
cba

Herausgeber et al. (Hrsg.): BTW 2021,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Cluster Flow — an Advanced Concept for
Ensemble-Enabling, Interactive Clustering

Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

Abstract: Even though most clustering algorithms serve knowledge discovery in fields other than
computer science, most of them still require users to be familiar with programming or data mining
to some extent. As that often prevents efficient research, we developed an easy to use, highly
explainable clustering method accompanied by an interactive tool for clustering. It is based on
intuitively understandable kNN graphs and the subsequent application of adaptable filters, which can
be combined ensemble-like and iteratively and prune unnecessary or misleading edges. For a first
overview of the data, fully automatic predefined filter cascades deliver robust results. A selection of
simple filters and combination methods that can be chosen interactively yield very good results on
benchmark datasets compared to various algorithms.

Keywords: Clustering; Interactive; kNN; Ensemble; Explainability

1 Introduction

Researchers in virtually all areas can benefit from clustering their data at some point. From
natural sciences over social studies to economics — data is gathered everywhere. Clustering
provides many advantages: while the main goal is to find groups of similar objects, it can
also help gather valuable hidden information from the data or identify essential attributes.
While researchers are experts in their field, they often do not have sufficient background
knowledge about clustering methods and, for the sake of simplicity, use old traditional
algorithms that may not even fit their data.

As datasets from different research areas contain different types of clusters, ensemble
methods proved themselves as suitable for users without profound knowledge in data science.
Nevertheless, ensemble methods can be even less understandable “black boxes” than only
one algorithm, as they combine different clustering algorithms. Interactive and visual
approaches offer great possibilities to make these black boxes more accessible and embody
a good solution for the desired balance: To make the powerful tool of clustering accessible
to researchers from all fields so that they can create the most meaningful and transparent
clusterings with as little effort and background knowledge as possible.

1 LMU Munich, Institut für Informatik, Oettingenstr. 67, 80538 München, Germany, [obermeier,beer,seidl]@dbs.
ifi.lmu.de

cba doi:10.18420/btw2021-09

K.-U. Sattler et al. (Hrsg.): Datenbanksysteme für Business, Technologie und Web (BTW 2021),
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 175

https://creativecommons.org/licenses/by-sa/4.0/
mailto:[obermeier, beer, seidl]@dbs.ifi.lmu.de
mailto:[obermeier, beer, seidl]@dbs.ifi.lmu.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2021-09

2 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

A high explainability is thus equally important as public availability. Due to the lack of those
in current methods, surprisingly, many researchers still group their data manually, which is
disastrous regarding the reproducibility of results and the whole research’s objectivity.

Especially complex clustering methods such as ensemble methods are hard to visualize, and
accordingly, it is tough to create interaction possibilities on intermediate levels that allow
the user to intervene, guide and better understand the process.

To solve these problems, we developed a concept with a prototypical implementation
called Cluster Flow. It combines kNN-based approaches for clustering on graphs with
a modular and easy to understand architecture. It is simple but simultaneously provides
enough flexibility to accomplish difficult clustering tasks. We publish our code at https://
github.com/sobermeier/cluster-flow. Cluster Flow combines the advantages of ensemble
clustering with interactive clustering: users of all areas can easily apply and compose various
intuitively understandable cluster improvement steps iteratively to explore and cluster their
data. Our method, which we describe in detail in Section 3, is based on kNN graphs as
they represent one of the best foundations for clustering and offer several advantages: they
are highly explainable, suitable for anytime changes, and interactive approaches, and they
can enable finding non-convex shaped clusters as well as clusters of different densities. We
developed multiple intuitively understandable filter methods partially based on existing
methods to prune edges connecting clusters. They can be combined sequentially or in parallel
(ensemble-like). Users can fine-tune parameters, change filters, and explore the dataset at
any time, guided by a well-structured prototypical user interface as explained in Section
4. Extensive experiments in Section 5 show that our concept, applying pruning-strategies
on kNN graphs, achieves better clusterings than several other algorithms with their best
parameter settings. Simultaneously, the method is robust and suitable for exploring data:
with fixed parameters for all tested datasets, our fully automatic predefined filter cascades
yield better results than comparative methods. Our main contributions can be summarized
as follows.

• We propose Cluster Flow, an advanced clustering concept based on kNN graphs by
deleting edges through filters.

• Due to its well-thought-out modular design, interactions can be easily integrated on
intermediate stages while also providing step-by-step visualizations of the intermediate
clustering results.

• Even beyond this, we provide predefined filter cascades that achieve competitive
results fully automatically.

• A prototypical implementation serves as a proof-of-concept and demonstrates the
power of our proposed approach.

176 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

https://github.com/sobermeier/cluster-flow
https://github.com/sobermeier/cluster-flow

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 3

2 Related Work

We address here the three main components that comprise our Cluster Flow concept. As
most filter methods are based on diverse graphs describing the data, and we need to evaluate
our clustering results objectively, we introduce some graph-based methods in Subsection 2.1,
which we also use as a baseline for our experiments in Section 5. Combining the filters can
be seen as an ensemble approach; thus, we introduce the most relevant ensemble-based
clustering methods in Subsection 2.2. Subsection 2.3 concludes this section by setting our
concept into context regarding existing interactive approaches.

2.1 Graph-Based Clustering

Clustering algorithms can rely on different graphs extracted from the original data, e.g.,
Y-range graphs or diverse variants of kNN graphs, where we focus on the latter. Some
approaches rely on a mutual kNN graph (MkNN, see Section 3.1). Existing works include
taking the plain MkNN graph, where a connected component with two or more points form
a cluster and otherwise are considered outliers [Br97], or slightly advanced ones where
a weighted MkNN graph is used to capture clique-like structures [SB14]. Choosing the
optimal value for : is especially difficult for MkNN, which are inherently sparser than, e.g.,
symmetric kNN graphs (see Section 3.1).

