly analyze the strategies employed by the participants and provide a pack-
age containing all our experimental data to facilitate the verifiability, reproducibility, and further
extensibility of our results. We observed a statistically significant increase in task correctness of
the hierarchical visualization group compared to the flat visualization group in our experiment. The
time spent on the system comprehension tasks did not show any significant differences. The results
backup our claim that our hierarchical concept enhances the current state of the art in landscape
visualization for better software system comprehension.

While program comprehension has been researched extensively, system comprehension

has received much less attention. From a historical point of view, program comprehension

became important when programs reached more than a few hundreds lines of code. Today’s

IT infrastructures in enterprises often consist of several hundreds of applications forming

large software landscapes [FRH15].

Our ExplorViz approach [FWWH13] provides live visualization for large software land-

scapes introducing three hierarchical abstractions [FRH15]. Life visualization with Ex-

plorViz is scalable [FH15] and elastic in cloud environments [vHRGH09].

We present a controlled experiment to compare a flat, state-of-the-art landscape visualiza-

tion to our hierarchical visualization in the context of system comprehension [FKH15c].

Additional features of ExplorViz include trace visualizations [FFHW15], architecture con-

formance checks [FSH14], and a landscape control center [FvHH14] with performance

anomaly detection [EvHWH11, MRvHH09]. New perspectives on employing virtual real-

ity [FKH15b] and physical models [FKH15a] are further explored. Beneath evaluating if a

hierarchical visualization provides benefits, we conducted this experiment to get input for

improving our ExplorViz tool.3

1 PPI AG, Wall 55, 24103 Kiel, Germany, http://www.ppi.de
2 Kiel University, Software Engineering Group, 24118 Kiel, http://se.informatik.uni-kiel.de/
3 http://www.explorviz.net

88 Fittkau et al.

References

[EvHWH11] Jens Ehlers, André van Hoorn, Jan Waller, and Wilhelm Hasselbring. Self-Adaptive
Software System Monitoring for Performance Anomaly Localization. In Pro-
ceedings of the 8th IEEE/ACM International Conference on Autonomic Computing
(ICAC 2011), pages 197–200. ACM, June 2011.

[FFHW15] Florian Fittkau, Santje Finke, Wilhelm Hasselbring, and Jan Waller. Comparing Trace
Visualizations for Program Comprehension through Controlled Experiments. In Pro-
ceedings of the 23rd IEEE International Conference on Program Comprehension
(ICPC 2015), pages 266–276. IEEE, May 2015.

[FH15] Florian Fittkau and Wilhelm Hasselbring. Elastic Application-Level Monitoring for
Large Software Landscapes in the Cloud. In Schahram Dustdar, Frank Leymann, and
Massimo Villari, editors, Service Oriented and Cloud Computing, volume 9306 of
Lecture Notes in Computer Science, pages 80–94. Springer-Verlag, September 2015.

[FKH15a] Florian Fittkau, Erik Koppenhagen, and Wilhelm Hasselbring. Research Perspective
on Supporting Software Engineering via Physical 3D Models. In Proceedings of the
3rd IEEEWorking Conference on Software Visualization (VISSOFT 2015), pages 125–
129. IEEE, September 2015.

[FKH15b] Florian Fittkau, Alexander Krause, and Wilhelm Hasselbring. Exploring Software
Cities in Virtual Reality. In Proceedings of the 3rd IEEE Working Conference on
Software Visualization (VISSOFT 2015), pages 130–134. IEEE, September 2015.

[FKH15c] Florian Fittkau, Alexander Krause, and Wilhelm Hasselbring. Hierarchical Software
Landscape Visualization for System Comprehension: A Controlled Experiment. In
Proceedings of the 3rd IEEE Working Conference on Software Visualization (VIS-
SOFT 2015), pages 36–45. IEEE, September 2015.

[FRH15] Florian Fittkau, Sascha Roth, and Wilhelm Hasselbring. ExplorViz: Visual Runtime
Behavior Analysis of Enterprise Application Landscapes. In Proceedings of the 23rd
European Conference on Information Systems (ECIS 2015), pages 1–13. AIS, 2015.

[FSH14] Florian Fittkau, Phil Stelzer, and Wilhelm Hasselbring. Live Visualization of Large
Software Landscapes for Ensuring Architecture Conformance. In Proceedings of
the 2014 European Conference on Software Architecture Workshops (ECSAW 2014),
pages 28:1–28:4. ACM, August 2014.

[FvHH14] Florian Fittkau, André van Hoorn, and Wilhelm Hasselbring. Towards a Dependability
Control Center for Large Software Landscapes. In Proceedings of the 10th European
Dependable Computing Conference (EDCC 2014). IEEE, May 2014.

[FWWH13] Florian Fittkau, Jan Waller, Christian Wulf, and Wilhelm Hasselbring. Live Trace
Visualization for Comprehending Large Software Landscapes: The ExplorViz Ap-
proach. In Proceedings of the 1st International Working Conference on Software Vi-
sualization (VISSOFT 2013), pages 1–4, September 2013.

[MRvHH09] Nina S. Marwede, Matthias Rohr, André van Hoorn, and Wilhelm Hasselbring. Auto-
matic Failure Diagnosis in Distributed Large-Scale Software Systems based on Tim-
ing Behavior Anomaly Correlation. In Proceedings of the 13th European Conference
on Software Maintenance and Reengineering (CSMR’09), pages 47–57. IEEE, 2009.

[vHRGH09] André van Hoorn, Matthias Rohr, Imran Asad Gul, and Wilhelm Hasselbring. An
Adaptation Framework Enabling Resource-efficient Operation of Software Systems.
In Proceedings of the Warm Up Workshop (WUP 2009) for ICSE 2010. ACM, 2009.

2#1: 01%%$, 45# -/71 (Hrsg.): 6%"953!#)1;81##!81; &('.,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn &('. +*

Extraktion von Frame Conditions aus Operation Contracts

Philipp Niemann1, Frank Hilken1, Martin Gogolla1, Robert Wille2

1 Einleitung und Hintergrund

Um die steigende Komplexität heutiger Softwaresysteme mit modellbasierten Ansätzen

zu beherrschen, hat sich die Unified Modeling Language (UML) zusammen mit der Ob-

ject Constraint Language (OCL) zu einem de-facto Standard herausgebildet. UML/OCL

ermöglicht die Beschreibung von Anforderungen an Verhalten und Struktur komplexer

Systeme ohne dabei konkrete Implementierungsdetails zu verlangen. In den vergangenen

Jahren wurden viele Verfahren zur Validation und Verifikation von UML/OCL-Modellen

vorgestellt.

In dieser Arbeit wird die Beschreibung des Verhaltens mit Hilfe von Klassendiagrammen

und dazugehöriger Operation Contracts (gegeben in OCL in Form von Vor- und Nachbe-

dingungen) betrachtet [Me92]. Vor- und Nachbedingungen beschreiben die Funktionalität

einer Operation auf deklarative Weise. Sie schränken Systemzustände ein, in denen eine

Operation ausgeführt werden darf, und beschreiben Eigenschaften, die der resultierende

Systemzustand erfüllen muss. Für Verifikationsverfahren ist aber außerdem von Bedeu-

tung, welche Modellelemente zusätzlich zu diesen Bedingungen verändert bzw. eben nicht

verändert werden dürfen.

Die Ermittlung eines konkreten Verhaltens einer Operation aus den gegebenen Operati-

on Contracts wird in der Literatur als Frame Problem bezeichnet [BMR95]. Zur Lösung

des Problems, wurden verschiedene Beschreibungsmittel vorgeschlagen, welche die Vor-

und Nachbedingungen um so genannte Frame Conditions erweitern [Ko13, BKW09]. Da-

bei handelt es sich um zusätzliche Bedingungen, die Modellelemente angeben, welche

bei der Ausführung einer Operation geändert werden dürfen. Durch die Angabe von Vor-

und Nachbedingungen sowie Frame Conditions steht eine vollständige Beschreibung der

Funktionalität einer Operation auf Modellebene zur Verfügung.

1 Department of Computer Science, University of Bremen, 28359 Bremen, Germany,

{pniemann,fhilken,gogolla}@informatik.uni-bremen.de
2 Insitute for Integrated Circuits, Johannes Kepler University Linz, 4040 Linz, Austria, robert.wille@jku.at

Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

2 Betrachtetes Problem und Beitrag

Die Erzeugung der Frame Conditions stellt allerdings eine zusätzliche Herausforderung

dar, die bisher überwiegend manuell bewältigt werden muss – verbunden mit den entspre-

chenden Kosten. In dieser Arbeit wird untersucht, inwiefern sich Frame Conditions auto-

matisch aus den bereits gegebenen Vor- und Nachbedingungen extrahieren lassen. Dazu

wird eine Methodik vorgestellt, die Elemente (Objektinstanzen, Attribute und Rollen) ei-

nes gegebenen Modells automatisch einer der folgenden Kategorien zuordnet:

• Das Element ist variabel, d.h. kann während der Operationsausführung verändert

werden.

• Das Element ist unveränderlich, d.h. kann während der Operationsausführung nicht

verändert werden.

• Das Element lässt sich nicht eindeutig zuordnen und muss manuell klassifiziert wer-

den.

Ziel dieser Kategorisierung ist, den/die Entwerfer/-in bei der Erzeugung von Frame Condi-

tions zu unterstützen. Fallstudien zeigen, dass in der Tat ein Großteil der Modellelemente

automatisch klassifiziert und damit die notwendigen Frame Conditions automatisch er-

zeugt werden können. Entwerfer/-innen müssen anschließend nur für einen recht kleinen

Teil von nicht eindeutig zuordbaren Modellelementen manuell entsprechende Bedingun-

gen ergänzen. Dadurch wird die Produktivität der modellbasierten Verifikation deutlich

gesteigert.

3 Weitere Quellen

Die generelle Idee des Problems sowie der Lösungsidee wird in [Ni15a] skizziert. Eine

detaillierte Beschreibung des Lösungsansatzes sowie eine Evaluation des Ansatzes findet

sich in [Ni15b].

Literaturverzeichnis

[BKW09] Brucker, Achim D.; Krieger, Matthias P.; Wolff, Burkhart: Extending OCL with Null-
References. In: MoDELS. S. 261–275, 2009.

[BMR95] Borgida, Alexander; Mylopoulos, John; Reiter, Raymond: On the Frame Problem in Pro-
cedure Specifications. IEEE Trans. Software Eng., 21(10):785–798, 1995.

[Ko13] Kosiuczenko, Piotr: Specification of invariability in OCL - Specifying invariable system
parts and views. Software and System Modeling, 12(2):415–434, 2013.

[Me92] Meyer, Bertrand: Applying Design by Contract. IEEE Computer, 25(10):40–51, 1992.

[Ni15a] Niemann, Philipp; Hilken, Frank; Gogolla, Martin; Wille, Robert: Assisted generation of
frame conditions for formal models. In: DATE. S. 309–312, 2015.

[Ni15b] Niemann, Philipp; Hilken, Frank; Gogolla, Martin; Wille, Robert: Extracting frame con-
ditions from operation contracts. In: MoDELS. 2015.

!' *(&%&## .&+$-"" +, -%)

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 91

Model-based Security Verification for Evolving Systems

Jan Jürjens1,2, Sven Wenzel2, Daniel Poggenpohl2, Martín Ochoa3

Abstract: Security certification of complex systems requires a high amount of effort. As a
particular challenge, today's systems are increasingly long-living and subject to continuous
change. After each change of some part of the system, the whole system needs to be re-certified
from scratch (since security properties are not in general modular), which is usually far too much
effort. We present a tool-supported approach for security certification that minimizes the amount
of effort necessary in the case of re-certification after change. It is based on an approach for
model-based development of secure software which makes use of the security extension UMLsec
of the Unified Modeling Language (UML). It allows the user to integrate security requirements
such as secure information flow and audit security into a system design model, it supported by a
security verification tool chain, and has been applied to a number of industrial applications.

Keywords: Secure Software Engineering, Model-based Software Development, Security
Verification, Software Evolution.

1 Introduction

Security certification of complex systems requires a high amount of effort. Model-based
development is a widely accepted methodology where software or parts of it is generated
from models. In order to ensure quality properties such as consistency of security
requirements the models are often verified prior code generation.

As a particular challenge, today's systems are increasingly long-living and subject to
continuous change. After each change of some part of the system, the whole system
needs to be re-certified from scratch (since security properties are not in general
modular), which is usually far too much effort. Also, if several alternative evolutions of
a model are possible, each alternative has to be modeled and verified in order to find the
best model for further development and code generation.

We present a tool-supported approach for security certification that minimizes the
amount of effort necessary in the case of re-certification after change. It is based on an
approach for model-based development of secure software which makes use of the
security extension UMLsec of the Unified Modeling Language (UML) [Jur05]. It allows
the user to integrate security requirements such as secure information flow and audit
security [Jur01] into a system design model and has been applied to a number of
industrial applications such as an electronic purse system.

1 Institute for Software Technology, University of Koblenz-Landau, Koblenz, Germany. http://jan.jurjens.de
2 Fraunhofer Institute for Software and Systems Engineering ISST, Dortmund, Germany
3 Singapore University of Technology and Design, Singapore

92 Jan Jürjens et al.

The approach presented is based on results that determine under which conditions
change preserves security properties (for example in the context of structuring
techniques such as refinement or architectural principles such as modularization). The
approach supports an automated difference-based security analysis, at the level of design
models as well as the implementation code (using static security verification [DGJN11]
or run-time verification). It has been applied e.g. to cryptographic protocols, distributed
security infrastructures, and identity management systems, and there are empirical
results comparing it to classical techniques for security certification. In the outlook, we
briefly present current research directions, such as applying the approach to the security
certification of cloud-based systems.

We present a verification strategy to analyze whether a software evolution preserves a
given security property. This is presented on the basis of the UML profile UMLchange
which can be used for specifying potential evolutions of a given model simultaneously.
UMLchange makes our approach independent from specific modeling tools. We also
present an extensible tool that reads the annotations of EMF-based UML2 models and
computes a delta model containing all possible evolution paths of the given model. The
evolution paths can be verified wrt. security properties, and for each successfully
verified path a new model version is generated automatically.

References

[DGJN11] F. Dupressoir, A. D. Gordon, J. Jürjens, D. A. Naumann: Guiding a General-Purpose C
Verifier to Prove Cryptographic Protocols. In: 24th IEEE Computer Security
Foundations Symposium (CSF), pp. 3-17, 2011.

[HGJF06] S. H. Houmb, G. Georg, J. Jürjens, R. B. France: An Integrated Security Verification
and Security Solution Design Trade-off Analysis Approach. In: H. Mouratidis
(editors): Integrating Security and Software Engineering: Advances and Future Vision,
Idea Group, pp. 190-219, 2006. Invited chapter.

[IMJ11] S. Islam, H. Mouratidis, J. Jürjens: A Framework to Support Alignment of Secure
Software Engineering with Legal Regulations. In: Journal of Software and Systems
Modeling (SoSyM), Springer-Verlag, vol. 10, no. 3, pp. 369-394, 2011.

[Jur01] J. Jürjens: Modelling Audit Security for Smart-Cart Payment Schemes with UML-
SEC. IFIP TC11 Sixteenth Annual Working Conference on Information Security
(IFIP/Sec'01), Kluwer 2001, pp. 93-108

[Jur05] J. Jürjens: Secure Systems Development with UML, Springer, 2005

[PWP+07] D. Petriu, M. Woodside, D. Petriu, Jing Xu, T. Israr, G. Georg, R. France, J. Bieman,
S. H. Houmb, J. Jürjens: Performance Analysis of Security Aspects in UML Models.
In: Sixth Int. Works. on Software and Performance (WOSP'07), pp. 91-102, ACM,
2007.

[WWJO14]S. Wenzel, D. Warzecha, J. Jürjens, M. Ochoa: UMLchange - Specifying Model
Changes to Support Security Verification of Potential Evolution. In: Journal of
Computer Standards & Interfaces, vol. 36, pp. 776-791, 2014. Special Issue on

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 93

ADSL-Based Approach for Event-Based Monitoring of
Systems of Systems

Michael Vierhauser1, Rick Rabiser1, Paul Grünbacher2, Alexander Egyed2

Abstract: Complex software-intensive systems such as systems of systems (SoS) need to be moni-
tored at runtime to detect deviations from their requirements. In our earlier work [Vi15a] – sum-
marized in this paper – we described our experiences of developing and applying an SoS monitor-
ing approach based on a Domain-specific Language (DSL) in the domain of industrial automation
software. More specifically, we have been developing a constraint DSL for industrial end users as
well as an incremental constraint checker for event-based monitoring. Our evaluation demonstrates
the expressiveness of our DSL and the scalability of the checker in an industrial scenario.

Keywords: Runtime Monitoring, Systems of Systems, Constraint DSL.

1 Summary

Many software-intensive systems today are systems of systems comprising heterogene-
ous and independently developed yet interrelated elements. As the full behavior of SoS
emerges during operation only, system testing is not sufficient to determine compliance
with requirements. Instead, the behavior of the systems and their interactions need to be
continuously monitored and checked during operation to detect and analyze deviations
from the expected behavior. Checks include the occurrence and order of runtime
events (temporal behavior), the interaction of systems (structural behavior), or properties
of runtime data (data checks).

Despite the wide variety of existing runtime monitoring approaches, most of these only
support particular technologies or certain types of constraints and checks, impeding their
application to SoS. In earlier work [Vi15a] we have described our experiences of extend-
ing an existing incremental consistency checker for design models [Vi10] to support
event-based runtime monitoring of SoS [Vi15b]. Our work is motivated by an industrial
case of monitoring a metallurgical plant automation system, an example of an SoS.

More specifically, we have been developing a domain-specific constraint language aim-
ing at industrial end users, who often lack deep programming skills, to ease the defini-
tion of various types of constraints. Our DSL-based approach (cf. Fig. 1) allows incre-
mentally checking constraints at runtime. This ensures that violations of requirements

1 Johannes Kepler Unversität Linz, Christian Doppler Labor MEVSS, Altenberger Str. 69, 4040 Linz,
michael.vierhauser@jku.at

2 Johannes Kepler Unversität Linz, Institut für Software Systems Engineering, Altenberger Str. 69, 4040 Linz,
paul.gruenbacher@jku.at

94 Vierhauser et al.

can be reported instantly to users monitoring an SoS. The approach further supports the
definition and deployment of constraints at runtime, i.e., constraints can be added or
modified without stopping the checker or the monitored systems.

