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Recomposing Small Learning Groups at Scale—A Data-
driven Approach and a Simulation Experiment

Zhilin Zheng', Niels Pinkwart’

Abstract: Group re-composition has thus far been rarely studied. The recent emergence of large
scale online learning contexts (e.g. MOOCs) might bring about an opportunity for its application
due to the reported high drop-out rate. In this paper, we propose a novel data-driven approach to
address the problem of group re-composition. Through a simulation experiment, we saw its
capability in decreasing the drop-out rate in groups and bringing more cohesive groups when
compared against a random grouping strategy.

Keywords: Group Formation; Group Re-composition; Group Dynamics; MOOC; Learning
Analytics.

1 Introduction

Back in the 1950s, teachers and researchers began to experiment with within-class
grouping, between-class grouping and even cross-grade grouping [Ga86, SI87, Ku92].
They often composed small learning groups according to students’ achievement,
attainments and aptitudes. More recently, other grouping features such as learning styles,
demographic characteristics or behavioural attributes have been tested as well. Although
much research attempts to find the generalizable theories that can make efficient groups
in many cases, a consensus has not yet been reached on which type of groups are more
likely to yield great learning outcome. In recent years, large-scale learning contexts,
typically Massive Open Online Courses (MOOCs), bring about opportunities to study
this problem in a new direction. Data-driven methods have begun to be employed
[Wel6]. Basically, the data-driven methods create a data model that can predict grouping
outcomes based on analysis of students’ relevant data. This data model can then be used
to make groups that could be more potentially successful. These methods obviously do
not reapply the generalised grouping theories anymore. But the higher requirement of
data size challenges their practical implementation. Obviously, too few data can hardly
train a relatively unbiased data model. Nevertheless, massive enrolments in recent
MOOC s, in principle, secure the quantity of data. Another typical feature in recent
MOOC:s, the reported high dropout rates [Jol4], could however make many small
learning groups dysfunctional, because very scarce human resource would be left behind
in those groups. Especially when we set up group learning in a multi-task context,
recomposing those dysfunctional groups for the next group tasks would be necessary.
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Thus, in the paper, we propose a data-driven approach to address the group re-
composition problem. The remainder of this paper is organized as follows. After a
review of recent studies on relevant topics, we propose our approach and report on a test
using a simulation platform. Next, we interpret the experimental results and finally
conclude our findings.

2  State of the art

As digitalized learning or e-learning technologies advanced, group composition has been
studied on the basis of computer-supported methods. Among such, Moreno et al.
[MOV12] suggested a genetic algorithm. Graf et al. [GB06] proposed an ant colony
optimization method. Hsu et al. [Hs14] recommended an artificial bee algorithm and
Zheng et al. employed a discrete particle swarm optimization approach [ZP14]. The
grouping attributes employed vary and include Belbin roles [YAI12], learning
performance [GB06] and background knowledge [Hs14]. With regard to the grouping
results, most of the approaches produce either homogeneous groups or heterogencous
groups or a mixture of both in some cases [KBS14]. All approaches rely on static data
collected before a group task starts and none of those methods accounts for data
alterations caused by group dynamics. For example, individual’s roles or learning
performance could change over time.

Group re-composition sometimes is unavoidable during group operation for several
reasons. First, teachers may find dysfunction in groups. Second, students themselves
want to dissolve their groups [SA10, p.55]. In classrooms, manual redistribution of those
students would probably not be a bad choice. However, in large-scale online learning
contexts, it would not be affordable anymore. To the best of our knowledge, only one
recent publication attempts to address this group re-composition problem [SB14]. This
paper proposes a dynamic group formation method to improve Computer Supported
Collaborative Learning (CSCL) groups. The authors dynamically retrieved group
interaction data and iteratively made use of it to compose groups for each new task. This
work pioneers the use of group dynamics to compose groups. Yet, it still leaves much
room for improvement. First, the authors merely observed the dynamic change of each
student and reapplied a grouping method (i.e. Group Technology) to recompose learning
groups over and over again, that is, the subtle association between group dynamics and
group success has not been taken into account. Second, the method cannot offer us the
concrete rules to compose either successful or weak groups. Instead, they repeatedly
used the same grouping criteria (which may be questionable for any specific group).
Third, it is necessary to scale up the method for recent larger-scale online learning
platforms.
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3 Methods

3.1  Group re-composition approach

An overview of our proposed algorithmic re-grouping method is depicted in Fig. 1. First
of all, we can start with an initial group formation. Random groups can be employed
here unless useful participant data is available. The goal is to improve this initial group
formation in the following task(s).
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Fig. 1: Schema of the proposed group re-composition approach.