The hierarchical clustering algorithm CHAMELEON [KHK99] is based on symmetric kNN
graphs and consists of two phases. First, the kNN graph is partitioned into small sub-clusters
by repeatedly splitting the currently largest sub-cluster, such that the edge cut is minimized
until the largest sub-cluster contains fewer nodes than a user-given parameter MinSize.
Secondly, these sub-clusters are recombined using an agglomerative hierarchical clustering
algorithm concerning their relative inter-connectivity and closeness. The merging algorithm
terminates when only one cluster remains, or no pair of clusters satisfies the condition of
having high enough relative inter-connectivity and relative closeness.

Girvan-Newman Algorithm [GN02] is an approach for detecting community structures in
graphs. The authors introduce a measure called edge betweenness which corresponds to
the number of shortest paths that run along this edge. All shortest paths between nodes of
different communities go along at least one edge that connects the communities. Thus, the
edge betweenness score of such an inter-community edge is higher. The algorithm iteratively
removes the edge with the highest edge betweenness and recalculates it for the remaining
edges until there are no more edges in the graph. The result of the algorithm is a dendrogram
that reveals the community structure of the underlying graph. However, this method has a
relatively high runtime with $ (<2 · =) for graphs with < edges and = nodes.
Spectral Clustering [SM00] is based on a similarity graph and its weighted adjacency
matrix, the first : eigenvectors are calculated. A kNN graph can be used as a similarity
graph with distances between points as weights. Clustering is then performed with k-means

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 177

4 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

on the matrix’s rows, which contains the previously calculated eigenvectors as columns.
The resulting clustering assignment of k-means corresponds to the clustering alignment of
the original points. Spectral clustering also inherits the disadvantages from the additional
partitioning step, such as k-means to a certain degree.

2.2 Ensemble based Clustering

Our approach is closely related to ensemble clustering methods since our filter strategy
allows combinations to find a consensus. Cluster ensembles, sometimes also referred to
as clustering aggregations or consensus clustering, combine several cluster algorithms
to obtain a single result of better quality than each cluster individually. Usually, they are
based on two steps, namely the generation, where different partitions are obtained, and the
consensus, where these partitions are integrated into one final partition. Ensemble methods
should at least meet the following four criteria [VPRS11]:

• Robustness: The average performance must be better than the single clustering
algorithms.

• Consistency: The combined result should be very similar to all combined single
clustering algorithm results.

• Novelty: The ensemble must allow finding solutions unattainable by single clustering
algorithms.

• Stability: The results must be less sensitive to noise and outliers.

However, according to the same authors, identifying the best result is hard, but the general
idea behind ensemble methods is that several algorithms’ combined decisions should be
more reliable than any individual one. Several existing works focus on the clustering
techniques [Li15, FJ05, Wu13] while others focus on finding the right consensus [SG02],
and allow for using different clustering methods.

However, in these approaches, determining the consensus functions is only applicable
for experts and integrating different techniques is even more complex and challenging to
understand to scientists from other domains. In contrast to that, our edge-deletion concept
allows for a smooth integration of establishing consensus across filters while at the same
time the intermediate results are always visible and understandable. Our approach differs
from existing approaches since it is possible to apply the ensemble clustering paradigm as
an intermediate step. The user can access the result at a fine-granular level and directly see
how different filters agree upon activities to identify crucial spots or steer the end product
into a more conservative or progressive direction. These advantages come because our
approach combines the power of ensemble clustering and interactive clustering. We discuss
the latter in the next section.

178 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 5

2.3 Interactive Clustering

The overall goal of interactive clustering is to engage the user as far as possible in the
clustering process, not only to allow the user to make the result fit their preferences but
also to make it understandable. In our context, we utterly differentiate from methods that
solely enable visual exploration of the result and are only considering methods that allow
interaction within the algorithmic loop. [Ba20] provide a thorough survey of interactive
clustering. Over 100 papers related to interactive clustering are analyzed regarding the stage
and type of interaction, user feedback, evaluation criteria, data, and clustering methods.
The authors distinguish three groups of stages in which interaction occurs. (1) Interaction
on clustering results, (2) interaction on model/algorithm level, and (3) machine-initiated
interaction. Our concept belongs to the second group since the user’s interactions directly
happen at the algorithm level by tweaking parameters rather than at the clustering results.
We evaluate the clustering result on an objective basis rather than conducting a user study for
subjective evaluation. A user study might help develop an appealing and intuitive graphical
user interface but is not within this work scope. Also, visualization methods for supporting
interactive ensemble clustering like AUGUR [HHL10] could be incorporated for future
work.

To conclude this section and put our work into the context of related works, our concept
combines three main components that fit together enormously well. First, kNN-graphs
are inherently well understandable for humans. Second, based on the kNN-graph, filter
strategies are applied. The filters focus on different hidden structures in the data, but all
result in the same action, namely deleting edges. Therefore, finding a consensus among
them in an ensemble-like manner does not require complex mathematical functions but
rather comparison on edge level and can thus be well visualized and understood. Third,
the modular design allows interaction on each stage and the continuous visualization of
intermediate results.

3 Cluster Flow

Cluster Flow works on a kNN graph of the input, for which we present multiple options in
Section 3.1. Elaborated filters, which we introduce in Section 3.2, delete edges between
clusters, and thus the graph decomposes into several smaller graphs representing one cluster
each.

3.1 Build kNN Graphs

Cluster Flow allows to choose between different variants of the kNN graph, as they can
have a severe impact on the clustering result [MLH09]: basic kNN graphs, symmetric kNN
graphs, and mutual kNN graphs.