Fig. 1: Our DSL-based approach to define and check constraints at runtime [Vi15a].

In [Vi15a] we demonstrated the expressiveness of the DSL using real constraints from
an industrial case. We further evaluated the scalability of our checker in an industrial
monitoring scenario. Our experiences suggest designing an extensible constraint DSL in
an iterative manner and keeping it as simple as possible. We also suggest keeping the
mapping of the DSL to the checking engine flexible to gain independence of underlying
checking technologies. Industrial scenarios demonstrate the need to add new or modify
existing constraints even while the system and the monitoring infrastructure are running,
e.g., if investigating newly emerging and therefore unforeseen issues.

References

[Vi15a] Vierhauser, M., Rabiser, R., Grünbacher, P., Egyed, A.: Developing a DSL-Based
Approach for Event-Based Monitoring of Systems of Systems: Experiences and Les-
sons Learned. Proc. of the 30th IEEE/ACM Int’l Conf. on Automated Software Engi-
neering, Lincoln, Nebraska, USA, ACM, 2015.

[Vi10] Vierhauser, M., Grünbacher, P., Egyed, A., Rabiser, R., Heider, W.: Flexible and
Scalable Consistency Checking on Product Line Variability Models. Proc. of the 25th
IEEE/ACM Int’l Conf. on Automated Software Engineering, Antwerp, Belgium,
ACM, 2010, pp. 63-72.

[Vi15b] Vierhauser, M., Rabiser, R., Grünbacher, P., Seyerlehner, K., Wallner, S., Zeisel, H.:
ReMinds: A Flexible Runtime Monitoring Framework for Systems of Systems. Journal
of Systems and Software, 2015 (doi: 10.1016/j.jss.2015.07.008).

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 95

A Vision for Enhancing Clone-and-Own with Systematic

Reuse for Developing Software Variants

Stefan Fischer1 Lukas Linsbauer2 Roberto E. Lopez-Herrejon3 Alexander Egyed4

Many companies build a portfolio of similar product variants, each tailored to different

customer needs. The number of such product variants varies widely. We have observed

anything between a handful and 1000+ variants and correspondingly large code sizes. The

key characteristic of these product variants is that they share a high degree of common

functionality (i.e. features) but still differ. Currently the state of the art investigates this

problem in form of Software Product Lines (SPLs), which are single, configurable systems

from which all desired product variants can be derived. The drawback of SPLs is that they

require considerable upfront investments because all possible product variants need to be

pre-engineered into SPLs. If it is not possible to predict all these product variants SPL

approaches are problematic. And even if all product variants were known a-priori, not all

companies could afford building them due to the associated high cost.

In practice we rarely observed full-blown SPLs. Instead, we found that companies often

resorted to an ad-hoc practice of clone-and-own, where a new product variant is created

by modifying existing variants that closely match the new variant’s needs while copying

and pasting from other variants as needed. Clone-and-own has three informal steps:

1. extraction: locating reusable artifacts (e.g. code) in the existing variants and,

2. composition: copying/merging those artifacts that closest match the desired needs

into a new product variant, and

3. completion: adapting the new product variant to account for needs that did not exist

thus far in any existing variant (i.e. new requirements) or could not be extracted.

This paper provides a vision for an approach called ECCO for supporting software en-

gineers in applying clone-and-own [Fi14, Li15, Fi15]. ECCO stands for Extraction and

Composition for Clone-and-Own and it allows software engineers to incrementally de-

velop software portfolios, one product at a time, while supporting the reuse of already

available product variants. To accomplish this we automated parts of the clone-and-own

process, the extraction and the composition. The completion step is still manual, but our

approach guides the software engineer with hints.

1 Johannes Kepler University, Institute for Software Systems Engineering, Linz Austria, stefan.fischer@jku.at
2 Johannes Kepler University, Institute for Software Systems Engineering, Linz Austria, lukas.linsbauer@jku.at
3 Johannes Kepler University, Institute for Software Systems Engineering, Linz Austria, roberto.lopez@jku.at
4 Johannes Kepler University, Institute for Software Systems Engineering, Linz Austria, alexander.egyed@jku.at

96 Stefan Fischer et al.

The extraction step locates artifacts that implement a feature based on commonalities and

differences in product variants. The main assumption is, that if two product variants have

features in common, then the artifacts they have in common trace to these features. Mo-

reover, the extraction is able to deal with feature interactions, which refer to the fact that

the implementation of a feature may change depending on the presence or absence of other

features.

The composition step is the reverse operation of the extraction. It merges extracted frag-

ments based on selected features by software engineers who intend to build a new product

variant. The fragments are selected not only based on the selected features but the compo-

sition also takes feature interactions into account. Moreover, references between artifacts

and the order of artifacts are considered. The result of the composition is a product con-

sisting of the selected features, as far as the extraction was able to distinguish them. For

features that were not adequately extracted, ECCO provides a set of hints to guide the

software engineer during the completion step.

In the completion step the software engineers finalize a new product variant by adding fea-

tures/interactions that did not exist thus far. The engineers use the hints provided by ECCO

to find missing or surplus features/interactions in the product, i.e. features/interactions that

never occurred in any previous product or that could not be separated from others. When

two artifacts are merged that never existed together before then ECCO provides suggesti-

ons of the orderings of these artifacts which the engineers can choose from. After a product

is completed, it can be fed back into the extraction, which will refine the knowledge.

ECCO is thus an incrementally evolving SPL that does not require major upfront invest-

ments but still facilitates the reuse of already existing product variants. Software engineers

do not have to change their development practices. They can continue to develop single

product variants the way they are used to but get automated support in doing so. Our

approach assumes that product variants exhibit similar code structures (i.e. a common ar-

chitecture) which is a valid assumption based on our experiences thus far (SPLs also make

this assumption). Please find a detailed empirical evaluation in [Fi14].

Acknowledgment The research reported has been supported by the Austrian Ministry

for Transport, Innovation and Technology, the Federal Ministry of Science, Research and

Economy, and the Province of Upper Austria in the frame of the COMET center SCCH,

and the Austrian Science Fund (FWF) project P25289 and P25513.

Literaturverzeichnis

[Fi14] Fischer, Stefan; Linsbauer, Lukas; Lopez-Herrejon, Roberto Erick; Egyed, Alexander: En-
hancing Clone-and-Own with Systematic Reuse for Developing Software Variants. In: ICS-
ME. S. 391–400, 2014.

[Fi15] Fischer, Stefan; Linsbauer, Lukas; Lopez-Herrejon, Roberto E.; Egyed, Alexander: The EC-
CO Tool: Extraction and Composition for Clone-and-Own. In: ICSE. S. 665–668, 2015.

[Li15] Linsbauer, Lukas; Fischer, Stefan; Lopez-Herrejon, Roberto E.; Egyed, Alexander: Using
Traceability for Incremental Construction and Evolution of Software Product Portfolios. In:
SST. S. 57–60, 2015.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 97

Morpheus: Variability-Aware Refactoring in the Wild

Jörg Liebig1, Sven Apel2, Andreas Janker3, Florian Garbe4, and Sebastian Oster5

Abstract: Today, many software systems are configurable with conditional compilation. Just like
any software system, configurable systems need to be refactored during their evolution. The inherent
variability of configurable systems induces an additional dimension of complexity that is not addressed
properly by current academic and industrial refactoring engines. Even simple refactorings, such as
RENAME IDENTIFIER, are not handled well by existing refactoring engines and may introduce errors
in some variants of the configurable system to be refactored. To improve the state of the art, we
propose a variability-aware refactoring approach that relies on a canonical variability representation
and variability-aware analysis. The goal is to preserve the behavior of all variants of the configurable
system, without compromising general applicability and scalability. To demonstrate practicality, we
developed MORPHEUS, a sound variability-aware refactoring engine for C code with preprocessor
directives. We applied MORPHEUS to three substantial real-world systems (Busybox, OpenSSL, and
SQLite) showing that variability-aware refactoring is practical (i.e., scalable, sound, and complete) in
the presence of conditional compilation.

Keywords: configurable systems, refactoring, preprocessor

For more than 40 years software developers implement configurable software systems in

the programming language C using conditional compilation with the C preprocessor CPP.

Using preprocessor directives, such as #ifdefs, developers write optional and alternative

code fragments, which form the basis to tailor a configurable system to different application

scenarios and use cases. Many developers are familiar with #ifdefs, and practically every

software system written in C is configurable with conditional compilation [Li10]. To evolve

and maintain software systems, software developers usually rely on refactoring engines

as part of integrated development environments, such as ECLIPSE. A refactoring engine

is a tool, which (semi-)automatically applies code restructings with the goal to improve the

internal code structure while preserving the external program behavior [Me02]. However,

evolving and maintaining configurable systems is challenging, as the behavior not only of

a single system, but of multiple system variants have to be considered, something which

is not adressed properly in current refactoring engines.

To assess the state-of-the-art of refactoring engines for configurable systems, we conducted

an empirical study to classify strategies of how existing refactoring engines (industrial,

open-source, and academic) handle refactorings for configurable systems [Li15]. Overall,

we found that there are five different strategies: code restructurings using standard editor fa-

cilities (find/replace), applying refactorings to single variants only (single variant), applying

refactorings to multiple variants in isolation (variant-based), support for source code with a

1 Method Park, joerg.liebig@methodpark.de
2 University of Passau, apel@fim.uni-passau.de
3 University of Passau, janker@fim.uni-passau.de
4 University of Passau, fgarbe@fim.uni-passau.de
5 Method Park, sebastian.oster@methodpark.de

98 Jörg Liebig et al.

limited set of #ifdef usage patterns in configurable code (limited patterns), and involving

heuristics to reasons about code restructurings in the presence of preprocessor directives

(heuristics). All strategies suffer from certain limitations that hinder their applicability in

practice: they are error-prone (find/replace), are incomplete (single variant and limited

patterns), do not scale (variant-based), or are unsound (heuristics). For example, even a

simple refactoring, such as EXTRACT FUNCTION, does not work properly in the popular de-

velopment environment ECLIPSE in the presence of #ifdefs. In ECLIPSE, which applies a

single-variant strategy, we observed a different program behavior after code restructurings.

As existing strategies and refactoring engines have serious shortcommings, which hinder

their application in practice, we developed our own strategy, called variability-aware refac-

toring [Li15]. The idea is to use variability-aware data-structures and algorithms [Wa14,

Li13, Kä11] for this task, i.e., data-structures and algorithms, which incorporate variability

in the form of #ifdefs directly during code restructurings. To assess the applicability of

variability-aware refactoring, we implemented variability-aware versions of three common

refactorings (RENAME IDENTIFIER, EXTRACT FUNCTION, and INLINE FUNCTION) as

part of our own refactoring engine: MORPHEUS. In experiments with three, real-world case

studies (Busybox, OpenSSL, and SQLite), we could show that variability-aware refactoring

scales well to practical configurable systems, while preserving the behavior of all variants.

The average time for applying a single refactoring is in the order of milliseconds. With

variability-aware refactoring, we close a gap in tool-support for configurable software

systems and show that, for the first time, a scalable, sound, and complete refactoring engine

for C (including preprocessor directives) is possible.

References

[Kä11] Kästner, C.; Giarrusso, P.; Rendel, T.; Erdweg, S.; Ostermann, K.; Berger, T.: Variability-
Aware Parsing in the Presence of Lexical Macros and Conditional Compilation. In: Pro-
ceedings of the Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). ACM, pp. 805–824, 2011.

[Li10] Liebig, J.; Apel, S.; Lengauer, C.; Kästner, C.; Schulze, M.: An Analysis of the Variability
in Forty Preprocessor-Based Software Product Lines. In: Proceedings of the International
Conference on Software Engineering (ICSE). ACM, pp. 105–114, 2010.

[Li13] Liebig, J.; von Rhein, A.; Kästner, C.; Apel, S.; Dörre, J.; Lengauer, C.: Scalable Analysis of
Variable Software. In: Proceedings of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, pp. 81–91, 2013.

[Li15] Liebig, J.; Janker, A.; Garbe, F.; Apel, S.; Lengauer, C.: Morpheus: Variability-Aware
Refactoring in the Wild. In: Proceedings of the International Conference on Software
Engineering (ICSE). ACM, pp. 380–391, 2015.

[Me02] Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software
Engineering, 28(5):449–462, 2002.

[Wa14] Walkingshaw, E.; Kästner, C.; Erwig, M.; Apel, S.; Bodden, E.: Variational Data Structures:
Exploring Tradeoffs in Computing with Variability. In: Proceedings of the International
Symposium on New Ideas in Programming and Reflections on Software (Onward!). ACM,
pp. 213–226, 2014.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 99

Model-Driven Development of Platform-Independent

MobileApplications SupportingRole-basedAppVariability∗

Steffen Vaupel1, Gabriele Taentzer1, Renı̈ Gerlach2, Michael Guckert2

Abstract: The use of mobile applications has become an indispensable part of human interaction
and especially of urban life. This will lead to rapidly increasing numbers of applications and users
that make the development of mobile applications to one of the most promising fields in software
engineering. Due to short time-to-market, differing platforms and fast emerging technologies, mo-
bile application development faces typical challenges where model-driven development (MDD) can
help. We present a modeling language and an infrastructure for the model-driven development of
native apps in Android and iOS. Our approach allows flexible app development on different ab-
straction levels: compact modeling of standard app elements such as standard data management and
increasingly detailed modeling of individual elements to cover specific behavior. Moreover, a kind
of variability modeling is supported such that apps variants for a range of user roles can be devel-
oped. Several apps including a mobile learning app, a conference app, and a museum guide with
augmented reality functionality demonstrate the usefulness of our approach.

Keywords: mobile application, model-driven software development, variability

1 Introduction

An infrastructure for model-driven development (MDD) has a high potential for accelerat-

ing the development of software applications. While just modeling the application-specific

data structures, processes and layouts, runnable software systems can be generated. Hence,

MDD does not concentrate on technical details but lifts software development to a higher

abstraction level. The heart and soul of MDD is the domain-specific modeling language. It

comes along with a tool environment consisting of textual or visual model editors and ap-

propriate code generators for the desired target platforms (as, e.g., Android and iOS). For

the development of our MDD infrastructure, we have chosen an agile bottom-up process

[VSRT15], starting with a domain analysis and feature identification of mobile applica-

tions, template extraction from re-implemented prototypes, and iterative language exten-

sion.

2 Domain and approach

Mobile apps are developed for diverse purposes – from mere entertainment to serious

business applications. While focusing mainly on data-oriented business apps, our approach

allows to enrich them by entertainment and educational elements, or sensor and external

hardware access. A particular case is using the built-in camera to recognize objects and

∗This work was partially funded by LOEWE HA (State Offensive for the Development of Scientific and Eco-

nomic Excellence) project no. 355/12-45: PIMAR – Platform Independent Mobile Augmented Reality.
1 Philipps-Universitı̈t Marburg, Hans Meerwein Straı̈e 1, 35032 Marburg, Germany, {svaupel,

taentzer}@informatik.uni-marburg.de
2 KITE - Kompetenzzentrum fı̈r Informationstechnologie, Technische Hochschule Mittelhessen, Wilhelm-

Leuschner-Straı̈e 13, 61169 Friedberg, Germany, {rene.gerlach, michael.guckert}@mnd.thm.de

100 Steffen Vaupel et al.

augment the live view with different types of virtual objects, which is called augmented

reality (AR) [GMG+15]. This feature is useful for industry applications as well as for apps

in education and tourism sectors.

Fig. 1: Cross-platform generation of role-based apps

Although there are already ap-

proaches to model-driven devel-

opment of mobile apps such as

MD2 [HMK13], our contribution

differs considerably in design and

purpose of the language. Our

approach focuses on data-driven

apps with role-based variants (Fig-

ure 1). The entire approach has

three user roles: app developers

who create the application, provid-

ing users who may configure the application, and finally end users of the app.

3 Modeling language, MDD infrastructure, and case studies

The general approach to the modeling language is component-based. An app model con-

sists of a data model defining the underlying class structure, a GUI model containing

the definition of pages and style settings for the graphical user interface, and a process

model which defines the behavioral facilities of an app in the form of processes and tasks.

Provider models are instances of app models.

The Eclipse-based MDD infrastructure provides a visual model editor (including val-

idation rules) and contains two code generators. In addition to the work presented in

[VTH+14] and [PIMAR], the MDD infrastructure has been evaluated at five differently

focused case studies showing the applicability and usefulness of the approach. Team mem-

bers and students have created a conference app for the MoDELS’14 conference with con-

ference organizers and participants as user roles, a learning app with teachers and learners

as user roles, a museum guide including AR-functionality with museum providers and

visitors as user roles, a control app for power sockets (SmartPlug), and a TV-Reminder.

References

[GMG+15] Guckert, Michael; Malerczyk, Cornelius; Gerlach, René; Taentzer, Gabriele; Vaupel,
Steffen; Fatum, Michael: Plattformunabhängige Entwicklung mobiler Anwendungen
mit Augmented Reality-Funktionalität. Anwendungen und Konzepte der Wirtschaftsin-
formatik, (3):5, 2015.

[HMK13] Heitkötter, Henning; Majchrzak, Tim A.; Kuchen, Herbert: Cross-Platform Model-

Driven Development of Mobile Applications with MD2. In: Proceedings of the 28th
Annual ACM Symposium on Applied Computing. ACM, pp. 526 – 533, 2013.

[PIMAR] PIMAR: Platform-Inpendent Development of Mobile Apps with Augmented Reality.
http://www.uni-marburg.de/fb12/swt/forschung/software/pimar/, 2015.

[VTH+14] Vaupel, Steffen; Taentzer, Gabriele; Harries, Jan Peer; Stroh, Raphael; Gerlach, René;
Guckert, Michael: Model-driven development of mobile applications allowing role-
driven variants. In: Model-Driven Engineering Languages and Systems, pp. 1 – 17,
LNCS 8767. Springer, 2014.