Next, we retrieve group data from the first group task. This data mainly comes from two
sources: group interactions and group success (e.g. learning performance). Based on
group interaction data, we can further detect individual student’s roles in his/her group
using Social Network Analysis (SNA). Merging with group success data, we can then
apply machine leaning methods to induce group composition rules that indicate which
group roles (combined together) make successful groups or weak groups. Those
generated composition rules are employed to suggest new groups for the next task if
necessary. Through this iterated process, we can learn group composition knowledge
from the data and apply it to recompose groups task by task.

The proposed approach has at least five advantages. First, it does not rely on potentially
overly general grouping theories (that frequently do not apply to the situation of concrete
groups). It is totally data-driven and directly reflects the truth encoded in the data.
Second, it also works with students of whom no initial information is known. Third, it
accounts for group dynamics. For example, if somebody’s role changes over time, the
data would accordingly reflect such. Fourth, it makes a dynamic connection between
grouping attributes and group outcome. It could easily be extended to grouping attributes
other than roles. Fifth, this approach is able to generate concrete group composition rules
that can be applied to suggest group assignment in some other similar learning contexts.
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3.2  Simulation system

Due to the nature of a data-driven approach, data source certainly plays an important role
in evaluating the proposed approach. As shown in Fig. 1, group interaction data and
group success data are two main data sources. Empirical methods such as field studies
would be a straightforward way to collect such data. However, a suitable MOOC test
course has not yet been found, perhaps, due to the requirement of designing multiple
group tasks in a course. Instead, computer simulation was chosen to validate the
proposed approach. Thanks to Nygren’s studies [Nyl0, Nyll, Nyl2], modelling of
group discussion is computationally possible. We thus chose it to generate the group
interaction data in this paper. Via simulation, the group success data, such as learning
performance, is not realistic to be collected either. We thus had to choose group cohesion
that can be calculated from each simulating group as an alternative.

Our simulation system as a whole functionally consists of group composer, group
interaction simulator, roles detector, machine learning and regrouping components. Fig.
2 gives an overview on how these five main components work together.
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Fig. 2: Simulation system diagram

The Group composer implements the function of composing initial learning groups. It
takes a set of students and group size as input. The output of this component is small
learning groups of the given size. The initial groups can be composed at random. Note
that in case of uneven split over all resulting groups (i.e. the last group could not have
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the size of the given number), the last composed group either stay alone or merge into
the last second group, depending on the actual size of the group and the assigned group
size.

The Group interaction simulator generates the interaction data that is crucial for the
next steps of the whole simulation. The heart of this component stems from Nygren’s
work on simulation of user participation and interaction in online discussion groups
[Nyl12]. Aiming at showcasing the social structure of group members, as is intuitively
known to all, such an interaction simulator principally has to answer the following
questions. 1) Who will start a discussion post at the next moment? 2) Will this post
mention other participants (replies, comments and mentions of any sort)? 3) If so, who
exactly will be mentioned? Regarding the first question, everyone has an opportunity to
make a new post. The probability to make a new post is proportional to one’s
accumulative number of posts that have been already made. To answer the second
question, Nygren used a probability parameter which observed from an empirical study
to decide on the attachment of a groom (a groom could be comments and mentions of
any sort). To answer the third question, they resorted to two strategies. First, the more
often the participants are groomed, the more likely they have a chance to receive a
groom again during the following interaction. Second, the more Groom-balance is, the
more probability one has. Groom-balance is the difference between the number of
grooms a participant has given away and the number of grooms he/she has received. Fig.
3 depicts the inner mechanism of the group interaction simulator.

paramters:

- P_nys //Probability to select a not-yet-spoken member as a new speaker

- P_groom_sum //probability to select a speaker according to the sum of grooms received
already