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 179

6 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

Within this paper, we use the following notation: Let * be an arbitrary set and �� ⊆
, | | < ∞ be a dataset. A kNN graph consists of nodes corresponding to the points of
a dataset and directed edges from every node to its : nearest neighbors (kNN). The kNN
graph is a directed graph where an edge (?8 , ? 9) from point ?8 to point ? 9 exists if and only
if ? 9 belongs to the k-neighborhood of ?8 [HKF04]:

4364B = {(?8 , ? 9) | ∀?8 , ? 9 ∈ DB: 8 ≠ 9 ∧ ? 9 ∈ kNN(?8)} (1)

A symmetric kNN graph has a higher connectivity than the kNN graph: it is an undirected
graph where an edge (?8 , ? 9) from point ?8 to point ? 9 exists if ? 9 is part of k-neighborhood
of ?8 or vice versa [HKF04, MHVL07]:

4364B = {(?8 , ? 9) | ∀?8 , ? 9 ∈ DB: 8 ≠ 9 ∧ (? 9 ∈ kNN(?8) ∨ ?8 ∈ kNN(? 9)}. (2)

A Mutual k-Nearest Neighbor (MkNN) graph is an undirected graph, where edges
exist between two points ?8 and ? 9 if both points belong to each other’s k-neighborhood
[Br97, HKF04]:

4364B = {(?8 , ? 9) | ∀?8 , ? 9 ∈ DB: 8 ≠ 9 ∧ ?8 ∈ kNN(? 9) ∧ ? 9 ∈ kNN(?8)}. (3)

The RkNN graph connects points to their reverse nearest neighbors, i.e., its adjacency
matrix is the transpose of the adjacency matrix of the corresponding kNN graph. A point ?
is a reverse nearest neighbor of a point @, iff @ is a nearest neighbor of ?.

As we later only delete edges and never add edges, points of a cluster must have a connection
in the graph. Thus, a symmetric kNN graph with its inherent rather high connectivity is
usually suitable for our approach. If users are interested in the most significant clusters or
the core points of a cluster, an MkNN graph can be a good choice [MHVL07]. Note that
: for MkNN graphs should be higher than for symmetric kNN graphs to ensure a certain
degree of connectivity. Even though we use unweighted graphs for all filters, we save and
reuse the distances calculated in this step if needed.

3.2 Filters

In the following, we introduce filters that can be applied to the kNN graph. Filters are easily
accessible for users of diverse domains and delete different edges depending on the graph’s
properties, as we illustrate with selected example graphs shown in Figure 1.

3.2.1 Edge-Distance Filter (EDF)

Since points that are close to each other and connected by a short edge in the kNN
graph are likely to be in the same cluster, EDF deletes edges longer than a threshold C,

180 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 7

(a) EDF (b) EBF (c) IDCF (d) DoIEF

Fig. 1: Application of the Filters. Top: Symmetric kNN graph with :=10 of the original datasets.
Bottom: After filter application. Each connected component, i.e. cluster, is indicated by a different
color.

granting certain reachability for the clusters. The filter considers each connected component
individually, which has two advantages: (1) We can run the filter in parallel on several
connected components to save computation time, and (2) C is not global but can be chosen for
each connected component individually, depending on its edges. This enables maintaining
connected components with different densities, which will later result in clusters. The
threshold C depends on the mean ` and standard deviation f of the edge distances in a
connected component, on which the filter is applied, where f is weighted by a parameter
? ∈ R: C = ` + ? ·f. An empirically good value for ? is between 1 and 3. Figure 1(a) shows
an example application of this filter on the Compound dataset. The top image displays the
symmetric kNN graph with :=10 on the original dataset, which is the input for this filter.
The bottom figure displays the result after applying EDF with ?=2 where several unwanted
edges have been removed correctly. The filter runs with a complexity of $ (<) where < is
the number of edges. Note that the distances between all points can be reused from the kNN
graph generation.

3.2.2 Edge-Betweenness Filter (EBF)

This filter is based on the Girvan-Newman algorithm and uses the edge betweenness measure
to identify and reduce inter-community connections. It works on the assumption that loosely
connected components belong to different clusters. This filter iteratively removes the edges
with the highest edge betweenness, where 8 is the number of iterations and ? is the number
of edges to delete. As smaller clusters have fewer paths connecting all nodes than larger
clusters, misclassification, i.e., deleting wrong edges, has a higher impact on them. To
overcome this, we make our filter more restrictive, i.e., we scale the number of removed

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 181

8 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

edges per iteration by the total number of edges |4364B | within a connected component. We
also constrain that in each iteration, a minimum of one edge is deleted. Parameter A is then
defined by: A = <0G(|4364B | · ?, 1).
Figure 1(b) shows an example application of the edge betweenness filter on the Aggregation
dataset. The input graph on top is generated with : = 10. We set the filter parameters as
follows: 8 = 5; i.e., five iterations were performed, and ? = 0.0075; i.e., 0.75% of the edges
were removed from each connected component in each round. The bottom figure shows the
result after all iterations. The inter-community connections have been detected correctly,
and the initial five connected components have been divided into seven, which fit the ground
truth clusters and are highlighted by different colors.

The original Girvan-Newman algorithm has a worst-case complexity of $ (<2 · =), where
= is the number of nodes and < is the number of edges. In our modified setting, we can
decrease this complexity. First, instead of performing a full hierarchical clustering down to
every node, we only run the algorithm for 8 iterations to identify the top inter-community
connections, where 8 << <. Secondly, originally only one edge is removed in each iteration.
In our case, we increase the number of edges that are deleted in each round to the value of a
parameter A. This way, the user can decide how precise the final result should be. Since
the complexity for one round of the original algorithm is $ (< · =), the filter’s application
with 8 rounds has the complexity of $ (< · = · 8). It is advisable not to apply the filter in the
beginning but rather when the complete dataset is already segmented in several connected
components to reduce the complexity (For example, by first applying a filter with lower
complexity, e.g., the EDF).