[VSRT15] Vaupel, Steffen; Strüber, Daniel; Rieger, Felix; Taentzer, Gabriele: Agile bottom-up
development of domain-specific IDEs for model-driven development. In: Proceedings
of FlexMDE 2015: Workshop on Flexible Model-Driven Engineering, pp. 12 – 21, Vol.
1470. CEUR-WS.org, 2015.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 101

A Simple and Scalable Static Analysis for Bound Analysis

and Amortized Complexity Analysis

Moritz Sinn, Florian Zuleger and Helmut Veith (TU Wien) 1

Automatic methods for computing bounds on the resource consumption of programs are

an active area of research. In [SZV14] we present the first scalable bound analysis for

imperative programs that achieves amortized complexity analysis. Our techniques can be

applied for deriving upper bounds on how often loops can be iterated as well as on how

often a single or several control locations can be visited in terms of the program input.

The majority of earlier work on bound analysis has focused on mathematically intriguing

frameworks for bound analysis. These analyses commonly employ general purpose rea-

soners such as abstract interpreters, software model checkers or computer algebra tools

and therefore rely on elaborate heuristics to work in practice. Our work [SZV14] takes

an orthogonal approach that complements previous research. We propose a bound analy-

sis based on a simple abstract program model, namely lossy vector addition systems with

states. We present a static analysis with four well-defined analysis phases that are exe-

cuted one after each other: program abstraction, control-flow abstraction, generation of a

lexicographic ranking function and bound computation.

void main(uint n) {
int a = n, b = 0;

l1 : while (a > 0) {
a--; b++;

l2 : while (b > 0) {
b--;

l3 : for (int i = n-1; i > 0; i--)

if (a > 0 && ?) {
l4 : a--; b++;

} } } }

begin

l1

l2

l3

l4

end

a= n

b= 0

i= 0

t1 ⌘

a0  a−1

b0  b+1

i0  i

t2 ⌘

a0  a

b0  b−1

i0  i+(n−1)

Id t3 ⌘

a0  a

b0  b

i0  i−1

t4 ⌘

a0  a−1

b0  b+1

i0  i−1

Id

Id

Id

Figure 1: Our running example, ’?’ denotes non-determinism (arising from a condition not modeled in the analysis). On the right we state the lossy VASS obtained by abstraction,

Id denotes a0  a, b0  b, i0  i.

The example presented in Figure 1 (encountered during our experiments) is challenging

for an automated bound analysis: (C1) There are loops whose loop counter is modified

by an inner loop: the innermost loop modifies the counter variables a and b of the two

outer loops. Thus, the inner loop cannot be ignored (i.e., cannot be sliced away) during the

analysis of the two outer loops. (C2) The middle loop with loop counter b requires a path-

sensitive analysis to establish the linear loop bound n: it is not enough to consider how

1 Supported by the Austrian National Research Network S11403-N23 (RiSE) of the Austrian Science Fund

(FWF) and by the Vienna Science and Technology Fund (WWTF) through grants PROSEED and ICT12-059.

102 Moritz Sinn et al.

often the innermost loop can be executed (at most n2 times) but rather how often the if-

branch of the innermost loop (on which b is actually incremented) can be executed (at most

n times). (C3) Current bound analysis techniques cannot model increments and instead

approximate increments by resets, e.g., approximate the increment of b by an assignment

to a value between 0 and n (using the fact that n is an upper bound of b)! Because of

this overapproximation existing bound analysis techniques fail to compute the linear loop

bound n for the middle loop. We illustrate the main steps of our analysis:

1. Program Abstraction: First, our analysis abstracts the program to the VASS depicted

in Figure 1. We are using parameterized VASSs, where we allow increments that are

symbolic but constant throughout the program (such as n− 1). We extract lossy VASSs

from C programs using simple invariant generation and symbolic execution techniques

(see [SZV14]).

2. Control Flow Abstraction: In [SZV14] we propose a new abstraction for bound analy-

sis, which we call control flow abstraction (CA). CA abstracts the VASS from Figure 1

into a transition system with four transitions: ρ1 ⌘ a
0  a−1∧b0  b+1∧ i0  i, ρ2 ⌘

a0  a∧ b0  b− 1∧ i0  i+(n− 1), ρ3 ⌘ a0  a∧ b0  b∧ i0  i− 1, ρ4 ⌘ a0 
a−1∧b0  b+1∧ i0  i−1.

CA effectively merges loops at different control locations into a single loop creating one

transition for every cyclic path of every loop (without unwinding inner loops). This signif-

icantly simplifies the design of the later analysis phases.

3. Ranking Function Generation: Our ranking function generation (discussed in [SZV14])

finds an order on the transitions resulting from CA such that there is a variable for every

transition, which decreases on that transition and does not increase on the transitions that

are lower in the order. This results in the lexicographic ranking function l= 〈a,a,b, i〉 for

the transitions ρ1,ρ4,ρ2,ρ3 in that order. Our soundness theorem (see [SZV14]) guarantees

that l proves the termination of Figure 1.

4. Bound Analysis: Our bound analysis (discussed in [SZV14]) computes a bound for ev-

ery transition ρ by adding for every other transition t how often t increases the variable of

ρ and by how much. In this way, our bound analysis computes the bound n for ρ2, because

ρ2 can be incremented by ρ1 and ρ4, but this can only happen n times, due to the initial

value n of a. Further, our bound analysis computes the bound n ∗ (n− 1) for ρ3 from the

fact that only ρ2 can increase the counter i by n−1 and that ρ2 has the already computed

transition-bound n. Our soundness result (see [SZV14]) guarantees that the bound n ob-

tained for ρ2 is indeed a bound on how often the middle loop of Figure 1 can be executed.

Our bound analysis solves the challenges (C1)-(C3): CA allows us to analyze all loops at

once (C1) creating one transition for every loop path (C2). The abstract model of lossy

VASS is precise enough to model counter increments, which is a key requirement for

achieving amortized complexity analysis (C3).

References

[SZV14] Sinn, Moritz; Zuleger, Florian; Veith, Helmut: A simple and scalable static analysis for
bound analysis and amortized complexity analysis. In: CAV. Springer, pp. 745–761,
2014.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 103

GR(1) Synthesis for LTL Specification Patterns

Shahar Maoz1 and Jan Oliver Ringert1

This abstract reports on [MR15a], where we investigated support for linear temporal logic

(LTL) specification patterns in General Reactivity of Rank 1 (GR(1)) synthesis.

Reactive synthesis is an automated procedure to obtain a correct-by-construction reactive

system from its temporal logic specification [PR89]. Rather than manually constructing

a system and using model checking to verify its compliance with its specification, syn-

thesis offers an approach where a correct implementation of the system is automatically

obtained for a given specification, if such an implementation exists. In the case of reactive

synthesis, an implementation is typically given as an automaton that accepts input from

the environment (e.g., from sensors) and produces the system’s output (e.g., on actuators).

Two main challenges in bringing reactive synthesis to software engineering practice are

its very high worst-case complexity – for LTL it is double exponential in the length of the

formula, and the difficulty of writing declarative specifications using basic LTL operators.

To address the first challenge, Piterman et al. [PPS06, Bl12] have suggested the GR(1)

fragment of LTL, which has an efficient polynomial time symbolic synthesis algorithm.

GR(1) is a strict assume/guarantee subset of LTL, comprised of constraints for initial

states, safety propositions over the current and successor state, and justice constraints

(i.e., assertions about what should hold infinitely often). GR(1) synthesis has been used

in various application domains and contexts, including robotics [KFP09, MR15b], and

scenario-based specifications [MS12], to name a few.

To address the second challenge, Dwyer et al. [DAC99] have identified 55 LTL specifi-

cation patterns, which are common in industrial specifications and make writing speci-

fications easier. An example pattern is p occurs between q and r where p, q, and r

are parameters of the pattern, which can be instantiated with non-temporal propositions.

This pattern is numbered P09 and its semantics expressed in LTL according to [DAC99]

is G (q & !r -> (!r W (p & !r))).

In [MR15a] we show that almost all LTL specification patterns identified by Dwyer et al.

can be used as assumptions and guarantees in the GR(1) fragment of LTL. Specifically, we

present an automated, sound and complete translation of the patterns to the GR(1) form,

which effectively results in an efficient reactive synthesis procedure for any specification

that is written using the patterns.

Technically, the translation starts from the LTL formula of the pattern, translates it to

a minimal deterministic Büchi automaton (DBW), if one exists, and then translates the

1 School of Computer Science, Tel Aviv University, Israel

104 Shahar Maoz et al.

automaton to a GR(1) assumption or guarantee formula, while possibly adding auxiliary

variables to the GR(1) synthesis problem. If no DBW exists, the pattern is not supported.

Critical to the usefulness of our approach is that the costly translation of LTL to DBW is

done only once for every pattern. In fact, we have already done it and saved the result as a

set of templates inside our synthesis tool. This works because patterns are instantiated only

with propositions (not with nested temporal operators). We further show that patterns can

even be instantiated with past LTL formulas, but not with nested future temporal operators.

To summarize our contribution, [MR15a] answers the following three questions: (1) is

GR(1) expressive enough to support the Dwyer et al. patterns, which are well-recognized

as common in industrial specifications?, (2) can the translation be done automatically (and

correctly)?, and (3) what’s the extra cost of doing it (e.g., in number of auxiliary variables)?

To answer the first two questions, we have implemented and automated the translation,

and our findings show that 52 of the 55 patterns from the original work of Dwyer et

al. [DAC99] can be expressed as assumptions and guarantees in the GR(1) fragment.

Moreover, our work shows that the remaining 3 patterns are indeed not expressible as

assumptions or guarantees in the GR(1) fragment by our approach.

To answer the third question, our pattern representation in GR(1) requires at most 3 aux-

iliary variables per pattern instance. This gives an upper bound for the complexity of a

GR(1) synthesis problem where patterns are used as assumptions or guarantees. Note that

this is a very satisfying result, since based on the translation via a DBW, one could expect

in the worst case an exponential number of auxiliary variables per pattern.

References

[Bl12] Bloem, Roderick; Jobstmann, Barbara; Piterman, Nir; Pnueli, Amir; Sa’ar, Yaniv: Syn-
thesis of Reactive(1) Designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.

[DAC99] Dwyer, Matthew B.; Avrunin, George S.; Corbett, James C.: Patterns in Property Specifi-
cations for Finite-State Verification. In: ICSE. ACM, pp. 411–420, 1999.

[KFP09] Kress-Gazit, Hadas; Fainekos, Georgios E.; Pappas, George J.: Temporal-Logic-Based
Reactive Mission and Motion Planning. IEEE Trans. Robotics, 25(6):1370–1381, 2009.

[MR15a] Maoz, Shahar; Ringert, Jan Oliver: GR(1) Synthesis for LTL Specification Patterns. In:
ESEC/FSE. ACM, pp. 96–106, 2015. Supporting materials: http://smlab.cs.tau.
ac.il/syntech/patterns/.

[MR15b] Maoz, Shahar; Ringert, Jan Oliver: Synthesizing a Lego Forklift Controller in GR(1): A
Case Study. In: Proc. 4th Workshop on Synthesis (SYNT), co-located with CAV. 2015.

[MS12] Maoz, Shahar; Sa’ar, Yaniv: Assume-Guarantee Scenarios: Semantics and Synthesis. In:
MODELS. volume 7590 of LNCS. Springer, pp. 335–351, 2012.

[PPS06] Piterman, Nir; Pnueli, Amir; Sa’ar, Yaniv: Synthesis of Reactive(1) Designs. In: VMCAI.
volume 3855 of LNCS. Springer, pp. 364–380, 2006.

[PR89] Pnueli, Amir; Rosner, Roni: On the Synthesis of a Reactive Module. In: POPL. ACM
Press, pp. 179–190, 1989.

Verification Witnesses ∗

Dirk Beyer 1, Matthias Dangl 1, Daniel Dietsch 2,

Matthias Heizmann 2, and Andreas Stahlbauer 1

1 University of Passau, Germany 2 University of Freiburg, Germany

http://www.sosy-lab.org/⇠dbeyer/verification-witnesses/

Abstract: It is commonly understood that a verification tool should provide a counterex-ample to
witness a specification violation. Until recently, software verifiers dumped error witnesses in
proprietary formats, which are often neither human- nor machine-readable, and an exchange of
witnesses between different verifiers was impossible. We have defined an exchange format for
error witnesses that is easy to write and read by verification tools (for further processing, e.g.,
witness validation). To eliminate manual inspection of false alarms, we develop the notion of
stepwise testification: in a first step, a verifier finds a problematic program path and, in addition to
the verification result FALSE, constructs a witness for this path; in the next step, another verifier
re-verifies that the witness indeed violates the specification. This process can have more than two
steps, each reducing the state space around the error path, making it easier to validate the witness
in a later step. An obvious application for testification is the setting where we have two verifiers:
one that is efficient but imprecise and another one that is precise but expensive. The technique of
error-witness-driven program analysis is implemented in two state-of-the-art verification
tools, CPACHECKER and ULTIMATE AUTOMIZER.

Overview

Software verification becomes more and more important in practice; several breakthroughs

in verification research were achieved during the last decade, and several successful verifica-

tion tools were developed. The TACAS International Competition on Software Verification

(SV-COMP) 1 [Bey14, Bey15] serves as a showcase of the state-of-the-art. Users can choose

from a wide range of verifiers, and the SV-COMP categories give an approximate guidance

on which verifier is good for which kind of programs. One important and unsolved problem

of applying verification technology in practice is that verification tools sometimes produce

false alarms, and it still requires an enormous manual effort to find out if a reported bug

indeed represents a genuine specification violation.

Our solution comprises two components: we developed an exchange format for error

witnesses and evaluated its effectiveness by a thorough experimental evaluation, and we

develop the notion of stepwise testification, as the technique of witness validation immedi-

ately leads to the notion of witness refinement, enabling a chain of verifiers (or testifiers) to

continuously refine the erroneous state space until a test vector for the error is found.

⇤This is a summary of a full article on this topic that appeared in Proc. FSE 2015 [BDD+15].
1http://sv-comp.sosy-lab.org/

Stepwise
Testification

Error-Testification
Step 1

Error-Testification
Step k

Conditional
Model Checking k

Conditional
Model Checking 1

FALSE
+ Violating Test Vector

TRUE
+ Correctness Proof

......

Figure 1: Stepwise testifica-

tion: conceptual view

Testification is the process of giving evidence for a claim

that a given program satisfies, or violates, its specification.

The evidence of the absence, or presence, of a specification

violation is given by one or more witnesses. A verification

tool is a testifier if it provides evidence to support its claim,

i.e., if it produces a witness for correctness or for a violation

of the specification. Stepwise testification is the process

of applying testification in several steps, on ever refined

witnesses, possibly using different verification tools, com-

bining different strengths. Figure 1 illustrates the process of

stepwise testification. Our study explores stepwise testifica-

tion of specification violations by producing error witnesses

(left part), while conditional model checking [BHKW12]

focuses on stepwise testification of correctness.

We accompany the bug report of verifier V1 with an error witness, which represents

information that can effectively guide another verifier V2 to efficiently re-explore the state

space that verifier V1 reported to contain a bug. Our experimental study [BDD+15] confirms

the following insights: (1) our exchange format makes it possible to communicate error

witnesses across verifiers, (2) verifier V2 needs on average considerably less resources

to validate the witness than verifier V1 needed to find the error, even if V2 uses a more

expensive verification technology (e.g., V1 using linear and V2 using bit-precise arithmetic),

(3) stepwise testification can be more efficient than verification, i.e., the CPU time for

V1-verification + V2-witness-validation can be less than the CPU time for V2-verification

alone, (4) the state-space to be analyzed by V2 is effectively reduced.

On the syntactic level, we use XML, more specifically GraphML, as a language to represent

error witnesses. On the semantic level, we use the standard concept of (non-deterministic)

finite automata to represent an error witness. A witness automaton observes the paths that

the verifier explores and directs the exploration engine along the paths that the witness

describes, i.e., towards the violation of the specification. Witnesses can be read by humans

or a witness validator.

Our technique was already used in the two most recent editions of the competition on

software verification. The SV-COMP community manifested in the competition rules that

each answer FALSE must be accompanied by an error witness [Bey15], and requires the

organizer to reasonably validate each witness before assigning a success score, in order to

get more confidence that the error witness indeed represents a valid bug.

References

[BDD+15] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer. Witness Validation
and Stepwise Testification across Software Verifiers. In Proc. ESEC/FSE, pages 721–733.
ACM, 2015.

[Bey14] D. Beyer. Status Report on Software Verification. In Proc. TACAS, LNCS 8413, pages
373–388. Springer, 2014.

[Bey15] Dirk Beyer. Software Verification and Verifiable Witnesses (Report on SV-COMP 2015).
In Proc. TACAS, LNCS 9035, pages 401–416. Springer, 2015.

[BHKW12] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. Conditional Model
Checking: A Technique to Pass Information between Verifiers. In FSE. ACM, 2012.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 107

Evolution of Software in Automated Production Systems:
Challenges and Research Directions

Birgit Vogel-Heuser1, Alexander Fay2, Ina Schaefer3, and Matthias Tichy4

Abstract: Coping with evolution in automated production systems implies cross-disciplinary
challenges along the system’s life-cycle for variant-rich systems of high complexity. We provide
an interdisciplinary survey on challenges and research directions in the evolution of automated
production systems. After an initial discussion about the nature of automated production systems
and their specific development process, we sketch in this extended abstract the challenges
associated with evolution in the different development phases and a couple of cross-cutting areas.

Keywords: Automated Production Systems, Cross-Disciplinary Development, Challenges,
Research Directions

1 Automated Production Systems

Automated production systems (aPS) form the backbone of the world’s industrial
production. They are highly specialized technical systems, which are comprised of
mechanical, electrical and electronic parts and software, all closely interwoven. Software
is the defining factor to realize modern trends in manufacturing as defined by mass
customization, small lot sizes, high variability of product types, and a changing product
portfolio during the lifecycle of an automated production system. Hence, the evolution of
automated production systems always requires addressing cross-disciplinary evolution
challenges.

aPS in special machinery and plant manufacturing industry are typically designed-to-
order, i.e. they are unique systems, which are designed and implemented once a
customer has awarded a contract to an aPS supplier. Until completion, such projects
usually last between several weeks and several months. In order to shorten project
durations and to reduce costs, reusable (partial) solutions are usually developed by
system suppliers and combined to realize the automated production system. aPS are
supposed to be in operation and continuously evolved for decades before they are finally
taken out of operation and are demolished.