- P_groomed //probability to select a speaker out of groomed members:

- g_rate //the grooming rate

- P_groom_balance // probability to select the groomed person according to groom balance

- num_posts // the total number of posts

for (i=0; i<num_posts; i++):
//select a speaker (post maker) out of group members
if rand() > P_nys:
Select a not-yet-spoken member
else: //select a speaker out of the yet-spoken members
if rand() > P_groom_sum:
Select the speaker with the max amount of grooms received
else: //select a speak according to their grooming status
if rand() > P_groomed:
Randomly select one from the groomed group members
else:
select one from the ungroomed members
// Decide if a post contains a groom
if rand() > g_rate:
Attach a groom to the post
//Decide whom is groomed if the post contains a groom
if rand() > P_groom balance:
Groom the member owning the max amount of groom balance
else:
Groom the member made the max amount of posts

Fig. 3: Group interaction simulator

The Roles detector detects individuals’ roles in each group. Roles identification has
been studied for years. Social Network Analysis (SNA) has been recently used to



326 Zhilin Zheng und Niels Pinkwart

address this role identification problem [Sul0, MMDI15]. A critical question has to be
answered when one applies SNA to detect group roles is how to map SN’s metrics to
specific roles. A wealth of studies has addressed this issue. Marcos et al. successfully
identified isolated students, student-coordinators and teacher dependent students by
observing SN’s degrees, closeness and betweenness centrality [Ma08]. They recently
extended it to detect more roles (e.g. teacher-facilitator) via applying their SNA tool,
Role-AdaptIA [MMD15]. Rabbany et al. visualized the leaders and peripheral students
using their Meerkat-ED tool [RTZ11]. Brokers as an important role in social networks
were also studied by Stuetzer et al. using SNA and its SN characteristics have so far
been uncovered [St13]. Referring to the aforementioned studies, the present work builds
on six roles in total: leader, disseminator, responder, broker, lurker and peripheral. The
mapping criteria can be seen in Tab. 1.
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leader H M/H M/H H
disseminator M/H M/H M/H
responder M/H M/H M/H
broker M/H
lurker N N N N N
peripheral L L/N L/N L L/N

Note: H—High (bound: 0.7-1); M—Medium (bound: 0.2-0.7); L—Low (bound: 0-0.2); N—Null
Tab. 1: Criteria to Map SN Metrics into Group Roles

The Machine learning component trains a classifier that is able to predict the group
outcome of any new form of group. Specifically, it sums up the number of students for
each role in each group and regards group success as the target (in this paper, if the
group cohesion of a group is larger than the median, it would be considered as a
successful group). A classifier is a product of the machine learning component (i.c. a
decision tree). It tells how good or bad the newly formed groups are. For example, a
decision tree could indicate three group composition rules: 1) if the number of lurkers is
not more than 2.5, the groups could be successful; 2) if the number of lurkers is more
than 2.5 and the number of leaders is more than 1.5, the groups would then be good too;
3) if the number of lurkers is more than 2.5 and the number of leaders is not more than
1.5, we then would get unsuccessful groups. The total amount of predicted successful
groups is a measure to evaluate the quality of the resulting group formations.

The Regrouping component functions as an optimizer. It creates new group formations
for students who want to leave and iteratively optimizes grouping results with respect to
the quality evaluated by the classifier. A discrete-PSO algorithm is applied to perform
this optimization [ZP14].
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3.3  Parameter settings

Regarding group interaction parameters, we almost borrowed all those parameter
settings from the Nygren’s work [Ny12], except for the following parameters. First of
all, the number of posts sets up the total number of posts assumed to be made in each
group in each task (70 in this work). The roles stereotyping rate is a probability to boost
such active roles as leader and disseminator to make a new post. This is only applied to
the tasks after the first one. Nygren did not observe the participants’ behaviors in the
subsequent tasks. The modeling is reported to be of Monte-Carlo type. If we run this
modeling for the subsequent tasks the same as the first one, this would lead us to
randomness. And this actually does not comply with our assumption that the group roles
play an important part in group interaction. To avoid this, we applied an additional
policy for regrouping that leaders and disseminators have some privileges to make a new
post (determined by this stereotyping rate). It was set to 0.5 in this work.