3.2.3 Inter-Density Connection Filter (IDCF)

This filter assumes that two points located in regions of different densities also belong to two
different clusters. The sparseness of the neighborhood of a point is defined by the average
distance to its k-nearest-neighbors, which equals to the sparseness estimation presented in
[SRS00] and is used for outlier detection. We call an edge between two nodes with very
different dense neighborhoods inter-density connection. The inter-density connection filter
aims at detecting these edges to classify them as unwanted. The density difference of an
edge is defined as the absolute difference of the sparseness of the two nodes it connects.
If this density difference is higher than a threshold C, the edge is classified as unwanted.
Given ` as the average of the density difference of all edges, f as its standard derivation
and ? as a user-defined parameter to regulate the sensitivity of the filter, the threshold C is
defined as: C = ` + ? ·f. Again, the filter is applied to each connected component separately.
The sparseness estimation is made on the basis of the directed kNN graph, but only the
edges which also exist in the current state of the undirected graph will be considered so
that each point has 0 to : considered nearest neighbors. We need the directed graph for
this filter, since edges to outliers, which more likely exist in an undirected graph where

182 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 9

the outlier only needs to belong either to the kNN or the reverse kNN set, may lead to
misclassification. A connected outlier forces an increase in the sparseness estimation for the
whole connected component and may lead to the deletion of edges between actual cluster
nodes. Nevertheless, we do not have to recompute all kNN relationships since we have
created and saved a directed kNN graph at the graph generation step that contains all kNN
relationships and distances. Figure 1(c) shows an example application of the inter-density
connection filter on a sample from the Compound dataset. On the top, the original input
graph is depicted (symmetric kNN graph with : = 10). On the bottom, the resulting graph
after applying the filter two times with ? = 1.5 is shown. The filter can separate the inner,
more dense cluster from the outer data points.

3.2.4 Distance of Incoming Edges Filter (DoIEF)

Similar to the EDF, this filter considers the length of edges. However, unlike the aforemen-
tioned, this filter focuses on each node separately and uses the directed kNN graph. The
filter considers all incoming edges of a node and therefore requires a calculation of the
reverse kNN relationships based on the directed kNN graph in advance. We classify the
incoming edges of a node, i.e., edges connecting nodes of the reverse kNN set of the node,
as unwanted if their length exceeds a threshold C. The threshold C is defined as: C = ` + ? · f,
where ` is the average edge length, and f is the standard derivation of the edge lengths. This
filter is used for separating outliers or boundary nodes from other connected components.
The intuition behind this filter is that nodes with long edges to their k-nearest neighbor are
likely to be outliers or at least probably not part of the cluster to which that neighbor is
currently connected. We use the incoming edges for this filter because this is more restrictive
than using the outgoing edges. The RkNN and the kNN relationship are not symmetric,
i.e., every node has the same number of outgoing edges, but not every node has incoming
edges. If we took the outgoing edges, every node in the whole graph would be considered,
including those that do not belong to the kNN set of any other node. However, by taking
the incoming edges, we limit the considered nodes to those that are part of the kNN set of
at least one other node and thus decrease the computational costs and the probability of
deleting wanted edges. Figure 1(d) shows a symmetric kNN graph as input on the top, which
was generated with : = 10 on the Compound dataset. The result after the first application
of the DoIEF with ? = 2 is shown on the bottom. The illustration shows that the DoIEF
deletes edges that connect boundary points of different clusters.

3.3 Combination of Filter Results

We present two different filter strategies: using filters sequentially and using filters in
parallel. The former applies filters consecutively, using results from the previous filter as
input for the next filter. Filters can be applied multiple times, and different types of filters
can be concatenated. As filters are applied on each connected component separately, an

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 183

10 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

iterative application of the same filter often leads to better results than a one-time application
with relatively high respectively low threshold values. In the beginning, there might be
only one component connecting all points. Iterative filters can consider different cluster
structures, and the individual clusters can develop selectively. The second strategy embodies
the classical cluster ensemble approach’s central idea, where different clustering algorithms
are performed on the same input, and afterward, a consensus between the different results is
determined. We adopt this idea for our concept by applying different filters in parallel on
the same input graph. Each filter determines independently which edges should be deleted.
Afterward, a common consensus is determined, which can be chosen conservatively, e.g.,
all filters must agree to the deletion of an edge to ensure a safe deletion within the final
result, or progressively, e.g., only 50% of filters need to propose the deletion of an edge to
result in a deletion within the final result. Cluster Flow is designed so that the two strategies
can be easily combined.

3.4 Concept Overview and Discussion

Figure 2 abstracts a possible manifestation of the Cluster Flow architecture. A gray box
represents an atomic building block (either the initial graph generation step, one of the
proposed filters, or a consensus component). Important is the graph construction at the
beginning, which is the basis for the further procedure. After this mandatory first step, the
user can apply any filter presented in the previous paragraphs. Interaction possibilities to
tweak parameters and visualizations of intermediate results are integrated at each building
block and enable maintaining the overview at all times. The red, solid framed box indicates
a sequential filter chain, while the blue dotted framed box shows a parallel filter strategy. A
filter always works on the result of the previous building block. Each filter in the parallel
component works on the input from the previous filter independently. Finding a consensus is
also an independent building block that determines how many parallel filters need to agree
upon deleting an edge to delete an edge ultimately. The output of the consensus-building
block results in a subsequent filter’s input, if one is applied, or in this case, as the final result.
We also want to emphasize that the modular design allows storing intermediate results that
do not require recalculation whenever a subsequent filter is updated. With this, it is possible
to try out different parameters without starting from the bottom. The user experience greatly
benefits from this architecture. The experiments were not runtime optimized, but a single
filter’s execution is in the millisecond to second range for the tested datasets. A significant
advantage of our concept is its great flexibility, but in some sense, it might also be challenging
to find a good way to start. We recommend relying on a filter-refinement-like strategy to
start with a fast, non-exact deletion of edges and go over to more costly fine-tuning. The
EDF is the most simple filter in our repertoire and is also runtime-efficient. Though it does
not delete edges between, e.g., clusters of different densities like IDCF, it is a perfect start to
delete many unnecessary edges without complex computations, allowing additional filters
to work on a fraction of the original edges. The EBF is the most complicated filter, which
is well suited to be applied at the end as a refinement step. The combination of filters is