1 Institute of Automation and Information Systems, Technische Universität München, Boltzmannstr. 15, 85748
Garching near Munich, Germany, email: vogel-heuser@tum.de

2 Institute of Automation Technology, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg,
Germany, email: alexander.fay@hsu-hh.de

3 Institute of Software Engineering and Automotive Informatics, Technische Universität Braunschweig,
Mühlenpfordtstr. 23, 38106 Braunschweig, Germany, email: i.schaefer@tu-braunschweig.de

4 Institute of Software Engineering and Programming Languages, Universität Ulm, 89069 Ulm, Germany,
email: matthias.tichy@uni-ulm.de

108 Birgit Vogel-Heuser et al.

2 Challenges and Research Directions

In the following, we discuss the evolution challenges and research directions covering
the different development phases as well as several important cross-cutting aspects. We
refer to the full paper [1] for a complete discussion of challenges, state of the art, and
research directions illustrated using a simple production system.

A light weight and efficient way to define requirements and system specification for aPS
and refine or change them during the design process needs to be developed for both
functional and non-functional requirements. They should be formalized in a way that
they are quantifiable but still technology-independent and cover all aspects of the aPS.
Thus, their continuous fulfillment can be verified before and after an evolution step.
Challenges in system design include the need to ensure consistency between design
artefacts of the different disciplines as well as different aspects of the system to be built.
Furthermore, the concept of technical debt needs to be investigated w.r.t. aPS. During
system realization and implementation of the design of aPS lack of modularity concepts
fulfilling the cross disciplinary requirements of aPS can result in reuse by copy&paste
leading to clones. Additionally, the evolution during operation is performed by customer
personal on-site which are experts in the production process but not in software
engineering and work under stress and time pressure. That can lead to inconsistencies
between design and implementation as well as unclear code structures. The main
challenge for validation and verification under system evolution is to provide efficient
techniques to establish the desired system properties after evolution without the need to
re-verify the complete evolved system from scratch. In particular, compositional and
incremental verification and validation techniques should be developed to cope with
cross-discipline models and reduce the effort for re-establishing properties.

The main challenge concerning variability management of aPS is the management of
multi-disciplinary variability in problem and solution space for functional requirements
and non-functional requirements with different levels of abstraction and granularity. A
particular problem is here to ensure the consistency of the variability models across
disciplines.. There exists research to use Model-Driven Engineering for the development
of aPS, the challenge is to avoid inconsistencies between the models and the generated
code in case of changes on site. Finally, as aPS have a cross-disciplinary nature and
many different artifacts are built during development ensuring traceability between all
artifacts is an important challenge.

References

[1] Birgit Vogel-Heuser , Alexander Fay , Ina Schaefer , Matthias Tichy , Evolution of
software in automated production systems - Challenges and Research Directions, The
Journal of Systems & Software (2015), Elsevier, doi:10.1016/j.jss.2015.08.026

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 109

The Benefit of Requirements Traceability When Evolving a

Software Product: A Controlled Experiment

Patrick Mäder1 and Alexander Egyed2

Abstract: Software traceability is a required component of many software development processes.
Advocates of requirements traceability cite advantages like easier program comprehension and sup-
port for software maintenance (i.e., software change). However, despite its growing popularity, there
exists no published evaluation about the usefulness of requirements traceability. It is important, if
not crucial, to investigate whether the use of requirements traceability can significantly support de-
velopment tasks to eventually justify its costs. We thus conducted a controlled experiment with 71
subjects re-performing real maintenance tasks on two third-party development projects: half of the
tasks with and the other half without traceability. Subjects sketched their task solutions on paper to
focus on the their ability to solving the problems rather than their programming skills. Our findings
show that subjects with traceability performed on average 24% faster on a given task and created
on average 50% more correct solutions – suggesting that traceability not only saves effort but can
profoundly improve software maintenance quality.

Keywords: requirements traceability; software evolution; effect; controlled experiment; study

1 Motivation and Study

Capture and maintenance of requirements-to-code traces reflect knowledge where require-

ments are implemented in the code is the focus of extensive research [CHGHH+14]. De-

spite its growing popularity [MGP09, RMK13] surprisingly little is known about its ben-

efits. Intuitively, requirements-to-code traces should be useful for many areas of software

engineering. Researchers refer to better program comprehension and support for software

maintenance. Nonetheless, there exists no empirical work in which the effect of require-

ments traceability was measured. Does it save effort? Does it improve quality?

In this study, originally published at [ME15], we assessed whether available requirements-

to-code traces improve the performance of subjects during software maintenance and evo-

lution tasks. Therefore, we conducted an experiment involving 71 practitioners and stu-

dents with a wide range of experiences. The subjects were asked to solve tasks taken from

two software projects: the open source Gantt Project (47 KLOC) and the iTrust system

(15 KLOC). Eight tasks were selected, covering real bug fixes and feature extensions taken

from the projects’ documented archives. Tasks were randomly assigned to subjects, half

with and the other half without traceability. Task solutions were recorded on paper and not

implemented by the subjects. We measured the performance of subjects as the time they

1 Technische Universität Ilmenau, Software Systems Group, Ilmenau, Germany, patrick.maeder@tu-ilmenau.de
2 Johannes Kepler University, Institute for Software Systems Engineering (ISSE), Linz, Austria, alexan-

der.egyed@jku.at

110 Patrick Mäder et al.

spent to solve a task and the correctness of their solution. The selected, real maintenance

tasks also provided us with a gold standard as to how the original developers solved the

given tasks. Furthermore, we assessed the influence of subject experience, the kind of tasks

subjects were expected to solve, and the different project domains. All subjects were not

familiar with the projects – a situation commonly occurring during software maintenance

and a situation under which developers are expected to benefit most from traceability.

2 Results and Conclusions

In total, subjects solved 461 tasks (i.e., 6.5 tasks per subject on average). Our findings show

that subjects working on tasks with traceability performed better than subjects working

without traceability. In particular, subjects with traceability performed on average 24%

faster on tasks and created on average 50% more correct solutions. This demonstrates that

traceability is not just a means for saving some effort but can profoundly improve the

quality of the software maintenance process. There are likely many subsequent benefits

such as more effective maintenance, faster time to market, or less code degradation. We

also found that some tasks benefited more from traceability than others, especially with

regard to the correctness of the solution. Furthermore, we found that our observations

were consistent regardless of subject experience and the project domain.

The implications of this study are numerous. Traceability strongly benefits software main-

tenance regardless of subject experience. Though often perceived tedious and ineffective,

this work demonstrates a clear, measurable performance improvement to justify traceabil-

ity cost. Since this work clearly characterizes the effect of traceability, practitioners and

researchers alike may use this information to better understand the cost/benefit trade-off

of traceability – a point that will also be the focus of our future work.

Acknowledgments We are funded by the German Ministry of Education and Research

(BMBF) grant 01IS14026B and the Austria Science Fund (FWF) grant FWF P 25289-N15.

References

[CHGHH+14] Jane Cleland-Huang, Orlena Gotel, Jane Huffman Hayes, Patrick Mäder, and An-
drea Zisman. Software Traceability: Trends and Future Directions. In Proc. 36th
International Conference on Software Engineering (ICSE), pages 55–69, 2014.

[ME15] Patrick Mäder and Alexander Egyed. Do developers benefit from requirements
traceability when evolving and maintaining a software system? Empirical Software
Engineering, 20(2):413–441, 2015.

[MGP09] Patrick Mäder, Orlena Gotel, and Ilka Philippow. Motivation Matters in the Trace-
ability Trenches. In Proc. 17th International Requirements Engineering Conference
(RE09), pages 143–148, 2009.

[RMK13] Patrick Rempel, Patrick Mäder, and Tobias Kuschke. An Empirical Study on
Project-Specific Traceability Strategies. In Proc. 21st International Requirements
Engineering Conference (RE13), pages 195–204, 2013.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 111

Development of Flexible Software Process Lines with
Variability Operations: A Longitudinal Case Study

Patrick Dohrmann1, Joachim Schramm1 and Marco Kuhrmann2

Abstract: Context: A software process line helps to systematically develop and manage families
of processes and, as part of this, variability operations provide means to modify and reuse pre-
defined process assets. Objective: Our goal is to evaluate the feasibility of variability operations to
support the development of flexible software process lines. Method: We conducted a longitudinal
study in which we studied 5 variants of the V-Modell XT process line for 2 years. Results: Our
results show the variability operation instrument feasible in practice. We analyzed 616 operation
exemplars addressing various customization scenarios, and we found 87 different operation types.
Conclusions: Although variability operations are only one instrument among others, our results
suggest this instrument useful to implement variability in real-life software process lines.

This summary refers to the paper Development of Flexible Software Process Lines with Variability
Operations: A Longitudinal Case Study [Do15]. This paper was published as full research paper in
the EASE’2015 proceedings.

Keywords: software process, software process lines, variability operations, longitudinal study

1 Introduction

Different studies show manifold of processes used in practice and companies combine
multiple processes and adopt these to specific requirements. Yet, defining adequate
processes is a complex activity requiring deep knowledge of the actual domain in
particular and software engineering in general. To overcome these challenges, in [Ro05],
Rombach votes for adopting well-known concepts from software product lines to
develop Software Process Lines (SPrL). Still, these approaches lack in evidence of their
feasibility in practice. In Germany, the V-Modell XT is the standard software process for
IT development projects in Germany’s public sector. Starting with its release in 2005,
the number of process variants using the so-called reference model increased and led to
serious problems when the reference model evolved. Therefore, it was decided to adopt
concepts from SPrLs to the V-Modell XT for the purpose of improving support for an
efficient management of the reference model and its variants, e.g., automatic updates.

Problem. While defining the variability operations for the V-Modell XT framework, the
major problem was to find suitable and actionable variability operations. Furthermore,
we lack long-term studies analyzing the feasibility of SPrL approaches.

1 Technische Universität Clausthal, Institut für Informatik - Software Systems Engineering,
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, {jschr,pdo}@tu-clausthal.de

2 University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark, kuhrmann@acm.org

112 Patrick Dohrmann et al.

Objective, Method, and Contribution. To understand software process variability, we
analyze the feasibility of the variability operation instrument and its improvement. We
conducted a longitudinal case study in which we investigated two baselines (a reference
model and 5 of its variants [Ku14] and [Do15]) of the V-Modell XT conducted by two
teams of researchers. In our study, we contribute a catalog 87 different (78 unique)
variability operations and a quantitative analysis of their use in practice.

2 Results

Our study of two major releases of the reference model and its variants resulted in 87
variability operations for modifying process structure and content. In the study, we also
observed an evolution, and we observed parallel development of variability operation
sets by different process-engineering team (studying the result sets in detail shows
copied/modified operations, so that we end up with 78 unique variability operations). In
total, all variants use variability operations and the number of operation exemplars
increased over time (more variants using this instrument, more operation exemplars).
Among the 616 operation exemplars, 223 are instances of only 6 types indicating to
customization patterns. Further findings show variability operations also aiding process
metamodel evolution and the combination with other variability instruments.

3 Conclusion

In summary, we found the concept of variability operations sufficient to support process
engineers in constructing a process variant from a software process line. However,
variability operations are only one instrument among others and, thus, can (and should)
be combined with other instruments.

References

[Do15] Dohrmann, P.; Schramm, J.; Kuhrmann, M.: Development of Flexible Software
Process Lines with Variability Operations: A Longitudinal Case Study. Proc. of Int.
Conf. on Evaluation and Assessment in Software Engineering, ACM, New York, NY,
pp. 13:1-13:10, 2015.

[Ku14] Kuhrmann, M.; Mendez Fernandez, D.; Ternite, T.: Realizing software process lines:
Insights and experiences. Proc. of Intl. Conf. on Software and Systems Process, ACM,
New York, NY, pp.110–119, 2014.

[Ro05] Rombach, D.: Integrated software process and product lines. Proc. of Int. Software
Process Workshop, Springer, Berlin-Heidelberg, pp. 83-90, 2005.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 113

Keynote: Continuous Software Engineering

Wilhelm Hasselbring1

Continuous Software Engineering ist seit Jahrzehnten ein kontinuierlich behandeltes
Thema in der Forschung und der Praxis des Software Engineering. Traditionell
fokussiert die kontinuierliche Softwareentwicklung auf Reverse und Re-Engineering
Aktivitäten zur Weiterentwicklung langlebiger Softwaresysteme.

In den letzten Jahren hat dieses Thema in der Praxis durch die Verfügbarkeit von
leistungsfähigen Werkzeugen zur Automatisierung stark an Bedeutung gewonnen.
Gleichzeitig ist eine Betonung automatisierter Qualitätssicherungsmaßnahmen zu
beobachten. Continuous Integration und Continuous Delivery/Deployment sind dazu
aktuelle Schlagworte.

Für die kontinuierliche Softwareentwicklung ist es nun auch wichtig neben der
Konstruktion und Weiterentwicklung von Software auch schon in der Entwicklung den
späteren Betrieb im Rechenzentrum oder in eingebetteten Systemen zu berücksichtigen.
Die DevOps-Bewegung zielt darauf ab die Zusammenarbeit von Softwareentwicklung
(Dev für Development) und Betrieb (Ops für Operations) zu optimieren und
Reibungsverluste zu vermeiden.

In der (agilen) Softwareentwicklung ist es das Ziel, schnell viele Features
bereitzustellen. Im Betrieb ist es das Ziel, stabile Dienste bereitzustellen - häufige
Änderungen werden hier traditionell als unerwünscht angesehen. DevOps verfolgt nun
den Ansatz viele, stabile Releases bereitzustellen. Die dazu erforderliche
Qualitätssicherung und Effizienzsteigerung wird durch die Automatisierung von
Entwicklungs- und Betriebsaufgaben erreicht.

Generell führt die kontinuierliche Integration von Qualitätssicherungsmaßnahmen zu
einer kontinuierlich hohen Qualität und damit zu vielen stabilen Releases. Zur
kontinuierlichen Überwachung der resultierenden Softwaredienste und auch der
sogenannten Deployment-Pipelines muss möglichst viel automatisiert gemessen und
überwacht werden (Monitoring).

Durch DevOps bekommt das Thema Softwarearchitektur auch in der agilen
Softwareentwicklung eine stärkere Bedeutung und Würdigung. Für DevOps ist es
sinnvoll präskriptive und deskriptive Architektur-Modelle zu kombinieren. Präskriptive
Modelle kommen aus der Softwareentwicklung (Forward Engineering). Deskriptive

1 KoSSE, Universität Kiel, Deutschland, hasselbring@email.uni-kiel.de

114 Wilhelm Hasselbring

Modelle kommen aus der Beobachtung der im Betrieb befindlichen Softwaredienste
(Reverse Engineering durch dynamische Analyse). In diesem Vortrag werde ich
diskutieren, warum Softwarearchitektur ein zentrales Artefakt an der Schnittstelle
zwischen Entwicklung und Betrieb ist. Speziell Microservice-Architekturen und dem
kontinuierlichen Monitoring der resultierenden Systeme kommt hier eine besondere
Rolle zu.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 115

Keynote: Working with Robots in Smart Homes and Smart
Factories – Robotic Co-Working

Uwe Aßmann1

Co-working is a new trend for integrating service robots into smart environments, such
as homes or assembly lines of manufactories. Modern sensitive robots recognize human
beings in their neighborhood and stop when touched, so that they can be integrated into
their environment much better as in the past. Robots come out of the cage, and this
creates a lot of opportunities for scalable automation in home and factory.

In the future home, service robots will help elderly and handicapped people. In
manufacturing lines in small and medium enterprises, simple steps can be taught to a
smart robot, while the difficult steps can be left to humans.

In both application areas, due to the safe integration into the smart environments, the
investment costs for the use of robots sink considerably, and the degree of automation
can be scaled accordingly. For industrial workshops, this new deployment model of
sensitive robots will have a tremendous effect on all kinds of manufacture, because it
shrinks the costs of robot-based automation and can be afforded by small companies.

Thus, entire industries could make use of robots that did not deploy them so far. For the
smart home, this means that once a sensitive service robot costs less than 20kEuro, the
support of elderly people with automation-based services might become affordable and
economic.

1 Technische Universität Dresden, Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl
Softwaretechnologie, https://www.facebook.com/stdresden, http://st.inf.tu-dresden.de, uwe.assmann@tu-
dresden.de

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 117

SE FIT: Software Engineering Forum der IT
Transferinstitute

Michael Felderer1, Wilhelm Hasselbring2

Software Engineering ist eine Ingenieursdisziplin, die von einem regen Austausch
zwischen Wirtschaft und Wissenschaft profitiert. Es gibt deshalb einige inner- und
außeruniversitäre Institute, die sich der Zusammenarbeit mit Unternehmen in Forschung
und Entwicklung und dem Transfer von Wissen und Technologien verschrieben haben.
Unternehmen und wissenschaftliche Einrichtungen profitieren von diesem Austausch
gleichermaßen.

Das Forum SE FIT bietet Unternehmen, Wissenschaftlern und Transferinstituten die
Gelegenheit zum Kennenlernen und zum Erfahrungsaustausch. Es soll als Plattform für
den Wissens- und Technologietransfer im Bereich Software Engineering fungieren und
die Kommunikation und Kooperation katalysieren.

SE FIT findet parallel zu den Workshops der SE 2016 am Dienstag, den 23. Februar
2016 und zur Hauptkonferenz am Mittwoch, den 24. Februar 2016 in Wien statt. An der
Veranstaltung nehmen insgesamt 9 Transfereinrichtungen teil, nämlich Austrian Institute
of Technology (AIT), fortiss, Fraunhofer-Institut für Experimentelles Software
Engineering (IESE), Institut für Angewandte Informatik (InfAI), Kompetenzverbund
Software Systems Engineering (KoSSE), Quality Engineering Competence Center QE
Lab, SBA Research, Software Competence Center Hagenberg (SCCH) sowie Software
Innovation Campus Paderborn (SICP).