Drop-out parameters define how many students drop out. Our simulator models the
drop-out on a daily basis. Dropout students, by definition, are the most inactive students.
Suppose a group task follows the pace of most MOOCs’ weekly releasing mode, a
weekly drop-out rate needs to be defined and the daily drop-out rate can just average it
over 7 days of a week. Note that the vast drop out of MOOC students normally occurs in
the first week (approx. 50%) followed by a comparatively smaller yet stable decline rate
[K115, Bal3, MO13] in the following weeks. As such, placing a team task in the first
week would not be a desirable thing to do because of the foreseeable group instability.
Our parameters do not model the first week but assume a more or less stable decrease
over time (as is realistic from week 2 on). From the second week onwards, we can
estimate that the weekly drop-out rate could range from 0 to 50%. Still, we do not know
how much exactly that weekly drop-out rate is. In practice, the answer should vary
depending on different courses. With that in mind, there is no harm to set the weekly
drop-out rate to a random float number ranging from 0 to 50%.

Regrouping parameters define that how many students from four different categories
would leave the current groups for the newly composed ones. Categorizing students is
based on their participation and group performance. A pair of active and inactive
participation together with another pair of successful and unsuccessful group
performance composes the four different categories in this set of parameters. The
baseline of defining the leaving rates is threefold. First, active students should be more
likely to leave for new groups than their inactive counterparts. Second, unsuccessful
students should desire more chances to make a success via joining new groups. Hence,
the active but unsuccessful students should more likely to leave than the others. Besides,
the most conservative but ‘most clever’ could be the inactive but successful students.
They, in fact, take full advantage of the group work without any substantial effort. They
could continuously enjoy the benefits as a free rider so as not to leave the current groups
unless any negative consequences are foreseeable. Based on the upper assumptions, we
can simply randomize the leaving rates of those four categories of students (ranging
from 0 to 1), but they should also follow the aforementioned three laws.
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3.4  Simulation experiment

To examine the proposed group re-composition’s impact via the simulator, two
indicators were selected to be observed, namely group cohesion and drop-out. Note that
we could not use learning performance as an indicator in our simulation (as no learning
was modeled). Alternatively, group cohesion was selected as a substitute for the learning
performance for the sake of their positive relationship to each other. Dating back to
1990s, Evans et al. found such positive relationship by the use of meta-analysis [ED91].

Group cohesion, as a structural measure of social network, in this work, is defined as the
number of the actual inter-ties among group members divided by the total number of
possible ties between any pair of members [Wil4]. By definition, group cohesion
directly reflects inter-person ties in groups. The higher the group cohesion is, the
stronger ties the groups have. Such strong ties, as inter-communication pipelines,
undoubtedly address the salient problem of information-sharing and knowledge-sharing.
Group members can thus better know each other and faster fulfil their common goals as
a result [Ha99, LFF10]. Group cohesion, to some extent, mirrors group performance. It
was thereby chosen as an indicator to learning performance in this simulation work.

Drop-out as another important indicator reflects students’ engagement. In current
MOOCs, students’ engagement is reported to be associated with course content and
personal motivations. In group work, what factors can explain such has never been
studied thus far. The observation thereby, on the one hand, can hopefully imply some
unseen hints to address the high drop-out problem. On the other hand, it can reveal the
proposed group re-composition’s impact.

Regarding the experimental procedure, first of all, we simulated those 10,000 students’
(1,000 groups) group interactions in the first task. In the meantime, we regularly
removed dropout students. After their interaction, we selected the students who had
desired for a new group. The selection was based on the regrouping parameters
mentioned in Section 3.3. We then composed them into new groups using the proposed
approach. In order to highlight results in a comparable fashion, we also copied that
number of students and composed them into random groups. The former is named
algorithmic condition and the latter is named random condition. In the real world,
certainly, this is not feasible. In simulation, it is however fairly easy and allows us to
simulate what happens to the same students when re-grouped both algorithmically and
randomly. We next simulated all those new groups’ interactions in Task 2 and removed
the dropout students again. When the second task was over, we counted the number of
dropout students and the number of cohesive groups from both the algorithmic condition
and the random condition. Note that a cohesive group is a group with a group cohesion
that is higher than the median cohesion over all groups in both conditions. We ran the
whole process 10 times in avoidance of any biased result probably generated by chance.
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4 Results