184 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 11

a good strategy for either the start or the end, depending on the goal of the clustering. If
a conservative approach is generally preferred, the combination of filters can be applied
initially, which, depending on the consensus function, deletes only obviously unwanted
edges to prevent premature deletion of edges. However, the combination is also suitable to
serve as a refinement step.

Fig. 2: Design concept of Cluster Flow.

4 Interactive Clustering with Cluster Flow

Due to the modular character and the step-by-step application of the filters, Cluster Flow is
well suited for interactive clustering. As a proof of concept, we implemented a lightweight
tool that provides a simple interface for loading datasets in CSV format, creating and saving
individual projects. Within each project, it is possible to add filters, either at each step for
the sequential case or several filters included in one step for the parallel case. One step is
represented by a tile containing one or more inner cards, which offer a visualization of
the current result on the left and configuration options on the right. For simplicity, each
card offers the option to visualize the current result graph within a 2D view, a 3D view,
or to apply PCA decomposition [Pe01] for dimensionality reduction. The first step within
a project is always the kNN graph generation. Here users can choose the graph type, i.e.,
symmetric or mutual, and the value for : . Users can attach filters to form a chain in which
each filter is executed one after another. Each filter step can be executed and adjusted

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 185

12 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

Tab. 1: Evaluation datasets with number of clusters 2 and number of dimensions 3.

Set 1 (Gaussian) Set 2 (Non-Convex) Set 3 (Mixture)

Name 2 3 Size Name 2 3 Size Name 2 3 Size

Cassini3 3 2 1000 Two Moons3 2 2 300 Aggregation[GMT07]4 7 2 788
Cuboids3 4 3 1002 Donutcurves3 4 2 1000 Compound[Za71]4 6 2 399
Hypercube3 8 3 800 Long23 2 2 1000 Pathbased[CY08]4 3 2 300
Cure-t0-2000n-2D3 3 2 2000 Dartboard13 4 2 1000 Lsun3 3 2 400
Pmf3 5 3 649 Donut33 3 2 999 Spiralsquare3 6 2 1500
Twenty3 20 2 1000 Smile23 4 2 1000 Longsquare3 6 2 900
Twodiamonds3 2 2 800 Zelnik13 3 2 299 Dpc3 6 2 1000
Spherical_4_33 4 3 400 Zelnik53 4 2 512 Target3 6 2 770
Zelnik43 5 2 622 Jain[JL05]4 2 2 373 R1_complete5 4 2 600
R15[VRB02]4 15 2 600 Spiral[CY08]4 3 2 312 Mouse6 4 2 500

separately, allowing a high degree of transparency and intervention. However, if a previous
filter parameter has been changed so that the resulting kNN graph changes, all subsequent
filters are recalculated because their input has changed. A traffic-light system indicates
the status of computations. The tool is a local web application written in Python, so it is
platform-independent. We used Flask1 as web framework and SQLite2 for the database.
Figure 3 shows an example screenshot of the interactive tool. Our prototype can reuse
already computed values when chaining filters as far as possible to prevent the calculation
costs from increasing proportionally per added filter and ensure a pleasant, smooth usage. It
fulfills all criteria of [VPRS11] explained in Section 2: (1) robustness, (2) consistency, (3)
novelty, and (4) stability. (1) Cluster Flow is robust, i.e., the ensemble is on average better
than its single components. Especially when looking at complex datasets with diverse types
of clusters, the superiority of combining several filters becomes obvious. (2) Since Cluster
Flow’s consensus strategies are simple operations on sets or majority votes, results are
comprehensibly similar to their components’ results. (3) The combination of filters produces
novel results, which cannot be achieved by a single filter since there are datasets for which
one filter cannot delete all necessary edges for correct clustering, even though another one
could. E.g., datasets containing clusters of different densities and clusters connected by a
chain. Combining both can lead to a perfect result. (4) Using an adequate consensus strategy
reduces the sensitivity regarding noise and outliers.

1 https://palletsprojects.com/p/flask/
2 https://www.sqlite.org/index.html
3 https://github.com/deric/clustering-benchmark/tree/master/src/main/resources/datasets/

artificial

4 http://cs.joensuu.fi/sipu/datasets/
5 https://github.com/wahlflo/Datasets
6 https://elki-project.github.io/datasets/

186 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

https://github.com/deric/clustering-benchmark/tree/master/src/main/resources/datasets/artificial
https://github.com/deric/clustering-benchmark/tree/master/src/main/resources/datasets/artificial

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 13

Fig. 3: Screenshot of the prototypical interactive clustering tool. The top row contains parallel filters
where the green frame indicates that the calculation has been finished. The bottom row shows a single
sequential filter, which is still working.

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 187

14 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

Tab. 2: Parameter settings used for Cluster Flow.