Das Programm umfasst einen Impulsvortrag zur Forschungsförderung, die Vorstellung
der einzelnen Institute sowie die Diskussion von Kooperationsmöglichkeiten. Weiters
stellen die Institute im Rahmen einer Ausstellung ihr Profil und Leistungsangebot vor.
Den Besuchern der Hauptkonferenz wird unter dem Motto „FIT for Lunch“ die
Möglichkeit gegeben, diese Ausstellung im Rahmen der Mittagspause zu besuchen.

1 Universität Innsbruck, QE LaB, Österreich, michael.felderer@uibk.ac.at
2 Universität Kiel, KoSSE, Deutschland, hasselbring@email.uni-kiel.de

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 119

9. Arbeitstagung Programmiersprachen (ATPS 2016)

Andreas Krall1, Ina Schaefer2

Die Arbeitstagung Programmiersprachen dient dem Austausch zwischen Forschern, Ent-

wicklern und Anwendern in Hochschule, Wirtschaft und Industrie, die sich mit Themen

aus dem Bereich der Programmiersprachen beschäftigen. Dabei sind alle Programmier-

paradigmen gleichermassen von Interesse: imperative, objektorientierte, funktionale, logi-

sche, parallele und graphische Programmiersprachen ebenso wie verteilte und nebenläufige

Programmierung in Intra- und Internet-Anwendungen sowie Konzepte zur Integration die-

ser Paradigmen. Ebenfalls von Interesse sind Arbeiten zu Techniken, Methoden, Konzep-

ten oder Werkzeugen, mit denen Sicherheit und Zuverlässigkeit bei der Ausführung von

Programmen erhöht werden können.

Typische, aber nicht ausschliessliche Themenbereiche der Tagungsreihe sind:

• Entwurf von Programmiersprachen und anwendungsspezifischen Sprachen

• Implementierungs- und Optimierungstechniken

• Analyse und Transformation von Programmen

• Ressourcenanalyse (Zeit, Speicher, Leistungsverbrauch)

• Typsysteme

• Semantik und Spezifikationstechniken

• Modellierungssprachen, Objektorientierung

• Domainspezifische Sprachen

• Programm- und Implementierungsverifikation

• Werkzeuge und Programmierumgebungen

• Frameworks, Architekturen, generative Ansätze

• Erfahrungen bei exemplarischen Anwendungen

• Verbindung von Sprachen, Architekturen, Prozessoren

1 TU Wien, Institut für Computersprachen, Argentinierstr. 8, 1040 Wien, Österreich, an-

di@complang.tuwien.ac.at
2 TU Braunschweig, Institut für Softwaretechnik und Fahrzeuginformatik, Mühlenpfordtstr. 23, D-38106 Braun-

schweig, Deutschland, i.schaefer@tu-braunschweig.de

120 Andreas Krall, Ina Schaefer

Neben neuen Arbeiten sind stets auch Beiträge erwünscht, die existierende Arbeiten oder

Projekte zusammenfassen oder aus einem neuen Blickwinkel präsentieren, und sie so ins-

besondere einem deutschsprachigen Publikum vorstellen.

Bei der Zusammenstellung des Programmkomitees liegt ein besonderer Schwerpunkt in

der Einbindung deutschsprachiger Wissenschaftler, die beruflich ausserhalb des deutschen

Sprachraums tätig sind. Dies dient zum einen der Vergrösserung der wissenschaftlichen

Basis und zum anderen der langfristigen Kontaktpflege und Kooperation zwischen deutsch-

sprachigen Wissenschaftlern im In- und Ausland.

Programmkomitee

Walter Binder USI Lugano, Schweiz

Michael Hanus Univ. Kiel, Deutschland

Christian Heinlein Hochschule Aalen, Deutschland

Andreas Krall TU Wien, österrreich, Co-Vorsitzender

Welf Löwe Linnaeus Univ. Växjö, Schweden

Gerald Lüttgen Univ. Bamberg, Deutschland

Thomas Noll RWTH Aachen, Deutschland

Markus Müller-Olm Univ. Münster, Deutschland

Christian W. Probst DTU Lyngby, Dänemark

Ina Schaefer TU Braunschweig, Deutschland, Co-Vorsitzende

Volker Stolz Univ. Oslo, Norwegen

Peter Thiemann Univ. Freiburg, Deutschland

Janis Voigtländer Univ. Bonn, Deutschland

Guido Wachsmuth TU Delft, Niederlande

Baltasar Trancn Y Widemann TU Ilmenau, Deutschland

Jens Knoop, Uwe Zdun (Hrsg.):Software Engineering 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 121

CPSSC - 1st International Workshop on Cyber-Physical
Systems in the Context of Smart Cities

Constantin Scheuermann1, Andreas Seitz2

1 Motivation

The interconnection and exchange of information is a basic requirement to enable Smart
Cities. Such an interconnection must be realized within each domain (vertically) as well
as among different domains (horizontally). Typical domains cover energy, automotive,
health, intelligent buildings, transportation, manufacturing as well as the military
domain.

Therefore, horizontal and vertical information sharing within Smart Cities is essential
and comes with challenges for software developers. Which models, architectures,
patterns and data structures need to be developed to enable and further improve the
interconnection and digitization of Smart Cities, are major questions that need to be
addressed.

2 Description

This workshop is a forum for authors to present their early research findings in the field
of Cyber-Physical Systems in the context of Smart Cities. The workshop aims at
overviews, theoretical approaches, tools and frameworks, applications, system
infrastructures and test beds for Cyber-Physical Systems. The following list depicts the
main fields of interest:

• Theoretical foundations of Cyber-Physical Systems

• Smart City Applications

• Smart Environments

• Novel Industrial Applications of Cyber-Physical (Human) Systems

• Detailed Case Studies

• Infrastructure Applications for Smart Cities

• Security/Privacy

• Architecture and Modeling of Cyber-Physical Systems

1 Technical University of Munich (TUM), Munich, Germany, constantin.scheuermann@in.tum.de
2 Technical University of Munich (TUM), Munich, Germany, seitz@in.tum.de

122 Constantin Scheuermann, Andreas Seitz

3 Programm Committee and Organization

Programm Committee:

• Mathias Althoff, Technical University of Munich (TUM), Munich, Germany

• Bernd Bruegge, Technical University of Munich (TUM), Munich, Germany

• Michael Heiss, Siemens AG, Head of Research Group CPSs, Vienna, Austria

• Bruce Horn, Intel Cooperation, USA

• Hyun-Wook Jin, Konkuk University, Seoul, Korea

• Sung-Soo Lim, Kookmin University, Seoul, Korea

• Chi-Sheng Shih, National Taiwan University, Taipei, Taiwan

• Monika Sturm, Leibniz Universit¨at Hannover, Siemens AG, CPS Principal, Vienna,
Austria

• Birgit Vogel-Heuser, Technical University of Munich (TUM), Munich, Germany

Organization:

• Constantin Scheuermann, Technical University of Munich (TUM), Munich, Germany

• Andreas Seitz, Technical University of Munich (TUM), Munich, Germany

4 Program

09:00-10:00 Keynote - Volker Hartkopf
10:00-10:30 Coffee Break
10:30-12:00 Presentations
12:00-14:00 Lunch Break
14:00-15:00 Invited Talk - Oliver Juli
15:00-15:30 Coffee Break
15:30-17:00 Panel Discussion: The Future of Smart Cities

5 Discussion Panel: The Future of Smart Cities

As part of the CPSSC Workshop a Panel about The Future of Smart Cities with well-
known experts in the area of Smart Cities, Cyber-Physical Systems and Smart Office
Environments is organized. The discussion will be moderated by Monika Sturm.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 123

Workshop on Continuous Software Engineering

Horst Lichter1, Bernd Brügge2, Dirk Riehle3

In order to develop and deliver high-quality products to their customers, software
companies have to adopt state-of-the-art software development processes. To face this
challenge, companies are applying innovative methods, approaches and techniques like
agile methods, DevOps, Continuous Delivery, test automation, infrastructure as code or
container-based virtualization.

These new approaches have a high impact on the specification, design, development,
maintenance, operation and the evolution of software systems. Therefore, common
software engineering activities, organizational forms and processes have to be
questioned, adapted and extended to ensure continuous and unobstructed software
development (Continuous Software Engineering). So far, there is a lack of systematic
approaches to face these challenges.

The goal of this workshop is to present and discuss innovative solutions, ideas and
experiences in the area of Continuous Software Engineering (CSE).

The workshop aims to cover the following topics:

• DevOps & Release Engineering
• Approaches to Continuous Integration/Delivery/Deployment
• Infrastructure as Code
• Test Automation & Optimization
• Monitoring & Performance
• Security for DevOps
• Provisioning of Soft-ware & Infrastructure
• Application Virtualization with Container
• Engineering of Deployment Pipelines
• Quality & Metrics for DevOps
• Design for Scalability
• Organizational issues for CSE

1 1RWTH Aachen University, Research Group Software Construction, horst.lichter@swc.rwth-aachen.de
2 Technische Universität München, Institut für Informatik / I1T, bruegge@in.tum.de
3 Friedrich-Alexander-University Erlangen-Nürnberg, Open Source Research Group, dirk.riehle@fau.de

124 Horst Lichter et al.

• Continuous Delivery for Requirements Engineering/Early Proto-typing
• Change Management - Handling user feed-back
• Teaching CSE approaches
• Software Architectures for CSE
• Microservices
• Software Development Lifecycle for CSE.

As we want to have contributions from industry and academia presented and discussed
in the workshop, we asked for original and evaluated research as well as for papers
describing novel ideas, identified challenges, and especially experience reports related to
the workshop's theme.

The presented papers cover different topics of CSE like dedicated process models and
their application in CSE, new architectural styles like microservices and their integration
with existing methodologies, and approaches to improve DevOps in organizations.

Program Committee

Bernd Brügge TU München
Willi Hasselbring Universität Kiel
Martin Jung develop group, Erlangen
Stephan Krusche TU München
Horst Lichter RWTH Aachen University
Christian Nester Google Inc.
Dirk Riehle FAU Nürnberg
Heinz-Josef Schlebusch Kisters AG, Aachen
Christian Uhl codecentric AG, Düsseldorf
Stefan Wagner Universität Stuttgart
Heinz Züllighoven WPS und Universität Hamburg

Workshop Organizers

Lukas Alperowitz TU München
Andreas Steffens RWTH Aachen University

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 125

3nd Collaborative Workshop on Evolution and

Maintenance of Long-Living Software Systems (EMLS’16)

Robert Heinrich1 Reiner Jung2 Marco Konersmann3 Eric Schmieders3

Langlebige software-intensive Systeme sind während ihrer Nutzung einer Vielzahl an

Änderungen ihrer Anforderungen sowie ihres technologischen Kontextes ausgesetzt. Das

kann unter anderem zu inkonsistenten Anforderungsspezifikationen, Architekturerosion

und SLA-Verletzungen führen. Die Relevanz dieser Problematik ergibt sich vor allem in

der industriellen Praxis, in der ein solches System nicht nur eine initiale Entwicklung

erfährt, sondern ständig weiterentwickelt werden muss. Traditionelle Entwicklungsprozes-

se bieten bislang keine ausdrückliche Unterstützung von Langlebigkeit. Die Schnittstellen

zwischen den Phasen wie Anforderungserhebung, Systemdesign und -entwicklung, so-

wie Betrieb sehen daher bislang noch kein systematisches Erfassen und Beschreiben ihrer

Abhängigkeiten hinsichtlich Langlebigkeit vor.

In der Wissenschaft finden derzeit zahlreiche Bemühungen statt um die typische Entwick-

lungsphasen auf Langlebigkeit auszurichten. Häufig sind die Arbeiten jedoch auf ein-

zelne Phasen fokussiert und lassen übergreifende Herausforderungen ausser Acht. Pha-

senübergreifende Probleme, wie z.B. das Einholen und Dokumentieren von Anforderun-

gen zur Unterstützung von Selbstadaption eines langlebigen Systems, erfordern aber gera-

de das Erforschen des Zusammenspiels der unterschiedlichen Entwicklungsphasen ebenso

wie ihrer Abhängigkeiten.

Ziel des dritten EMLS Workshops ist es, die Perspektiven der Forschung und der In-

dustrie zusammenzubringen. Die Schwerpunkte des Workshops sind Problemstellungen,

Lösungsansätze und Evaluationsansätze im Rahmen der Evolution und Wartung. Entlang

der vorgestellten Beiträge sollen Kooperationsmöglichkeiten aufgedeckt werden, um so

Forscher miteinander und Industrievertreter mit Forschern besser zu vernetzen und Syner-

gien zu ermöglichen.

Der Beitrag “Challenges in Secure Software Evolution - The Role of Software Architec-

ture” befasst sich mit den Herausforderungen der Evolution von Software bezogen auf

Sicherheitseigenschaften und deren Modellierung. Es stellt dabei Herausforderungen und

eine Lösungsmöglichkeit vor. Der Beitrag “Structured Model-Based Engineering of Long-

living Embedded Systems: The SPES Methodological Building Blocks Framework” zeigt

einen Ansatz um Entwicklungsprozesse für langlebige eingebetette Systeme zu definie-

ren. Dabei geht das Papier auch auf den breiteren industriellen Kontext dieser Prozesse

ein. Im Beitrag “Challenges in the Evolution of Metamodels” werden Herausforderungen

1 Karlsruher Institut für Technologie, Am Fasanengarten 5, 76131 Karlsruhe, robert.heinrich@kit.edu
2 Universität Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, reiner.jung@email.uni-kiel.de
3 Universität Duisburg-Essen, Gerlingstrasse 16, 45127 Essen, marco.konersmann@paluno.uni-due.de

126 Robert Heinrich et al.

aufgezeigt, die die Evolution von Meta-Modellen mit sich bringt. Der Beitrag basiert auf

der Erfahrung mit dem Palladio Component Model, welches seit 2006 beständig weiter

entwickelt wurde.

Die akzeptierten Beiträge werden im Verlauf des Workshops vorgestellt und diskutiert.

In Kleingruppen sollen die Teilnehmer konkrete Ideen besprechen und ausarbeiten, so-

wie nächste Schritte für mögliche Kooperationen erarbeiten und im Workshop vorstellen.

Die Ergebnisse sollen langfristig zu gemeinsamen Projekten, Publikationen, Technologien

oder Benchmarks beitragen.

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 127

2nd Workshop on Fail Safety in Medical Cyber-Physical

Systems (FS-MCPS)

Alexander Schlaefer and Sibylle Schupp and André Stollenwerk

{schlaefer,schupp}@tuhh.de, stollenwerk@embedded.rwth-aachen.de

http://www.aa4r.org/fs-mcps2016.html

Medical cyber-physical systems (MCPSs) extend the notion of conventional medical de-

vices to more complex technical systems in close connection to humans, e.g., acquiring

sensor data, controlling a treatment, or monitoring recovery. Typically, these systems in-

clude the patient in the loop and require a high degree of dependability and fail safety.

One challenge is the complex nature of physiological processes, which are often patient-

specific and less deterministic than in, e.g., engineering scenarios. Thus, many of the un-

derlying interactions are today still not modeled in detail. Another challenge is the growing

complexity of medical systems and devices themselves. Hence, fail safety of a MCPS can-

not be achieved within a single component or layer — neither the software layer nor any

other isolated layer —, but requires an interdisciplinary effort addressing different aspects,

including patient modeling, hardware, software, and communication.

The workshop covers these aspects and discusses software-engineering issues of MCPS.

Intended as a platform for interdisciplinary exchange the topics range from theoretical

foundation of fail safety to actual applications of MCPS. Interoperability and integration

of different devices has been an active research field, particularly as computer assistance

for decision support and guidance of interventional procedures requires an aggregation of

data provided by different systems. The design of interfaces and emerging standards for

interoperability must consider the safe operation of the overall system. This includes meet-

ing temporal constraints, e.g., when illustrating organ movements during image guidance

or for automated motion compensation. Moreover, consistent, fail safe, and secure data

exchange on the hardware and software level are essential for connecting devices, particu-

larly when longer distances are covered, e.g., for remote and ambient assistance scenarios.

The latter also require reliable network protocols and resource management. Architectures

and algorithms for the interaction in a MCPS, which are capable of tolerating latency and

package loss due to unstable connections, are desired. Furthermore, the implications of

change at one point in a system to the connected remainder is addressed.

Clearly, the move towards more complex systems in clinical practice is gradual and re-

quires compliance with existing regulations and integration with existing devices. Bring-

ing together researchers and practitioners in the field of MPCS we summarize the state

of the art and discuss obstacles and challenges on the way to fail-safe MCPS. We are

grateful for the keynote talk by Wolfgang Reisig (Humboldt Universität zu Berlin) and

the two tutorials on Polyspace and Uppaal by Christian Guss and Jakob Taankvist, who

128 Alexander Schlaefer et.

present theoretical and practical aspects of software engineering and verification for med-

ical applications. We would also like acknowledge the members of our program commit-

tee Sabine Glesner, Christian Hansen, Klaus Radermacher, Asarnusch Rashid, Wolfgang

Reisig, Bernhard Rumpe, Stefan Schlichting, and Annette Stümpel.

Hamburg and Aachen, January 2016

Sibylle Schupp, Alexander Schlaefer, and André Stollenwerk

Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 129

2. Workshop „Lehre für Requirements Engineering“
(LehRE)

Rüdiger Weißbach1, Jörn Fahsel2, Andrea Herrmann3, Anne Hoffmann4, Dieter Landes5

Abstract: LehRE ist ein Workshop über Lehre und Training für Requirements Engineering. Auf
der SE2016 stehen Kompetenzorientierung und Agilität in der Lehre im Vordergrund, außerdem
sollen Einsatzmöglichkeiten elektronischer Lehrplattformen in der RE-Lehre in einem Gastvortrag
diskutiert werden.