4.1 Impact on group cohesion and dropout

Tab. 2 presents the group cohesion and drop-out. Recall that the whole simulation was
repeatedly run 10 times intending to avoid by-chance results. As shown in the table, the
amount of cohesive learning groups in the algorithmic condition is larger than in the
random condition (algorithmic: 0.466 vs random: 0.421). A t-test was performed and the
result indicates that the algorithmic condition produced significantly more cohesive
groups than the random condition (p-value: 0.035), which shows its superiority on
increasing group cohesion.

Runtimes #Cohesive groups/total #Drop-out/total
Algorithmic Random Algorithmic Random

#1 0.447 0.335 0.428 0.571
#2 0.482 0.476 0.453 0.546
#3 0.420 0411 0.445 0.554
#4 0.504 0.488 0.537 0.462
#5 0.440 0.36 0.503 0.496
#6 0.503 0.468 0.446 0.553
#7 0.486 0.464 0.465 0.534
#8 0.447 0.419 0.516 0.483
#9 0.480 0.360 0.416 0.583
#10 0.456 0.431 0.416 0.522
Ave. 0.466 0.421 0.468 0.530
SD 0.026 0.051 0.037 0.037
p-value 0.035 0.002

Tab. 2: Number of cohesive Groups and Drop-out

Regarding drop-out, more dropout students came from the random groups than from the
algorithmic ones (algorithmic: 0.468 vs random: 0.530). Likewise, a conducted t-test
indicates a significant difference between both conditions (p-value: 0.002).

Although learning performance was not observable in this simulation experiment, it is
not difficult to infer the positive impact on learning performance based on the reported
positive ties between group cohesion and learning performance. Since we also saw a
lower drop-out rate in the algorithmic groups, the impact on declining the drop-out rate
appears positive too.
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4.2  Impact of class size

Massive enrolment (thousands of participants) is one of the typical (and defining)
MOOC features. Testing re-grouping methods on a data set of 10,000 students as we did
is thus obviously necessary. However, one could ask whether the approach also works
with a few thousand participants or with even smaller courses, such as an on-campus
moodle course with a few hundred students typically. In an attempt to answer such a
question, another two simulation experiments were run with three thousand students and
one hundred students respectively.

When the participation is set to three thousand students, the observation on drop out and
group cohesion reveals no difference to the case of ten thousand students. Similarly,
more cohesive groups came from the algorithmic condition than the random one
(average: 0.474 vs 0.428). Students tended to drop out more likely in the random
condition (0.475 vs 0.524). A statistical test again confirmed significant differences
(#cohesive groups: p-value = 0.011, dropout: p-value= 0.001).

In the case of one hundred students, the drop-out rate found in both conditions is almost
same (average: 0.501 vs 0.498, p-value: 0.959). The reason for the deficits in this case
has their roots in the very limited number of groups to be composed. The number of
newly composed groups should be fewer than the total 10 groups (group size is set to
10). In such a small possibility scope, there is no need to challenge the algorithm’s
capability. In other words, the algorithmic method could perform no better than a
random method in such a small case.

Varying the course size from one hundred to ten thousand over these three experiments,
the observations tell us two points. First, the scale of participation does matter for the
simulation results. Second, the proposed data-driven approach seems to make a positive
effect beyond a certain level of participation. At least, for a hundred students, it does not
reveal any of its superiorities.

5 Conclusions

This work proposed a novel data-driven approach to address the group re-composition
problem that has not attracted much research attention thus far. The recent massive
online open courses are arguably a fit to its application. A second contribution of the
paper is the evaluation method via simulated classes. Through a simulation experiment,
we saw its capability in decreasing the drop-out rate in groups and bringing more
cohesive groups when compared against a random grouping strategy. Because of
computer simulation’s inherent drawbacks of stripping away realism to some extent, the
findings are accordingly sensitive to the simulation settings and assumptions. We are
certainly aware of this and therefore based the simulation on parameters and theories
extracted from literature. Yet, certainly empirical evidence needs to be collected to back
our findings.
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