Parameter Description Range PFC1 PFC2

6A0?ℎ_CH?4 Type of the generated graph. [symmetric, mutual] symmetric symmetric
: Number of nearest neighbors. [10, 12, 14] 14 14
EDF? Parameter ? of the EDF. [1.5, 2, 2.5, 3] 3 2.5
DoIEF? Parameter ? of the DoIEF. [1.5, 2, 2.5, 3] - 1.5
IDCF? Parameter ? of the IDCF. [2, 3, 4, 5] - 5
EBF? Parameter ? of the EBF. [0.0025, 0.005, 0.0075] 0.0075 0.0075
EBF8 Number of iterations of the EBF. [0, 1, 2, 3, 5, 7, 9] 7 7
Consensus= Number of filters to agree upon deletion. [2, 3] - 2

5 Experiments

5.1 Datasets

We evaluate Cluster Flow on 30 publicly available clustering benchmark datasets as
described in Table 1. We grouped them into three groups based on the type of clusters they
contain: In the first set, data sets contain Gaussian-like clusters, in the second set, they
contain non-convex clusters, and in the third set, they contain a mixture of different types.
Additionally, we evaluate on several high dimensional datasets taken from [FS18] and first
introduced by [FVH06]. These all have 16 clusters and 1024 points, their dimensionality is
3 ∈ [32, 64, 128, 256, 512], and they are called dim032, dim064, dim128, etc.

5.2 Baseline

We want to evaluate our approach on an objective basis. For this, we compare our concept
with relevant graph-based methods and other established clustering methods. More precisely,
we evaluated using the following methods and performed a grid search on the corresponding
parameter settings:

• k-means [Ll82]: ::−<40=B: {2 − 2, . . . , 2 + 2}7
• CHAMELEON: :: [5, 10, 15], "8=(8I4: [2%, 3%], U: [1.5, 2.0, 2.5]

• MkNN clustering: :: {3, 4, . . . , 20}

• Rock [BKS19]: C<0G: [10, 15, 20]

• DBSCAN [Es96]: "8=%>8=CB: {2, 3, . . . , 15}, n : {0.01, 0.02, . . . , 0.4}

• Spectral clustering [VL07]: ::==: {10, 15}, ::−<40=B: {2 − 2, . . . , 2 + 2}7

7 2 stands for the number of ground truth clusters

188 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 15

5.3 (Predefined) Filter Cascades

An essential characteristic of Cluster Flow is its high level of flexibility. To ensure better
reproducibility and comparability, we here describe filter cascades, which consist of a
defined filter composition. The first filter cascade (FC1) solely relies on the sequential
strategy and incorporates the EDF and the EBF. The EDF is applied repeatedly until no
edges are newly classified as unwanted. After that, the EBF is applied multiple times.

The second filter cascade (FC2) relies on a combination of the sequential and the parallel
strategy. The EDF, DoIEF and the IDCF are applied in parallel on the same input dataset.
An edge is classified as unwanted if, at minimum, two of the three filters classified it as
such. Afterward, the EBF filter is applied multiple times. To make our concept as simple
as possible and to obviate time-consuming parameter searches, we also tested both filter
cascades with constant, predefined parameters over differently structured data sets, i.e., in a
fully automatic setting without user interaction. Table 2 summarizes the tested parameters
and their ranges in general as well as the fixed hyper-parameters for the predefined filter
cascades (PFC1, PFC2) that were used in the subsequent analysis. Figure 4 shows the
construction of PFC1 and PFC2 for a better understanding. These two filter cascades follow
different goals. PFC1 is a more progressive approach that tries to remove many edges
directly from the beginning. The EDF is a good choice for this, as the focus is solely on
the distance between two edges without considering the neighborhood. It is also one of
the simplest and fastest filters we propose and thus serves as a good first filter to delete
the most obvious edges. The EBF is more complex but also more powerful since it can
detect bridges between communities. This filter takes more runtime than the other filters,
and we recommend applying it towards the end where a refinement is needed. FC1 could
also be seen as a filter-refinement procedure, where the EDF deletes the most obvious
edges fast, and the EBF fine-tunes the result. PFC2, in contrast, is more conservatively
constructed; that is, in case of doubt, an edge is rather not deleted so as not to cause clusters
to decay prematurely. The parallel building block in the beginning only deletes an edge if
the majority of the three filters agrees upon it to give a more reliable result. The powerful
EBF is then used again for fine-tuning the result. In terms of objective evaluation, PFC1
often performs better, but for sensitive applications where the dataset must not be split up in
too many clusters too fast, PFC2 is a good option.

5.4 Performance with varying parameters

The left part of Table 3 shows the average F1-scores of all evaluated clustering algorithms
for each of the combined sets and for all 30 data sets, whereby we allowed different
hyperparameter values for each experiment, to achieve the best possible results at the dataset
level. The algorithms are sorted in descending order by their total average performance. To
show the importance of the filters, we have evaluated the performance of the kNN graph with
different values for : without any filters (CF in the table). FC1, DBSCAN, FC2, and MkNN

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 189

16 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

(a) PFC1 (b) PFC2

Fig. 4: Structure of predefined filter cascades 1 (PFC1) and 2 (PFC2).

Tab. 3: AVG F1-Score of Cluster Flow compared to the baseline. Left: Performance of all methods
with varying parameters. Right: Performance of the best baseline algorithms, PFC1 and PFC2 with
constant parameters.