Keywords: Kompetenzorientierung, Agile Lehre, elektronische Lernplattformen, digitale
Lernplattformen

1 Zielsetzung des Workshops

LehRE ist ein Workshop über Lehre und Training für Requirements Engineering [RE].
Auf der SE2014 wurde dieser Workshop mit Teilnehmern aus dem akademischen und
dem industriellen Umfeld erstmals durchgeführt. Der Erfahrungsaustausch zwischen
Personen, die RE im Studium oder berufsbegleitend lehren, ist zentraler Inhalt des
Workshops. Außerdem ist explizit die Teilnahme von Studierenden erwünscht, die über
Lernerwartungen und Lernerfahrungen berichten sollen.

Der Workshop resultiert aus der Arbeit des Arbeitskreises „Requirements Engineering in
der Lehre“ der Fachgruppe 2.1.6, Requirements Engineering (RE), der Gesellschaft für
Informatik e.V. (GI). Die Organisatoren des Workshops haben alle langjährige
Erfahrung im Requirements Engineering und dessen Vermittlung.

2 Inhalte

In dem Workshop werden Erfahrungsberichte aus der Ausbildung im Software
Engineering und aus der Ausbildung von „Nicht-Informatikern“ im Requirements
Engineering für die Zusammenarbeit mit Informatikern vorgestellt. Thomas Lehmann

1 Hochschule für Angewandte Wissenschaften (HAW) Hamburg, Berliner Tor 5, 20099 Hamburg,
ruediger.weissbach@haw-hamburg.de

2 Friedrich-Alexander-Universtität Erlangen-Nürnberg, Katholischer Kirchenplatz 9, 91054 Erlangen,
joern.fahsel@fau.de

3 Freie Software Engineering Trainerin , Daimlerstr. 121, 70372 Stuttgart, herrmann@herrmann-ehrlich.de
4 Siemens AG, Freyeslebenstr. 1, 91058 Erlangen, anne.hoffmann@siemens.com
5 Hochschule für für angewandte Wissenschaften Coburg, Friedrich-Streib-Str. 2, 96450 Coburg,

dieter.landes@hs-coburg.de

130 Rüdiger Weißbach et al.

und Bettina Buth (HAW Hamburg) greifen aktuelle Entwicklungen in der
Hochschuldidaktik auf, die die Vermittlung von Kompetenzen in den Vordergrund
stellen und ihre Erfahrungen aus der RE-Vermittlung im Software Engineering mitteilen.
Vera Kraus (FAU Erlangen-Nürnberg) ist Masterstudentin im Bereich
Buchwissenschaften. Im Kontext der „Digitalisierung“ traditioneller Produktbereich
erscheint die Fähigkeit der fachlichen Stakeholder, sich an dem RE-Prozess aktiv zu
beteiligen bzw. diesen zu steuern, als neue Erfordernis. Kraus stellt ihre Lernerfahrungen
aus einer Veranstaltung dar, in der die Studierenden aus konventionellen Buchprodukten
crossmediale Produkte erzeugt haben. Den konzeptionellen Rahmen dieser
Veranstaltung erläutert Jörn Fahsel (FAU Erlangen-Nürnberg) in seiner Darstellung des
Konzepts einer „Agilen Lehre“, in der Methoden individualisiert und
anforderungsgerecht kombiniert werden.

Neben diesen Erfahrungsberichten sind die Vorstellung eines Tools zur Unterstützung
der Lehre und die Diskussion über dessen Einsatzmöglichkeiten in der RE-Ausbildung
weitere Programmpunkte.

P-1	 Gregor Engels, Andreas Oberweis, Albert
Zündorf (Hrsg.): Modellierung 2001.

P-2	 Mikhail Godlevsky, Heinrich C. Mayr
(Hrsg.): Information Systems Technology
and its Applications, ISTA’2001.

P-3 	 Ana M. Moreno, Reind P. van de
Riet (Hrsg.): Applications of Natural
Lan-guage to Information Systems,
NLDB’2001.

P-4	 H. Wörn, J. Mühling, C. Vahl, H.-P.
Meinzer (Hrsg.): Rechner- und sensor-
gestützte Chirurgie; Workshop des SFB
414.

P-5	 Andy Schürr (Hg.): OMER – Object-
Oriented Modeling of Embedded Real-
Time Systems.

P-6	 Hans-Jürgen Appelrath, Rolf Beyer, Uwe
Marquardt, Heinrich C. Mayr, Claudia
Steinberger (Hrsg.): Unternehmen Hoch-
schule, UH’2001.

P-7 	 Andy Evans, Robert France, Ana Moreira,
Bernhard Rumpe (Hrsg.): Practical UML-
Based Rigorous Development Methods –
Countering or Integrating the extremists,
pUML’2001.

P-8	 Reinhard Keil-Slawik, Johannes Magen-
heim (Hrsg.): Informatikunterricht und
Medienbildung, INFOS’2001.

P-9	 Jan von Knop, Wilhelm Haverkamp
(Hrsg.): Innovative Anwendungen in
Kommunikationsnetzen, 15. DFN Arbeits
tagung.

P-10	 Mirjam Minor, Steffen Staab (Hrsg.): 1st
German Workshop on Experience Man-
agement: Sharing Experiences about the
Sharing Experience.

P-11	 Michael Weber, Frank Kargl (Hrsg.):
Mobile Ad-Hoc Netzwerke, WMAN
2002.

P-12	 Martin Glinz, Günther Müller-Luschnat
(Hrsg.): Modellierung 2002.

P-13	 Jan von Knop, Peter Schirmbacher and
Viljan Mahni_ (Hrsg.): The Changing
Universities – The Role of Technology.

P-14	 Robert Tolksdorf, Rainer Eckstein
(Hrsg.): XML-Technologien für das Se-
mantic Web – XSW 2002.

P-15	 Hans-Bernd Bludau, Andreas Koop
(Hrsg.): Mobile Computing in Medicine.

P-16	 J. Felix Hampe, Gerhard Schwabe
(Hrsg.): Mobile and Collaborative Busi-
ness 2002.

P-17	 Jan von Knop, Wilhelm Haverkamp
(Hrsg.): Zukunft der Netze –Die Verletz-
barkeit meistern, 16. DFN Arbeitstagung.

P-18	 Elmar J. Sinz, Markus Plaha (Hrsg.):
Modellierung betrieblicher Informations-
systeme – MobIS 2002.

P-19	 Sigrid Schubert, Bernd Reusch, Norbert
Jesse (Hrsg.): Informatik bewegt – Infor-
matik 2002 – 32. Jahrestagung der Gesell-
schaft für Informatik e.V. (GI) 30.Sept.-3.
Okt. 2002 in Dortmund.

P-20	 Sigrid Schubert, Bernd Reusch, Norbert
Jesse (Hrsg.): Informatik bewegt – Infor-
matik 2002 – 32. Jahrestagung der Gesell-
schaft für Informatik e.V. (GI) 30.Sept.-3.
Okt. 2002 in Dortmund (Ergänzungs-
band).

P-21	 Jörg Desel, Mathias Weske (Hrsg.):
Promise 2002: Prozessorientierte Metho-
den und Werkzeuge für die Entwicklung
von Informationssystemen.

P-22	 Sigrid Schubert, Johannes Magenheim,
Peter Hubwieser, Torsten Brinda (Hrsg.):
Forschungsbeiträge zur “Didaktik der
Informatik” – Theorie, Praxis, Evaluation.

P-23	 Thorsten Spitta, Jens Borchers, Harry M.
Sneed (Hrsg.): Software Management
2002 – Fortschritt durch Beständigkeit

P-24	 Rainer Eckstein, Robert Tolksdorf
(Hrsg.): XMIDX 2003 – XML-
Technologien für Middleware – Middle-
ware für XML-Anwendungen

P-25	 Key Pousttchi, Klaus Turowski (Hrsg.):
Mobile Commerce – Anwendungen und
Perspektiven – 3. Workshop Mobile
Commerce, Universität Augsburg,
04.02.2003

P-26	 Gerhard Weikum, Harald Schöning,
Erhard Rahm (Hrsg.): BTW 2003: Daten-
banksysteme für Business, Technologie
und Web

P-27	 Michael Kroll, Hans-Gerd Lipinski, Kay
Melzer (Hrsg.): Mobiles Computing in
der Medizin

P-28	 Ulrich Reimer, Andreas Abecker, Steffen
Staab, Gerd Stumme (Hrsg.): WM 2003:
Professionelles Wissensmanagement –
Er-fahrungen und Visionen

P-29	 Antje Düsterhöft, Bernhard Thalheim
(Eds.): NLDB’2003: Natural Language
Processing and Information Systems

P-30	 Mikhail Godlevsky, Stephen Liddle,
Heinrich C. Mayr (Eds.): Information
Systems Technology and its Applications

P-31	 Arslan Brömme, Christoph Busch (Eds.):
BIOSIG 2003: Biometrics and Electronic
Signatures

 GI-Edition Lecture Notes in Informatics

3026907_GI_P_252_Baende.indd 149 03.02.16 13:41

P-32	 Peter Hubwieser (Hrsg.): Informatische
Fachkonzepte im Unterricht – INFOS
2003

P-33	 Andreas Geyer-Schulz, Alfred Taudes
(Hrsg.): Informationswirtschaft: Ein
Sektor mit Zukunft

P-34	 Klaus Dittrich, Wolfgang König, Andreas
Oberweis, Kai Rannenberg, Wolfgang
Wahlster (Hrsg.): Informatik 2003 –
Innovative Informatikanwendungen
(Band 1)

P-35	 Klaus Dittrich, Wolfgang König, Andreas
Oberweis, Kai Rannenberg, Wolfgang
Wahlster (Hrsg.): Informatik 2003 –
Innovative Informatikanwendungen
(Band 2)

P-36	 Rüdiger Grimm, Hubert B. Keller, Kai
Rannenberg (Hrsg.): Informatik 2003 –
Mit Sicherheit Informatik

P-37	 Arndt Bode, Jörg Desel, Sabine Rath-
mayer, Martin Wessner (Hrsg.): DeLFI
2003: e-Learning Fachtagung Informatik

P-38	 E.J. Sinz, M. Plaha, P. Neckel (Hrsg.):
Modellierung betrieblicher Informations-
systeme – MobIS 2003

P-39	 Jens Nedon, Sandra Frings, Oliver Göbel
(Hrsg.): IT-Incident Management & IT-
Forensics – IMF 2003

P-40	 Michael Rebstock (Hrsg.): Modellierung
betrieblicher Informationssysteme – Mo-
bIS 2004

P-41	 Uwe Brinkschulte, Jürgen Becker, Diet-
mar Fey, Karl-Erwin Großpietsch, Chris-
tian Hochberger, Erik Maehle, Thomas
Runkler (Edts.): ARCS 2004 – Organic
and Pervasive Computing

P-42	 Key Pousttchi, Klaus Turowski (Hrsg.):
Mobile Economy – Transaktionen und
Prozesse, Anwendungen und Dienste

P-43	 Birgitta König-Ries, Michael Klein,
Philipp Obreiter (Hrsg.): Persistance,
Scalability, Transactions – Database Me-
chanisms for Mobile Applications

P-44	 Jan von Knop, Wilhelm Haverkamp, Eike
Jessen (Hrsg.): Security, E-Learning.
E-Services

P-45	 Bernhard Rumpe, Wofgang Hesse
(Hrsg.): Modellierung 2004

P-46	 Ulrich Flegel, Michael Meier (Hrsg.):
Detection of Intrusions of Malware &
Vulnerability Assessment

P-47	 Alexander Prosser, Robert Krimmer
(Hrsg.): Electronic Voting in Europe –
Technology, Law, Politics and Society

P-48	 Anatoly Doroshenko, Terry Halpin,
Stephen W. Liddle, Heinrich C. Mayr
(Hrsg.): Information Systems Technology
and its Applications

P-49	 G. Schiefer, P. Wagner, M. Morgenstern,
U. Rickert (Hrsg.): Integration und Daten-
sicherheit – Anforderungen, Konflikte und
Perspektiven

P-50	 Peter Dadam, Manfred Reichert (Hrsg.):
INFORMATIK 2004 – Informatik ver-
bindet (Band 1) Beiträge der 34. Jahresta-
gung der Gesellschaft für Informatik e.V.
(GI), 20.-24. September 2004 in Ulm

P-51	 Peter Dadam, Manfred Reichert (Hrsg.):
INFORMATIK 2004 – Informatik ver-
bindet (Band 2) Beiträge der 34. Jahresta-
gung der Gesellschaft für Informatik e.V.
(GI), 20.-24. September 2004 in Ulm

P-52	 Gregor Engels, Silke Seehusen (Hrsg.):
DELFI 2004 – Tagungsband der 2.
e-Learning Fachtagung Informatik

P-53	 Robert Giegerich, Jens Stoye (Hrsg.):
German Conference on Bioinformatics –
GCB 2004

P-54	 Jens Borchers, Ralf Kneuper (Hrsg.):
Softwaremanagement 2004 – Outsourcing
und Integration

P-55	 Jan von Knop, Wilhelm Haverkamp, Eike
Jessen (Hrsg.): E-Science und Grid Ad-
hoc-Netze Medienintegration

P-56	 Fernand Feltz, Andreas Oberweis, Benoit
Otjacques (Hrsg.): EMISA 2004 – Infor-
mationssysteme im E-Business und
E-Government

P-57	 Klaus Turowski (Hrsg.): Architekturen,
Komponenten, Anwendungen

P-58	 Sami Beydeda, Volker Gruhn, Johannes
Mayer, Ralf Reussner, Franz Schweiggert
(Hrsg.): Testing of Component-Based
Systems and Software Quality

P-59	 J. Felix Hampe, Franz Lehner, Key
Pousttchi, Kai Ranneberg, Klaus
Turowski (Hrsg.): Mobile Business –
Processes, Platforms, Payments

P-60	 Steffen Friedrich (Hrsg.): Unterrichtskon-
zepte für inforrmatische Bildung

P-61	 Paul Müller, Reinhard Gotzhein, Jens B.
Schmitt (Hrsg.): Kommunikation in ver-
teilten Systemen

P-62	 Federrath, Hannes (Hrsg.): „Sicherheit
2005“ – Sicherheit – Schutz und Zuver-
lässigkeit

P-63	 Roland Kaschek, Heinrich C. Mayr,
Stephen Liddle (Hrsg.): Information Sys-
tems – Technology and ist Applications

3026907_GI_P_252_Baende.indd 150 03.02.16 13:41

P-64	 Peter Liggesmeyer, Klaus Pohl, Michael
Goedicke (Hrsg.): Software Engineering
2005

P-65	 Gottfried Vossen, Frank Leymann, Peter
Lockemann, Wolffried Stucky (Hrsg.):
Datenbanksysteme in Business, Techno-
logie und Web

P-66	 Jörg M. Haake, Ulrike Lucke, Djamshid
Tavangarian (Hrsg.): DeLFI 2005: 3.
deutsche e-Learning Fachtagung Infor-
matik

P-67	 Armin B. Cremers, Rainer Manthey,
Peter Martini, Volker Steinhage (Hrsg.):
INFORMATIK 2005 – Informatik LIVE
(Band 1)

P-68	 Armin B. Cremers, Rainer Manthey,
Peter Martini, Volker Steinhage (Hrsg.):
INFORMATIK 2005 – Informatik LIVE
(Band 2)

P-69	 Robert Hirschfeld, Ryszard Kowalcyk,
Andreas Polze, Matthias Weske (Hrsg.):
NODe 2005, GSEM 2005

P-70	 Klaus Turowski, Johannes-Maria Zaha
(Hrsg.): Component-oriented Enterprise
Application (COAE 2005)

P-71	 Andrew Torda, Stefan Kurz, Matthias
Rarey (Hrsg.): German Conference on
Bioinformatics 2005

P-72	 Klaus P. Jantke, Klaus-Peter Fähnrich,
Wolfgang S. Wittig (Hrsg.): Marktplatz
Internet: Von e-Learning bis e-Payment

P-73	 Jan von Knop, Wilhelm Haverkamp, Eike
Jessen (Hrsg.): “Heute schon das Morgen
sehen“

P-74	 Christopher Wolf, Stefan Lucks, Po-Wah
Yau (Hrsg.): WEWoRC 2005 – Western
European Workshop on Research in
Cryptology

P-75	 Jörg Desel, Ulrich Frank (Hrsg.): Enter-
prise Modelling and Information Systems
Architecture

P-76	 Thomas Kirste, Birgitta König-Riess, Key
Pousttchi, Klaus Turowski (Hrsg.): Mo-
bile Informationssysteme – Potentiale,
Hindernisse, Einsatz

P-77	 Jana Dittmann (Hrsg.): SICHERHEIT
2006

P-78	 K.-O. Wenkel, P. Wagner, M. Morgens-
tern, K. Luzi, P. Eisermann (Hrsg.): Land-
und Ernährungswirtschaft im Wandel

P-79	 Bettina Biel, Matthias Book, Volker
Gruhn (Hrsg.): Softwareengineering 2006

P-80	 Mareike Schoop, Christian Huemer,
Michael Rebstock, Martin Bichler
(Hrsg.): Service-Oriented Electronic
Commerce

P-81	 Wolfgang Karl, Jürgen Becker, Karl-
Erwin Großpietsch, Christian Hochberger,
Erik Maehle (Hrsg.): ARCS´06

P-82	 Heinrich C. Mayr, Ruth Breu (Hrsg.):
Modellierung 2006

P-83	 Daniel Huson, Oliver Kohlbacher, Andrei
Lupas, Kay Nieselt and Andreas Zell
(eds.): German Conference on Bioinfor-
matics

P-84	 Dimitris Karagiannis, Heinrich C. Mayr,
(Hrsg.): Information Systems Technology
and its Applications

P-85	 Witold Abramowicz, Heinrich C. Mayr,
(Hrsg.): Business Information Systems

P-86	 Robert Krimmer (Ed.): Electronic Voting
2006

P-87	 Max Mühlhäuser, Guido Rößling, Ralf
Steinmetz (Hrsg.): DELFI 2006: 4.
e-Learning Fachtagung Informatik

P-88	 Robert Hirschfeld, Andreas Polze,
Ryszard Kowalczyk (Hrsg.): NODe 2006,
GSEM 2006

P-90	 Joachim Schelp, Robert Winter, Ulrich
Frank, Bodo Rieger, Klaus Turowski
(Hrsg.): Integration, Informationslogistik
und Architektur

P-91	 Henrik Stormer, Andreas Meier, Michael
Schumacher (Eds.): European Conference
on eHealth 2006

P-92	 Fernand Feltz, Benoît Otjacques, Andreas
Oberweis, Nicolas Poussing (Eds.): AIM
2006

P-93	 Christian Hochberger, Rüdiger Liskowsky
(Eds.): INFORMATIK 2006 – Informatik
für Menschen, Band 1

P-94	 Christian Hochberger, Rüdiger Liskowsky
(Eds.): INFORMATIK 2006 – Informatik
für Menschen, Band 2

P-95	 Matthias Weske, Markus Nüttgens (Eds.):
EMISA 2005: Methoden, Konzepte und
Technologien für die Entwicklung von
dienstbasierten Informationssystemen

P-96	 Saartje Brockmans, Jürgen Jung, York
Sure (Eds.): Meta-Modelling and Ontolo-
gies

P-97	 Oliver Göbel, Dirk Schadt, Sandra Frings,
Hardo Hase, Detlef Günther, Jens Nedon
(Eds.): IT-Incident Mangament & IT-
Forensics – IMF 2006

3026907_GI_P_252_Baende.indd 151 03.02.16 13:41

P-98	 Hans Brandt-Pook, Werner Simonsmeier
und Thorsten Spitta (Hrsg.): Beratung
in der Softwareentwicklung – Modelle,
Methoden, Best Practices

P-99	 Andreas Schwill, Carsten Schulte, Marco
Thomas (Hrsg.): Didaktik der Informatik

P-100	 Peter Forbrig, Günter Siegel, Markus
Schneider (Hrsg.): HDI 2006: Hochschul-
didaktik der Informatik

P-101	 Stefan Böttinger, Ludwig Theuvsen,
Susanne Rank, Marlies Morgenstern (Hrsg.):
Agrarinformatik im Spannungsfeld
zwischen Regionalisierung und globalen
Wertschöpfungsketten

P-102	 Otto Spaniol (Eds.): Mobile Services and
Personalized Environments

P-103	 Alfons Kemper, Harald Schöning, Thomas
Rose, Matthias Jarke, Thomas Seidl,
Christoph Quix, Christoph Brochhaus
(Hrsg.): Datenbanksysteme in Business,
Technologie und Web (BTW 2007)

P-104	 Birgitta König-Ries, Franz Lehner,
Rainer Malaka, Can Türker (Hrsg.)
MMS 2007: Mobilität und mobile
Informationssysteme

P-105	 Wolf-Gideon Bleek, Jörg Raasch,
Heinz Züllighoven (Hrsg.)
Software Engineering 2007

P-106	 Wolf-Gideon Bleek, Henning Schwentner,
Heinz Züllighoven (Hrsg.)
Software Engineering 2007 –
Beiträge zu den Workshops

P-107	 Heinrich C. Mayr,
Dimitris Karagiannis (eds.)
Information Systems
Technology and its Applications

P-108	 Arslan Brömme, Christoph Busch,
Detlef Hühnlein (eds.)
BIOSIG 2007:
Biometrics and
Electronic Signatures

P-109	 Rainer Koschke, Otthein Herzog, Karl-
Heinz Rödiger, Marc Ronthaler (Hrsg.)
INFORMATIK 2007
Informatik trifft Logistik
Band 1

P-110	 Rainer Koschke, Otthein Herzog, Karl-
Heinz Rödiger, Marc Ronthaler (Hrsg.)
INFORMATIK 2007
Informatik trifft Logistik
Band 2

P-111	 Christian Eibl, Johannes Magenheim,
Sigrid Schubert, Martin Wessner (Hrsg.)
DeLFI 2007:
5. e-Learning Fachtagung
Informatik

P-112	 Sigrid Schubert (Hrsg.)
Didaktik der Informatik in
Theorie und Praxis

P-113	 Sören Auer, Christian Bizer, Claudia
Müller, Anna V. Zhdanova (Eds.)
The Social Semantic Web 2007
Proceedings of the 1st Conference on
Social Semantic Web (CSSW)

P-114	 Sandra Frings, Oliver Göbel, Detlef Günther,
Hardo G. Hase, Jens Nedon, Dirk Schadt,
Arslan Brömme (Eds.)
IMF2007 IT-incident
management & IT-forensics
Proceedings of the 3rd International
Conference on IT-Incident Management
& IT-Forensics

P-115	 Claudia Falter, Alexander Schliep,
Joachim Selbig, Martin Vingron and
Dirk Walther (Eds.)
German conference on bioinformatics
GCB 2007

P-116	 Witold Abramowicz, Leszek Maciszek
(Eds.)
Business Process and Services Computing
1st International Working Conference on
Business Process and Services Computing
BPSC 2007

P-117	 Ryszard Kowalczyk (Ed.)
Grid service engineering and manegement
The 4th International Conference on Grid
Service Engineering and Management
GSEM 2007

P-118	 Andreas Hein, Wilfried Thoben, Hans-
Jürgen Appelrath, Peter Jensch (Eds.)
European Conference on ehealth 2007

P-119	 Manfred Reichert, Stefan Strecker, Klaus
Turowski (Eds.)
Enterprise Modelling and Information
Systems Architectures
Concepts and Applications

P-120	 Adam Pawlak, Kurt Sandkuhl,
Wojciech Cholewa,
Leandro Soares Indrusiak (Eds.)
Coordination of Collaborative
Engineering - State of the Art and Future
Challenges

P-121	 Korbinian Herrmann, Bernd Bruegge (Hrsg.)
Software Engineering 2008
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-122	 Walid Maalej, Bernd Bruegge (Hrsg.)
Software Engineering 2008 -
Workshopband
Fachtagung des GI-Fachbereichs
Softwaretechnik

3026907_GI_P_252_Baende.indd 152 03.02.16 13:41

P-123	 Michael H. Breitner, Martin Breunig, Elgar
Fleisch, Ley Pousttchi, Klaus Turowski
(Hrsg.)
Mobile und Ubiquitäre
Informationssysteme – Technologien,
Prozesse, Marktfähigkeit
Proceedings zur 3. Konferenz Mobile und
Ubiquitäre Informationssysteme
(MMS 2008)

P-124	 Wolfgang E. Nagel, Rolf Hoffmann,
Andreas Koch (Eds.)
9th Workshop on Parallel Systems and
Algorithms (PASA)
Workshop of the GI/ITG Speciel Interest
Groups PARS and PARVA

P-125	 Rolf A.E. Müller, Hans-H. Sundermeier,
Ludwig Theuvsen, Stephanie Schütze,
Marlies Morgenstern (Hrsg.)
Unternehmens-IT:
Führungsinstrument oder
Verwaltungsbürde
Referate der 28. GIL Jahrestagung

P-126	 Rainer Gimnich, Uwe Kaiser, Jochen
Quante, Andreas Winter (Hrsg.)
10th Workshop Software Reengineering
(WSR 2008)

P-127	 Thomas Kühne, Wolfgang Reisig,
Friedrich Steimann (Hrsg.)
Modellierung 2008

P-128	 Ammar Alkassar, Jörg Siekmann (Hrsg.)
Sicherheit 2008
Sicherheit, Schutz und Zuverlässigkeit
Beiträge der 4. Jahrestagung des
Fachbereichs Sicherheit der Gesellschaft
für Informatik e.V. (GI)
2.-4. April 2008
Saarbrücken, Germany

P-129	 Wolfgang Hesse, Andreas Oberweis (Eds.)
Sigsand-Europe 2008
Proceedings of the Third AIS SIGSAND
European Symposium on Analysis,
Design, Use and Societal Impact of
Information Systems

P-130	 Paul Müller, Bernhard Neumair,
Gabi Dreo Rodosek (Hrsg.)
1. DFN-Forum Kommunikations
technologien Beiträge der Fachtagung

P-131	 Robert Krimmer, Rüdiger Grimm (Eds.)
3rd International Conference on Electronic
Voting 2008
Co-organized by Council of Europe,
Gesellschaft für Informatik and E-Voting.
CC

P-132	 Silke Seehusen, Ulrike Lucke,
Stefan Fischer (Hrsg.)
DeLFI 2008:
Die 6. e-Learning Fachtagung Informatik

P-133	 Heinz-Gerd Hegering, Axel Lehmann,
Hans Jürgen Ohlbach, Christian
Scheideler (Hrsg.)
INFORMATIK 2008
Beherrschbare Systeme – dank Informatik
Band 1

P-134	 Heinz-Gerd Hegering, Axel Lehmann,
Hans Jürgen Ohlbach, Christian
Scheideler (Hrsg.)
INFORMATIK 2008
Beherrschbare Systeme – dank Informatik
Band 2

P-135	 Torsten Brinda, Michael Fothe,
Peter Hubwieser, Kirsten Schlüter (Hrsg.)
Didaktik der Informatik –
Aktuelle Forschungsergebnisse

P-136	 Andreas Beyer, Michael Schroeder (Eds.)
German Conference on Bioinformatics
GCB 2008

P-137	 Arslan Brömme, Christoph Busch, Detlef
Hühnlein (Eds.)
BIOSIG 2008: Biometrics and Electronic
Signatures

P-138	 Barbara Dinter, Robert Winter, Peter
Chamoni, Norbert Gronau, Klaus
Turowski (Hrsg.)
Synergien durch Integration und
Informationslogistik
Proceedings zur DW2008

P-139	 Georg Herzwurm, Martin Mikusz (Hrsg.)‏
Industrialisierung des Software-
Managements
Fachtagung des GI-Fachausschusses
Management der Anwendungsentwick
lung und -wartung im Fachbereich
Wirtschaftsinformatik

P-140	 Oliver Göbel, Sandra Frings, Detlef
Günther, Jens Nedon, Dirk Schadt (Eds.)‏
IMF 2008 - IT Incident Management &
IT Forensics

P-141	 Peter Loos, Markus Nüttgens,
Klaus Turowski, Dirk Werth (Hrsg.)
Modellierung betrieblicher Informations
systeme (MobIS 2008)
Modellierung zwischen SOA und
Compliance Management

P-142	 R. Bill, P. Korduan, L. Theuvsen,
M. Morgenstern (Hrsg.)
Anforderungen an die Agrarinformatik
durch Globalisierung und
Klimaveränderung

P-143	 Peter Liggesmeyer, Gregor Engels,
Jürgen Münch, Jörg Dörr,
Norman Riegel (Hrsg.)
Software Engineering 2009
Fachtagung des GI-Fachbereichs
Softwaretechnik

3026907_GI_P_252_Baende.indd 153 03.02.16 13:41

P-144	 Johann-Christoph Freytag, Thomas Ruf,
Wolfgang Lehner, Gottfried Vossen
(Hrsg.)
Datenbanksysteme in Business,
Technologie und Web (BTW)

P-145	 Knut Hinkelmann, Holger Wache (Eds.)
WM2009: 5th Conference on Professional
Knowledge Management

P-146	 Markus Bick, Martin Breunig,
Hagen Höpfner (Hrsg.)
Mobile und Ubiquitäre
Informationssysteme – Entwicklung,
Implementierung und Anwendung
4. Konferenz Mobile und Ubiquitäre
Informationssysteme (MMS 2009)

P-147	 Witold Abramowicz, Leszek Maciaszek,
Ryszard Kowalczyk, Andreas Speck (Eds.)
Business Process, Services Computing
and Intelligent Service Management
BPSC 2009 · ISM 2009 · YRW-MBP
2009

P-148	 Christian Erfurth, Gerald Eichler,
Volkmar Schau (Eds.)
9th International Conference on Innovative
Internet Community Systems
I2CS 2009

P-149	 Paul Müller, Bernhard Neumair,
Gabi Dreo Rodosek (Hrsg.)
2. DFN-Forum
Kommunikationstechnologien
Beiträge der Fachtagung

P-150	 Jürgen Münch, Peter Liggesmeyer (Hrsg.)
Software Engineering
2009 - Workshopband

P-151	 Armin Heinzl, Peter Dadam, Stefan Kirn,
Peter Lockemann (Eds.)
PRIMIUM
Process Innovation for
Enterprise Software

P-152	 Jan Mendling, Stefanie Rinderle-Ma,
	 Werner Esswein (Eds.)
	 Enterprise Modelling and Information

Systems Architectures
	 Proceedings of the 3rd Int‘l Workshop

EMISA 2009

P-153	 Andreas Schwill,
Nicolas Apostolopoulos (Hrsg.)
Lernen im Digitalen Zeitalter
DeLFI 2009 – Die 7. E-Learning
Fachtagung Informatik

P-154	 Stefan Fischer, Erik Maehle
Rüdiger Reischuk (Hrsg.)
INFORMATIK 2009
Im Focus das Leben

P-155	 Arslan Brömme, Christoph Busch,
Detlef Hühnlein (Eds.)
BIOSIG 2009:
Biometrics and Electronic Signatures
Proceedings of the Special Interest Group
on Biometrics and Electronic Signatures

P-156	 Bernhard Koerber (Hrsg.)
Zukunft braucht Herkunft
25 Jahre »INFOS – Informatik und
Schule«

P-157	 Ivo Grosse, Steffen Neumann,
Stefan Posch, Falk Schreiber,
Peter Stadler (Eds.)
German Conference on Bioinformatics
2009

P-158	 W. Claupein, L. Theuvsen, A. Kämpf,
M. Morgenstern (Hrsg.)
Precision Agriculture
Reloaded – Informationsgestützte
Landwirtschaft

P-159	 Gregor Engels, Markus Luckey,
Wilhelm Schäfer (Hrsg.)
Software Engineering 2010

P-160	 Gregor Engels, Markus Luckey,
Alexander Pretschner, Ralf Reussner
(Hrsg.)
Software Engineering 2010 –
Workshopband
(inkl. Doktorandensymposium)

P-161	 Gregor Engels, Dimitris Karagiannis
Heinrich C. Mayr (Hrsg.)
Modellierung 2010

P-162	 Maria A. Wimmer, Uwe Brinkhoff,
Siegfried Kaiser, Dagmar Lück-
Schneider, Erich Schweighofer,
Andreas Wiebe (Hrsg.)
Vernetzte IT für einen effektiven Staat
Gemeinsame Fachtagung
Verwaltungsinformatik (FTVI) und
Fachtagung Rechtsinformatik (FTRI) 2010

P-163	 Markus Bick, Stefan Eulgem,
Elgar Fleisch, J. Felix Hampe,
Birgitta König-Ries, Franz Lehner,
Key Pousttchi, Kai Rannenberg (Hrsg.)
Mobile und Ubiquitäre
Informationssysteme
Technologien, Anwendungen und
Dienste zur Unterstützung von mobiler
Kollaboration

P-164	 Arslan Brömme, Christoph Busch (Eds.)
BIOSIG 2010: Biometrics and Electronic
Signatures Proceedings of the Special
Interest Group on Biometrics and
Electronic Signatures

3026907_GI_P_252_Baende.indd 154 03.02.16 13:41

P-165	 Gerald Eichler, Peter Kropf,
Ulrike Lechner, Phayung Meesad,
Herwig Unger (Eds.)
10th International Conference on
Innovative Internet Community Systems
(I2CS) – Jubilee Edition 2010 –

P-166	 Paul Müller, Bernhard Neumair,
Gabi Dreo Rodosek (Hrsg.)
3. DFN-Forum Kommunikationstechnologien
Beiträge der Fachtagung

P-167	 Robert Krimmer, Rüdiger Grimm (Eds.)
4th International Conference on
Electronic Voting 2010
co-organized by the Council of Europe,
Gesellschaft für Informatik and
E-Voting.CC

P-168	 Ira Diethelm, Christina Dörge,
Claudia Hildebrandt,
Carsten Schulte (Hrsg.)
Didaktik der Informatik
Möglichkeiten empirischer
Forschungsmethoden und Perspektiven
der Fachdidaktik

P-169	 Michael Kerres, Nadine Ojstersek
Ulrik Schroeder, Ulrich Hoppe (Hrsg.)
DeLFI 2010 - 8. Tagung
der Fachgruppe E-Learning
der Gesellschaft für Informatik e.V.

P-170	 Felix C. Freiling (Hrsg.)
Sicherheit 2010
Sicherheit, Schutz und Zuverlässigkeit

P-171	 Werner Esswein, Klaus Turowski,
Martin Juhrisch (Hrsg.)
Modellierung betrieblicher
Informationssysteme (MobIS 2010)
Modellgestütztes Management

P-172	 Stefan Klink, Agnes Koschmider
Marco Mevius, Andreas Oberweis (Hrsg.)
EMISA 2010
Einflussfaktoren auf die Entwicklung
flexibler, integrierter Informationssysteme
Beiträge des Workshops
der GI-Fachgruppe EMISA
(Entwicklungsmethoden für Infor-
mationssysteme und deren Anwendung)

P-173	 Dietmar Schomburg,
Andreas Grote (Eds.)
German Conference on Bioinformatics
2010

P-174	 Arslan Brömme, Torsten Eymann,
Detlef Hühnlein, Heiko Roßnagel,
Paul Schmücker (Hrsg.)
perspeGKtive 2010
Workshop „Innovative und sichere
Informationstechnologie für das
Gesundheitswesen von morgen“

P-175	 Klaus-Peter Fähnrich,
Bogdan Franczyk (Hrsg.)
INFORMATIK 2010
Service Science – Neue Perspektiven für
die Informatik
Band 1

P-176	 Klaus-Peter Fähnrich,
Bogdan Franczyk (Hrsg.)
INFORMATIK 2010
Service Science – Neue Perspektiven für
die Informatik
Band 2

P-177	 Witold Abramowicz, Rainer Alt,
Klaus-Peter Fähnrich, Bogdan Franczyk,
Leszek A. Maciaszek (Eds.)
INFORMATIK 2010
Business Process and Service Science –
Proceedings of ISSS and BPSC

P-178	 Wolfram Pietsch, Benedikt Krams (Hrsg.)
	 Vom Projekt zum Produkt
	 Fachtagung des GI-

Fachausschusses Management der
Anwendungsentwicklung und -wartung
im Fachbereich Wirtschafts-informatik
(WI-MAW), Aachen, 2010

P-179	 Stefan Gruner, Bernhard Rumpe (Eds.)
FM+AM`2010
Second International Workshop on
Formal Methods and Agile Methods

P-180	 Theo Härder, Wolfgang Lehner,
Bernhard Mitschang, Harald Schöning,
Holger Schwarz (Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW)
14. Fachtagung des GI-Fachbereichs
„Datenbanken und Informationssysteme“
(DBIS)

P-181	 Michael Clasen, Otto Schätzel,
Brigitte Theuvsen (Hrsg.)
Qualität und Effizienz durch
informationsgestützte Landwirtschaft,
Fokus: Moderne Weinwirtschaft

P-182	 Ronald Maier (Hrsg.)
6th Conference on Professional
Knowledge Management
From Knowledge to Action

P-183	 Ralf Reussner, Matthias Grund, Andreas
Oberweis, Walter Tichy (Hrsg.)
Software Engineering 2011
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-184	 Ralf Reussner, Alexander Pretschner,
Stefan Jähnichen (Hrsg.)
Software Engineering 2011
Workshopband
(inkl. Doktorandensymposium)

3026907_GI_P_252_Baende.indd 155 03.02.16 13:41

P-185	 Hagen Höpfner, Günther Specht,
Thomas Ritz, Christian Bunse (Hrsg.)
MMS 2011: Mobile und ubiquitäre
Informationssysteme Proceedings zur
6. Konferenz Mobile und Ubiquitäre
Informationssysteme (MMS 2011)

P-186	 Gerald Eichler, Axel Küpper,
Volkmar Schau, Hacène Fouchal,
Herwig Unger (Eds.)
11th International Conference on
Innovative Internet Community Systems
(I2CS)

P-187	 Paul Müller, Bernhard Neumair,
Gabi Dreo Rodosek (Hrsg.)
4. DFN-Forum Kommunikations-
technologien, Beiträge der Fachtagung
20. Juni bis 21. Juni 2011 Bonn

P-188	 Holger Rohland, Andrea Kienle,
Steffen Friedrich (Hrsg.)
DeLFI 2011 – Die 9. e-Learning
Fachtagung Informatik
der Gesellschaft für Informatik e.V.
5.–8. September 2011, Dresden

P-189	 Thomas, Marco (Hrsg.)
Informatik in Bildung und Beruf
INFOS 2011
14. GI-Fachtagung Informatik und Schule

P-190	 Markus Nüttgens, Oliver Thomas,
Barbara Weber (Eds.)
Enterprise Modelling and Information
Systems Architectures (EMISA 2011)

P-191	 Arslan Brömme, Christoph Busch (Eds.)
BIOSIG 2011
International Conference of the
Biometrics Special Interest Group

P-192	 Hans-Ulrich Heiß, Peter Pepper, Holger
Schlingloff, Jörg Schneider (Hrsg.)
INFORMATIK 2011
Informatik schafft Communities

P-193	 Wolfgang Lehner, Gunther Piller (Hrsg.)
IMDM 2011

P-194	 M. Clasen, G. Fröhlich, H. Bernhardt,
K. Hildebrand, B. Theuvsen (Hrsg.)
Informationstechnologie für eine
nachhaltige Landbewirtschaftung
Fokus Forstwirtschaft

P-195	 Neeraj Suri, Michael Waidner (Hrsg.)
Sicherheit 2012
Sicherheit, Schutz und Zuverlässigkeit
Beiträge der 6. Jahrestagung des
Fachbereichs Sicherheit der
Gesellschaft für Informatik e.V. (GI)

P-196	 Arslan Brömme, Christoph Busch (Eds.)
BIOSIG 2012
Proceedings of the 11th International
Conference of the Biometrics Special
Interest Group

P-197	 Jörn von Lucke, Christian P. Geiger,
Siegfried Kaiser, Erich Schweighofer,
Maria A. Wimmer (Hrsg.)
Auf dem Weg zu einer offenen, smarten
und vernetzten Verwaltungskultur
Gemeinsame Fachtagung
Verwaltungsinformatik (FTVI) und
Fachtagung Rechtsinformatik (FTRI)
2012

P-198	 Stefan Jähnichen, Axel Küpper,
Sahin Albayrak (Hrsg.)
Software Engineering 2012
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-199	 Stefan Jähnichen, Bernhard Rumpe,
Holger Schlingloff (Hrsg.)
Software Engineering 2012
Workshopband

P-200	 Gero Mühl, Jan Richling, Andreas
Herkersdorf (Hrsg.)
ARCS 2012 Workshops

P-201	 Elmar J. Sinz Andy Schürr (Hrsg.)
Modellierung 2012

P-202	 Andrea Back, Markus Bick,
Martin Breunig, Key Pousttchi,
Frédéric Thiesse (Hrsg.)
MMS 2012:Mobile und Ubiquitäre
Informationssysteme

P-203	 Paul Müller, Bernhard Neumair,
Helmut Reiser, Gabi Dreo Rodosek (Hrsg.)
5. DFN-Forum Kommunikations-
technologien
Beiträge der Fachtagung

P-204	 Gerald Eichler, Leendert W. M.
Wienhofen, Anders Kofod-Petersen,
Herwig Unger (Eds.)
12th International Conference on
Innovative Internet Community Systems
(I2CS 2012)

P-205	 Manuel J. Kripp, Melanie Volkamer,
Rüdiger Grimm (Eds.)
5th International Conference on Electronic
Voting 2012 (EVOTE2012)
Co-organized by the Council of Europe,
Gesellschaft für Informatik and E-Voting.CC

P-206	 Stefanie Rinderle-Ma,
Mathias Weske (Hrsg.)
EMISA 2012
Der Mensch im Zentrum der Modellierung

P-207	 Jörg Desel, Jörg M. Haake,
Christian Spannagel (Hrsg.)
DeLFI 2012: Die 10. e-Learning
Fachtagung Informatik der Gesellschaft
für Informatik e.V.
24.–26. September 2012

3026907_GI_P_252_Baende.indd 156 03.02.16 13:41

P-208	 Ursula Goltz, Marcus Magnor,
Hans-Jürgen Appelrath, Herbert Matthies,
Wolf-Tilo Balke, Lars Wolf (Hrsg.)
INFORMATIK 2012

P-209	 Hans Brandt-Pook, André Fleer, Thorsten
Spitta, Malte Wattenberg (Hrsg.)
Nachhaltiges Software Management

P-210	 Erhard Plödereder, Peter Dencker,
Herbert Klenk, Hubert B. Keller,
Silke Spitzer (Hrsg.)
Automotive – Safety & Security 2012
Sicherheit und Zuverlässigkeit für
automobile Informationstechnik

P-211	 M. Clasen, K. C. Kersebaum, A.
Meyer-Aurich, B. Theuvsen (Hrsg.)
Massendatenmanagement in der
Agrar- und Ernährungswirtschaft
Erhebung - Verarbeitung - Nutzung
Referate der 33. GIL-Jahrestagung
20. – 21. Februar 2013, Potsdam

P-212	 Arslan Brömme, Christoph Busch (Eds.)
BIOSIG 2013
Proceedings of the 12th International
Conference of the Biometrics
Special Interest Group
04.–06. September 2013
Darmstadt, Germany

P-213	 Stefan Kowalewski,
Bernhard Rumpe (Hrsg.)
Software Engineering 2013
Fachtagung des GI-Fachbereichs
Softwaretechnik

P-214	 Volker Markl, Gunter Saake, Kai-Uwe
Sattler, Gregor Hackenbroich, Bernhard Mit
schang, Theo Härder, Veit Köppen (Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW) 2013
13. – 15. März 2013, Magdeburg

P-215	 Stefan Wagner, Horst Lichter (Hrsg.)
Software Engineering 2013
Workshopband
(inkl. Doktorandensymposium)
26. Februar – 1. März 2013, Aachen

P-216	 Gunter Saake, Andreas Henrich,
Wolfgang Lehner, Thomas Neumann,
Veit Köppen (Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW) 2013 –
Workshopband
11. – 12. März 2013, Magdeburg

P-217	 Paul Müller, Bernhard Neumair, Helmut
Reiser, Gabi Dreo Rodosek (Hrsg.)
6. DFN-Forum Kommunikations-
technologien
Beiträge der Fachtagung
03.–04. Juni 2013, Erlangen

P-218	 Andreas Breiter, Christoph Rensing (Hrsg.)
DeLFI 2013: Die 11 e-Learning
Fachtagung Informatik der Gesellschaft
für Informatik e.V. (GI)
8. – 11. September 2013, Bremen

P-219	 Norbert Breier, Peer Stechert,
Thomas Wilke (Hrsg.)
Informatik erweitert Horizonte
INFOS 2013
15. GI-Fachtagung Informatik und Schule
26. – 28. September 2013

P-220	 Matthias Horbach (Hrsg.)
INFORMATIK 2013
Informatik angepasst an Mensch,
Organisation und Umwelt
16. – 20. September 2013, Koblenz

P-221	 Maria A. Wimmer, Marijn Janssen,
Ann Macintosh, Hans Jochen Scholl,
Efthimios Tambouris (Eds.)
Electronic Government and
Electronic Participation
Joint Proceedings of Ongoing Research of
IFIP EGOV and IFIP ePart 2013
16. – 19. September 2013, Koblenz

P-222	 Reinhard Jung, Manfred Reichert (Eds.)
	 Enterprise Modelling

and Information Systems Architectures
(EMISA 2013)

	 St. Gallen, Switzerland
September 5. – 6. 2013

P-223	 Detlef Hühnlein, Heiko Roßnagel (Hrsg.)
Open Identity Summit 2013
10. – 11. September 2013
Kloster Banz, Germany

P-224	 Eckhart Hanser, Martin Mikusz, Masud
Fazal-Baqaie (Hrsg.)
Vorgehensmodelle 2013
Vorgehensmodelle – Anspruch und
Wirklichkeit
20. Tagung der Fachgruppe
Vorgehensmodelle im Fachgebiet
Wirtschaftsinformatik (WI-VM) der
Gesellschaft für Informatik e.V.
Lörrach, 2013

P-225	 Hans-Georg Fill, Dimitris Karagiannis,
Ulrich Reimer (Hrsg.)
Modellierung 2014
19. – 21. März 2014, Wien

P-226	 M. Clasen, M. Hamer, S. Lehnert,
B. Petersen, B. Theuvsen (Hrsg.)
IT-Standards in der Agrar- und
Ernährungswirtschaft Fokus: Risiko- und
Krisenmanagement
Referate der 34. GIL-Jahrestagung
24. – 25. Februar 2014, Bonn

3026907_GI_P_252_Baende.indd 157 03.02.16 13:41

P-227	 Wilhelm Hasselbring,
Nils Christian Ehmke (Hrsg.)
Software Engineering 2014
Fachtagung des GI-Fachbereichs
Softwaretechnik
25. – 28. Februar 2014
Kiel, Deutschland

P-228	 Stefan Katzenbeisser, Volkmar Lotz,
Edgar Weippl (Hrsg.)
Sicherheit 2014
Sicherheit, Schutz und Zuverlässigkeit
Beiträge der 7. Jahrestagung des
Fachbereichs Sicherheit der
Gesellschaft für Informatik e.V. (GI)
19. – 21. März 2014, Wien

P-230	 Arslan Brömme, Christoph Busch (Eds.)
	 BIOSIG 2014
	 Proceedings of the 13th International

Conference of the Biometrics Special
Interest Group

	 10. – 12. September 2014 in
	 Darmstadt, Germany

P-231	 Paul Müller, Bernhard Neumair,
Helmut Reiser, Gabi Dreo Rodosek
(Hrsg.)
7. DFN-Forum
Kommunikationstechnologien
16. – 17. Juni 2014
Fulda

P-232	 E. Plödereder, L. Grunske, E. Schneider,
D. Ull (Hrsg.)

	 INFORMATIK 2014
	 Big Data – Komplexität meistern
	 22. – 26. September 2014
	 Stuttgart

P-233	 Stephan Trahasch, Rolf Plötzner, Gerhard
Schneider, Claudia Gayer, Daniel Sassiat,
Nicole Wöhrle (Hrsg.)

	 DeLFI 2014 – Die 12. e-Learning
	 Fachtagung Informatik
	 der Gesellschaft für Informatik e.V.
	 15. – 17. September 2014
	 Freiburg

P-234	 Fernand Feltz, Bela Mutschler, Benoît
Otjacques (Eds.)

	 Enterprise Modelling and Information
Systems Architectures

	 (EMISA 2014)
	 Luxembourg, September 25-26, 2014

P-235	 Robert Giegerich,
Ralf Hofestädt,

	 Tim W. Nattkemper (Eds.)
	 German Conference on
	 Bioinformatics 2014
	 September 28 – October 1
	 Bielefeld, Germany

P-236	 Martin Engstler, Eckhart Hanser,
Martin Mikusz, Georg Herzwurm (Hrsg.)

	 Projektmanagement und
Vorgehensmodelle 2014

	 Soziale Aspekte und Standardisierung
	 Gemeinsame Tagung der Fachgruppen

Projektmanagement (WI-PM) und
Vorgehensmodelle (WI-VM) im
Fachgebiet Wirtschaftsinformatik der
Gesellschaft für Informatik e.V., Stuttgart
2014

P-237	 Detlef Hühnlein, Heiko Roßnagel (Hrsg.)
	 Open Identity Summit 2014
	 4.–6. November 2014
	 Stuttgart, Germany

P-238	 Arno Ruckelshausen, Hans-Peter
Schwarz, Brigitte Theuvsen (Hrsg.)
Informatik in der Land-, Forst- und
Ernährungswirtschaft
Referate der 35. GIL-Jahrestagung
23. – 24. Februar 2015, Geisenheim

P-239	 Uwe Aßmann, Birgit Demuth, Thorsten
Spitta, Georg Püschel, Ronny Kaiser
(Hrsg.)
Software Engineering & Management
2015
17.-20. März 2015, Dresden

P-240	 Herbert Klenk, Hubert B. Keller, Erhard
Plödereder, Peter Dencker (Hrsg.)
Automotive – Safety & Security 2015
Sicherheit und Zuverlässigkeit für
automobile Informationstechnik
21.–22. April 2015, Stuttgart

P-241	 Thomas Seidl, Norbert Ritter,
Harald Schöning, Kai-Uwe Sattler,
Theo Härder, Steffen Friedrich,
Wolfram Wingerath (Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW 2015)
04. – 06. März 2015, Hamburg

P-242	 Norbert Ritter, Andreas Henrich,
Wolfgang Lehner, Andreas Thor,
Steffen Friedrich, Wolfram Wingerath
(Hrsg.)
Datenbanksysteme für Business,
Technologie und Web (BTW 2015) –
Workshopband
02. – 03. März 2015, Hamburg

P-243	 Paul Müller, Bernhard Neumair, Helmut
Reiser, Gabi Dreo Rodosek (Hrsg.)

	 8. DFN-Forum
Kommunikationstechnologien
06.–09. Juni 2015, Lübeck

3026907_GI_P_252_Baende.indd 158 03.02.16 13:41

P-244	 Alfred Zimmermann,
Alexander Rossmann (Eds.)
Digital Enterprise Computing
(DEC 2015)
Böblingen, Germany June 25-26, 2015

P-245	 Arslan Brömme, Christoph Busch ,
Christian Rathgeb, Andreas Uhl (Eds.)
BIOSIG 2015
Proceedings of the 14th International
Conference of the Biometrics Special
Interest Group
09.–11. September 2015
Darmstadt, Germany

P-246	 Douglas W. Cunningham, Petra Hofstedt,
Klaus Meer, Ingo Schmitt (Hrsg.)
INFORMATIK 2015
28.9.-2.10. 2015, Cottbus

P-247	 Hans Pongratz, Reinhard Keil (Hrsg.)
DeLFI 2015 – Die 13. E-Learning
Fachtagung Informatik der Gesellschaft
für Informatik e.V. (GI)
1.–4. September 2015
München

P-248	 Jens Kolb, Henrik Leopold, Jan Mendling
(Eds.)
Enterprise Modelling and Information
Systems Architectures
Proceedings of the 6th Int. Workshop on
Enterprise Modelling and Information
Systems Architectures, Innsbruck, Austria
September 3-4, 2015

P-249	 Jens Gallenbacher (Hrsg.)
Informatik
allgemeinbildend begreifen
INFOS 2015 16. GI-Fachtagung
Informatik und Schule
20.–23. September 2015

P-250	 Martin Engstler, Masud Fazal-Baqaie,
Eckhart Hanser, Martin Mikusz,
Alexander Volland (Hrsg.)
Projektmanagement und
Vorgehensmodelle 2015
Hybride Projektstrukturen erfolgreich
umsetzen
Gemeinsame Tagung der Fachgruppen
Projektmanagement (WI-PM) und
Vorgehensmodelle (WI-VM) im
Fachgebiet Wirtschaftsinformatik
der Gesellschaft für Informatik e.V.,
Elmshorn 2015

P-251	 Detlef Hühnlein, Heiko Roßnagel,
Raik Kuhlisch, Jan Ziesing (Eds.)
Open Identity Summit 2015
10.–11. November 2015
Berlin, Germany

P-252	 Jens Knoop, Uwe Zdun (Hrsg.)
Software Engineering 2016
Fachtagung des GI-Fachbereichs
Softwaretechnik
23.–26. Februar 2016, Wien

P-253	 A. Ruckelshausen, A. Meyer-Aurich,
T. Rath, G. Recke, B. Theuvsen (Hrsg.)
Informatik in der Land-, Forst- und
Ernährungswirtschaft
Fokus: Intelligente Systeme – Stand der
Technik und neue Möglichkeiten
Referate der 36. GIL-Jahrestagung
22.-23. Februar 2016, Osnabrück

The titles can be purchased at:

Köllen Druck + Verlag GmbH
Ernst-Robert-Curtius-Str. 14 · D-53117 Bonn
Fax: +49 (0)228/9898222
E-Mail: druckverlag@koellen.de

3026907_GI_P_252_Baende.indd 159 04.02.16 14:35

3026907_GI_P_252_Baende.indd 160 03.02.16 13:41