Changing Parameters Constant Parameters

Algorithm Set1 Set2 Set3 AVG total Algorithm AVG total

FC1 0.9972 0.9985 0.9754 0.9902 PFC1 0.995
DBSCAN 0.9967 0.9999 0.9716 0.9894 DBSCAN 0.828
FC2 0.9967 0.9938 0.9599 0.9834 PFC2 0.931
MkNN 0.9494 0.9990 0.9029 0.9504 MkNN 0.904
CF (no filters) 0.9224 0.9993 0.7979 0.9065
CHAMELEON 0.8793 0.8377 0.8401 0.8519
Spectral 0.9605 0.6857 0.8153 0.8205
k-means 0.9360 0.6505 0.7407 0.7757
Rock 0.6935 0.6124 0.7326 0.6795

based clustering achieved the best results. On set2, MkNN performed a little bit better
than the kNN clustering approaches. On the other two sets, FC1 and FC2 outperformed
the MkNN clustering significantly. In total, FC1 achieved the best results with an average
F1-score of 0.990, while DBSCAN came second with 0.989. However, FC1, FC2, and
DBSCAN achieved very similar results on all sets apart from small fluctuations. DBSCAN
is known to perform well on many of the selected sets. The goal here was to reveal that
Cluster Flow consistently delivers better or equally strong results, even on data sets with
distributions predestined for DBSCAN or other competitors. However, we also want to
explicitly point out situations where our approach significantly outperforms DBSCAN, i.e.,
identifying clusters with varying densities. Therefore regard Figure 5: (a) shows the best

190 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 17

(a) DBSCAN (b) PFC1

Fig. 5: Qualitative example where PFC1 outperforms DBSCAN as it is able to detect clusters of
varying densities.

clustering result of DBSCAN after testing different parameter settings and (b) shows the
clustering result of the fully automatically PFC1 on a self created dataset8 with varying
densities.

5.5 Performance while maintaining constant parameters

In the previous analysis, we explicitly determined the optimal parameters for each algorithm
and data set individually to achieve the best possible result. However, choosing the right
parameters is a laborious and time-consuming task, especially for laymen, since the optimal
hyperparameters can vary significantly from dataset to dataset. Thus, we evaluated the
performance when using the same parameter settings for all 30 low dimensional data sets.
As baseline we used DBSCAN (n = 0.08, "8=%>8=CB = 3) and MkNN (: = 10), as these
gave the best results in the upper analysis. The right side of Table 3 summarizes the achieved
results of each algorithm constraint to not changing parameters across all 30 benchmark
datasets. Here, PFC1 and PFC2 outperformed the other algorithms. These results show the
potential of predefined filter cascades in general and that PFC1 and PFC2 are well-suited to
obtain a useful clustering without adjusting the parameters, especially without knowing
the type or the distribution of the data in advance. Most algorithms only work for specific
shapes and distributions of clusters but then fail for other cluster forms. In the real world,
however, data distribution is not known in advance, so it is of great importance to offer
clustering algorithms that can achieve consistently good results regardless of the distribution
and shape of the clusters without having to tweak the hyperparameters. While PFC1 is
more progressive in that it deletes all edges considered unwanted, PFC2 offers a more

8 Dataset different_density on https://github.com/wahlflo/Datasets

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 191

https://github.com/wahlflo/Datasets

18 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

conservative approach, where a certain percentage of filters must share a consensus to force
the deletion of edges.

We also performed experiments on the previously described high-dimensional datasets
dim032, dim064, etc., which consist of well-separated, randomly sampled Gaussian clusters.
In total, the F1-scores of PFC1 (0.96, 0.93, 0.95, 0.97, 0.97) were slightly better or equal to
the scores of PF2 (0.95, 0.93, 0.94, 0.94, 0.93). In general, both showed consistently good
results.

6 Conclusion

We developed Cluster Flow, a new advanced concept to cluster data based on kNN
graphs. Our approach’s key components are modularity, which is also the key for offering
intermediate interaction stages, explainability, and simultaneously identifying various cluster
shapes. Experiments on more than 30 benchmark datasets show that the proposed technique
consistently achieves superior results when used interactively, i.e., varying parameters for
different datasets. On top of that, even not seen in an interactive context, the predefined filter
cascades PFC1 and PFC2 can be used as entirely autonomous clustering algorithms that work
fully automatically and achieved remarkable results over various experiments. Non-convex
clusters are found as well as clusters of varying density. The easy to understand concept
allows researchers from all areas with no previous knowledge in clustering to explore, cluster,
and understand the data in depth. Hence, we have shown an efficient clustering concept that
can successfully find diverse clusters and is highly understandable. As the focus of this
paper is developing a concept of how to compose easy steps so that laymen can understand
what their clustering and results mean, we leave a user study for an even more beautiful
visualization and potentially better usability for future work. Additionally, in future work,
one could integrate other data types than numerical data and investigate further filter and
combination methods. Another goal is to generate branches within the interactive clustering
workflow, i.e., to work with several independent intermediate states in parallel or use a
change history. To further support the user in the decision process metadata of the nodes or
other interesting properties could be displayed. Of course, current acceleration methods
like accelerating the kNN graph computation [CLR20] could be integrated, too. For high
dimensional data, kNN could be computed according to the subspace importance [Ba04].

Acknowledgments

This work has been funded by the German Federal Ministry of Education and Research
(BMBF) under Grant No. 01IS18036A. The authors of this work take full responsibilities
for its content.

192 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 19

Bibliography
[Ba04] Baumgartner, Christian; Plant, Claudia; Railing, K; Kriegel, H-P; Kroger, Peer: Subspace

selection for clustering high-dimensional data. In: Fourth IEEE International Conference
on Data Mining (ICDM’04). IEEE, pp. 11–18, 2004.

[Ba20] Bae, Juhee; Helldin, Tove; Riveiro, Maria; Nowaczyk, Sławomir; Bouguelia, Mohamed-
Rafik; Falkman, Göran: Interactive Clustering: A Comprehensive Review. ACM Com-
puting Surveys (CSUR), 53(1):1–39, 2020.

[BKS19] Beer, Anna; Kazempour, Daniyal; Seidl, Thomas: Rock - Let the points roam to
their clusters themselves. In: Advances in Database Technology - 22nd International
Conference on Extending Database Technology, EDBT 2019, Lisbon, Portugal, March
26-29, 2019. pp. 630–633, 2019.

[Br97] Brito, MR; Chavez, EL; Quiroz, AJ; Yukich, JE: Connectivity of the mutual k-nearest-
neighbor graph in clustering and outlier detection. Statistics & Probability Letters,
35(1):33–42, 1997.

[CLR20] Chávez, Edgar; Ludueña, Verónica; Reyes, Nora: Heuristics for Computing k-Nearest
Neighbors Graphs. In: Computer Science–CACIC 2019: 25th Argentine Congress of
Computer Science, CACIC 2019, Río Cuarto, Argentina, October 14–18, 2019, Revised
Selected Papers 25. Springer, pp. 234–249, 2020.

[CY08] Chang, Hong; Yeung, Dit-Yan: Robust path-based spectral clustering. Pattern Recognition,
41(1):191–203, 2008.

[Es96] Ester, Martin; Kriegel, Hans-Peter; Sander, Jörg; Xu, Xiaowei et al.: A density-based
algorithm for discovering clusters in large spatial databases with noise. In: Kdd.
volume 96, pp. 226–231, 1996.

[FJ05] Fred, Ana LN; Jain, Anil K: Combiningmultiple clusterings using evidence accumulation.
IEEE transactions on pattern analysis and machine intelligence, 27(6):835–850, 2005.

[FS18] Fränti, Pasi; Sieranoja, Sami: K-means properties on six clustering benchmark datasets.
Applied Intelligence, 48(12):4743–4759, 2018.

[FVH06] Fränti, Pasi; Virmajoki, Olli; Hautamaki, Ville: Fast agglomerative clustering using a
k-nearest neighbor graph. IEEE transactions on pattern analysis and machine intelligence,
28(11):1875–1881, 2006.

[GMT07] Gionis, Aristides; Mannila, Heikki; Tsaparas, Panayiotis: Clustering aggregation. ACM
Transactions on Knowledge Discovery from Data (TKDD), 1(1):4–es, 2007.

[GN02] Girvan, Michelle; Newman, Mark EJ: Community structure in social and biological
networks. Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

[HHL10] Hahmann, Martin; Habich, Dirk; Lehner, Wolfgang: Visual decision support for en-
semble clustering. In: International Conference on Scientific and Statistical Database
Management. Springer, pp. 279–287, 2010.

[HKF04] Hautamaki, Ville; Karkkainen, Ismo; Fränti, Pasi: Outlier detection using k-nearest
neighbour graph. In: Proceedings of the 17th International Conference on Pattern
Recognition, 2004. ICPR 2004. volume 3. IEEE, pp. 430–433, 2004.

Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering 193

20 Sandra Obermeier1, Anna Beer1, Florian Wahl1, Thomas Seidl1

[JL05] Jain, Anil K; Law, Martin HC: Data clustering: A user’s dilemma. In: International
conference on pattern recognition and machine intelligence. Springer, pp. 1–10, 2005.

[KHK99] Karypis, George; Han, Eui-Hong; Kumar, Vipin: Chameleon: Hierarchical clustering
using dynamic modeling. Computer, 32(8):68–75, 1999.

[Li15] Liu, Hongfu; Liu, Tongliang; Wu, Junjie; Tao, Dacheng; Fu, Yun: Spectral ensemble
clustering. In: Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining. pp. 715–724, 2015.

[Ll82] Lloyd, Stuart: Least squares quantization in PCM. IEEE transactions on information
theory, 28(2):129–137, 1982.

[MHVL07] Maier, Markus; Hein, Matthias; Von Luxburg, Ulrike: Cluster identification in nearest-
neighbor graphs. In: International Conference on Algorithmic Learning Theory. Springer,
pp. 196–210, 2007.

[MLH09] Maier, Markus; Luxburg, Ulrike V; Hein, Matthias: Influence of graph construction on
graph-based clustering measures. In: Advances in neural information processing systems.
pp. 1025–1032, 2009.

[Pe01] Pearson, Karl: LIII. On lines and planes of closest fit to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
2(11):559–572, 1901.

[SB14] Sardana, Divya; Bhatnagar, Raj: Graph clustering using mutual K-nearest neighbors. In:
International Conference on Active Media Technology. Springer, pp. 35–48, 2014.

[SG02] Strehl, Alexander; Ghosh, Joydeep: Cluster ensembles—a knowledge reuse framework
for combining multiple partitions. Journal of machine learning research, 3(Dec):583–617,
2002.

[SM00] Shi, Jianbo; Malik, Jitendra: Normalized cuts and image segmentation. Departmental
Papers (CIS), p. 107, 2000.

[SRS00] Sridhar, Ramaswamy; Rastogi, Rajeev; Shim, Kyuseok: Efficient algorithms for mining
outliers from large data sets. In: International Conference on Management of Data:
Proceedings of the 2000 ACM SIGMOD international conference on Management of
data: Dallas, Texas, United States. volume 15, pp. 427–438, 2000.

[VL07] Von Luxburg, Ulrike: A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.

[VPRS11] Vega-Pons, Sandro; Ruiz-Shulcloper, José: A survey of clustering ensemble algorithms.
International Journal of Pattern Recognition and Artificial Intelligence, 25(03):337–372,
2011.

[VRB02] Veenman, Cor J.; Reinders, Marcel J. T.; Backer, Eric: A maximum variance cluster
algorithm. IEEE Transactions on pattern analysis and machine intelligence, 24(9):1273–
1280, 2002.

[Wu13] Wu, Junjie; Liu, Hongfu; Xiong, Hui; Cao, Jie: A theoretic framework of k-means-based
consensus clustering. In: Twenty-Third International Joint Conference on Artificial
Intelligence. 2013.

[Za71] Zahn, Charles T: Graph-theoretical methods for detecting and describing gestalt clusters.
IEEE Transactions on computers, 100(1):68–86, 1971.

194 Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl

