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Abstract: Enhancing the scalability and utilization of data centers, virtualization is a promising
technology to manage, develop and operate network functions in a Ćexible way. For the placement of
virtual networks in the data center, many approaches and algorithms are discussed in the literature
to optimize solving the so-called virtual network embedding problem with respect to various
optimization goals. This paper presents a new approach for the model-driven speciĄcation, simulation-
based evaluation, and implementation of possible mapping algorithms that respect a set of given
constraints and using linear optimization solving techniques to select one almost optimal mapping.
Rule-based model transformation techniques are used to translate a given mapping problem into a linear
optimization problem by taking domain speciĄc knowledge into account. The resulting framework thus
supports the design and evaluation of (correct-by-construction) virtual network embedding algorithms
on a high level of abstraction. Well-deĄned model transformation rule reĄnement strategies can be
used to reduce the search space for the employed linear optimization techniques.

Keywords: Model-driven development; virtual network embedding; triple graph grammar; integer
linear programming; data center

1 Introduction and Motivation

With the rapid evolvement of the Internet, online services such as social networking, e-
commerce, and online gaming have become ubiquitous. These online services are constantly
generating a huge amount of data that is managed and analyzed by service providers like
Google, Facebook or Amazon. To this end, cloud computing has become the norm as it
can provide the required availability, scalability, and cost-effectiveness and can support
rapid development and operation cycles. Data centers (DCs) are major facilities for cloud
computing and usually host a large number of computing or storage servers interconnected by
a dedicated communication network. To operate these very large and complex environments,
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virtualization has become a key technology, decoupling the underlying infrastructure and the
upper-layer application and increasing the management Ćexibility so that economy-of-scale
can be easily achieved. As services are encapsulated in virtual machines (VMs) and are
interconnected with virtual networks (VNs), cloud operators can consolidate multiple VMs
on the same physical machine in the substrate network (SN), migrate the VM at runtime,
and span VNs regardless of the underlying network cabling details. This Ćexibility makes it
possible to enact a fast development process, to unify the conĄguration, and to reduce the
energy consumption of the DC, which is a signiĄcant cost factor for the cloud operators.

However, the virtualization and thus the uniĄcation of the conĄguration is accompanied
by a high complexity, which manifests itself especially in the virtual network embedding
(VNE) problem. The VNE problem is deĄned as the embedding of VNs in the SN with
various constraints respected and with multiple metrics optimized on both the computing
nodes and the network. When considering modern frameworks like OpenStack [SAE12] for
the VNE problem, administrators often perform these embeddings manually.

In recent years, research into automating VNE has been greatly intensiĄed. A variety of
algorithms and methodologies has been developed to improve the distribution of virtual
servers and networks within DCs. These algorithms and methodologies depend on speciĄc
optimization objectives such as higher resource utilization or lower energy consumption
and speciĄc structures of the underlying infrastructure [Gu10]. Performing a customized
embedding algorithm is generally an NP-hard optimization problem with a substantial search
space [Fi13]. Therefore, many different approaches and methods have been proposed to
reduce the search space with customized embedding algorithms and optimization heuristics.
Unfortunately, most of these algorithms are difficult to expand and adapt to different
environments and constraints because they are highly tailored for speciĄc infrastructures,
frameworks, or application scenarios.

A typical development cycle for VNE is shown in Figure 1. Taken as a rule, the development
of a new dedicated VNE algorithm starts with the informal documentation or formal
speciĄcation of a set of requirements and actions. According to this speciĄcation, a prototype
is implemented and evaluated in a simulation framework. Only when the simulation has
been successful, the algorithm is integrated and tested in a realistic testbed before it goes into
production. In the classical way of developing new embedding algorithms, the speciĄcation
is often manually encoded and often manually integrated into a simulation environment,
which brings time-consuming, error-prone tasks.

Prototype of the 
embedding algortihm

Specification of the 
embedding algorithm

Simulation/validation 
in a simulation 
environment

Production and 
deployment in a DC

Simulation/validation 
in a testbed

Fig. 1: Typical development cycle for VNE.
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In this paper, we target this issue and propose a new methodology for model-driven
virtual network embedding (MdVNE). In the model-driven development, executable
code for different platforms can be automatically generated, an integrated simulation
framework can fasten the prototyping of new algorithms by using the generated code
and the correct implementation of speciĄcations can be ensured. The MdVNE combines
model transformation in the form of so-called triple graph grammars (TGGs) and integer
linear programming (ILP) techniques with an optimization goal with linear equalities and
inequalities which represent constraints in this paper. In the Ąrst step model transformation
techniques are used to reduce the search space by pattern matching methods that generate
families of possible mappings of VNs to SN elements. These mappings respect a set of
given constraints handling rather structural or attribute conditions described via single
graph patterns. In the second step, the ILP solving techniques take further decisions among
the matched mapping candidates by selecting an optimal mapping with respect to a given
set of constraints and optimization goals. On the contrary to the TGG constraints, the
ILP constraints with a global scope go beyond single graph patterns and describe rather
mathematical constraints over available resources.
Compared to existing solutions, the beneĄts of the proposed MdVNE approach include

• Developers specify embedding algorithms on a rather abstract level using a combina-
tion of Ąrst order logic constraints, inequalities, and model transformation rules.

• Prototypes of implementations are then generated from the high-level speciĄcation,
leveraging state-of-the-art incremental pattern matching, model transformation, and
ILP solving technologies.

• The generated low-level implementation respects the high-level speciĄcations of
embedding constraints and optimization goals by construction.

• The selected implementation techniques simplify the development of incremental
reconĄguration of embeddings even including scenarios where embedding constraints
and optimization goals are modiĄed at runtime.

• The offered algorithm development and simulation framework supports the design of
rather different categories of embedding and optimizing algorithms by combination
and weighting of purely ILP-based and model transformation based approaches.

The remainder of this paper is organized as follows. After introducing the related work
in Section 2 a running example is introduced in Section 3. The new mapping approach
MdVNE is presented in detail in Section 4, followed by the evaluation in Section 5. Finally,
the paper is concluded in Section 6.

2 Related Work

Virtualization of DC networks has been widely explored and a survey can be found in
[Ba13]. As a result, many different algorithms [Gu10], [Ze15], [Xi12], [Zh13] for VNE
have been proposed to maximize the resource utilization or minimize the cost for DCs. As
the embedding problem is actually a case of the multi-way separator problem, it is NP-hard
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and, therefore, not scalable without reducing the space size by heuristics or meta-heuristics
[Fi13]. Guo et al. propose SecondNet [Gu10], which introduces a heuristic approach to map
a subset of virtualized data centers (VDCs) to a tree-based DC. However, the authors only
consider constraints on bandwidth and the number of virtual machines per physical server
for reduced complexity. Zeng et al. [Ze15] consider the DC architecture and the traffic
between virtual machines to minimize the overall communication costs between virtual
servers and employs the commercial ILP solver Gurobi [Gu16] to solve the optimization
problem. In addition, Xie et al. [Xi12] incorporate the time dimension into the VNE process
and Zhani et al. [Zh13] include dynamic migration to adapt embedding decisions over time.
The major advantage of MdVNE over the above-mentioned algorithms is that different
architectures, constraints for resources, demands, and various optimization goals can be
integrated and embedding decisions can be smoothly adapted in accordance to constraint
changes on the Ćy.

In other network areas such as software-deĄned networks (SDNs) or wireless networks, the
model-driven development is already used with promising results in order to increase the
abstraction level, to create applications and algorithms independently of existing technologies
and to verify them during development. In the SDN area, which makes the control and
forwarding level independent of the physical network and can be a part of virtualization in
DCs, Lopes et al. [Lo16] describe a model-driven approach to develop, verify and generate
application-, controller- and network-independent code for SDN applications. In the area
of wireless networks, Kluge et al. [Kl17] describe a model-driven approach to develop
topology control algorithms with graph transformations while ensuring compliance with
user-deĄned constraints and consistencies. However, none of the proposals can support both
server- and network-end constraints simultaneously and thus are not directly suitable for
VNE in complex DC environments.

3 Running Example

A typical scenario for DC operators consists of requests from customers for a customized
VN infrastructure with switches, servers or network functions like Ąrewalls. One typical VN
request is a virtual cluster in which servers are connected to one central switch for creating
a network environment [Ba11]. Such a topology is common in many enterprise scenarios
e.g. to build a web application with clustered web servers. These network topologies may
have different properties, resources, and constraints to be integrated and mapped by the DC
that entails a high degree of conĄguration diversity.

In the following sections of the paper, a simpliĄed example for a virtual cluster and DC is
used to introduce the new mapping approach called MdVNE. The used scenario (Figure
2) and the metamodel for modeling the environment and generating the network instances
(Figure 3) are now described in detail. Starting with Figure 2 (a), a snapshot of a DC with
a queue of VNs, which should be mapped to the DC, is shown. Let us assume that some
VNs are already mapped and all available positions (slots) to embed are occupied except
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After 
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Fig. 2: Running example: (a) DC with multiple VNs in the mapping queue; (b) and (c) are examples
for a virtual cluster; (d) is a subtree of the DC; (e) and (f) are two exemplary mapping solutions.

SSwitch SLink

- bandw idth: Double
- /freeBandwidth: Double

SServer

- /freeS lots: Integer
- s lots: Integer

VSwitch

- bandw idth: Double
- latency: Enum

VLink VServer (b)(a)
1 0 ..*

0 ..* 1
0 ..* 11 0 ..*

Fig. 3: Metamodels for (a) the VN and (b) the DC/SN.

the marked subtree. In the following, we only focus on the marked subtree from Figure 2
(d), which is called SN in the following. The mapping queue contains the VNs as shown
in Figure 2 (b) and (c). Every VN has a central switch (VSwitch) with two links (VLink)
each connected to a server (VServer). The bandwidth for these links is denoted as BV

(VSwitch.bandwidth) and the global VN has the service level agreement (SLA) that the
latency must be HIGH or LOW (VSwitch.latency). A LOW latency means that the whole
VN must be mapped to one substrate server in order to minimize the traffic delay whereas a
HIGH latency has no restrictions. The SN is similar except that the bandwidth is deĄned
for every SLink (SLink.bandwidth), every SServer owns a number of slots, each slot being
able to host a virtual server and the bandwidth for the server internal traffic is assumed as
unlimited. We further assume that every link in the SN has the same bandwidth BS .

After deĄning the networks, the mappings of the VN to the SN are speciĄed. These mapping
constraints must be strictly adhered at all times because they represent e.g. technical
conditions or SLAs with the customers. In this paper, the following constraints are deĄned:

(1) Every virtual switch must be mapped to one substrate switch or server.
(2) Every virtual server must be mapped to one substrate server.
(3) Every virtual link must be mapped to a substrate server or to one substrate link.
(4) Virtual networks with latency LOW must completely be mapped to one substrate server.
(5) The sum of all bandwidths of virtual links mapped to a substrate link must not exceed

the available bandwidth of the substrate link.
(6) The sum of all virtual servers mapped to a substrate server must not exceed the available

number of slots of the substrate server.
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In Figure 2, two exemplary results (e) and (f) after the mapping process of both VNs to the
SN are shown. In (e), the VN (b) with HIGH latency is mapped to SServer 2 and 3, and the
VN (c) to SServer 1. Result (f) presents that VN (c) with latency LOW must be rejected
because it cannot be mapped to one server after VN (b) is mapped to SServer 1 and 2.

While our set of constraints reĆects a subset of requirements from real-world scenarios,
further types of resources include CPU or storage capacity. Further constraint types include
quality of service regarding response times and security levels reducing allowed mappings
to certain subtrees in DC.

4 Mapping Approach

A typical workĆow for a mapping process is presented in Figure 4, which consists of three
phases: a preparation, mapping and deployment phase. In the preparation phase customers
deĄne the VN requests with their network functions, demands, SLAs, or change already
existing virtual networks e.g. bandwidth. Furthermore, changes of the DC can be executed
(add, remove, change server, switches,...) or the migration and shutting down of virtual
networks. After that, the mapping phase is started in which the new mappings for the VN
request are planned and activated/deployed in the deployment phase. This paper only focuses
on the mapping phase while other phases rather concern technical details of communication
networks.

Having deĄned and exempliĄed VNs and SN separately, our next goal is an explicit modeling
of their mapping relationships. TGGs [Sc95] meet this requirement to specify the mappings
between two graph-like structures via graph transformation rules. The combination of TGGs
and ILP [LAS17] can be used to generate families of possible mapping candidates between
two graphs that respect a set of given structural constraints and transfer this search space to
an ILP solver for solving the optimization problem. The ILP solving techniques have been
used to solve the resulting optimization problem (e.g., minimizing energy consumption)
expressed as linear inequalities. The advantages over a classical VNE algorithm like [Ba11]
or [Ze15] is that different constraints for resources, demands or optimization goals can
be combined and easily added or extended so that a very wide range of applications are
supported. Because TGG offer support for incremental updates of models, it is possible to
adapt the incremental methods for this embedding approach in order to be able to efficiently
deal with the highly dynamic system.

Fig. 4: WorkĆow for embedding of VN request.
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4.1 Triple Graph Grammar

TGG is an approach to specify graph grammars, whose languages are sets of graph triples.
Each graph triple consists of a so-called source and target graph plus a correspondence
graph with traceability information between source and target. Given such a speciĄcation,
the source graph contains the VNs, the target graph the SN and the correspondence graph
the mapping relationships. For generating the mapping candidates between the VNs and
the SN two steps are needed: (i) Creation of the SN and (ii) creation of the VNs with their
(mapping) correspondences between the VNs and the SN. In the following, we assume that
the SN is already created by the TGGs so we describe part (ii) now in detail.

In Figure 5, the TGG rules for generating the virtual networks and the mapping candidates
are shown. Black elements are required context elements for executing the rule, whereas
green elements marked by ++ are created by the rule. The naming convention for the
elements and the correspondences are as follows: The name indicates the type e.g. Sw is an
element of type Switch and SwSw is the correspondence between a virtual and a substrate
Switch. The subscript letter V or S indicates if the element is part of the virtual or the
substrate network, the letters e.g. a represent an index of the speciĄc type. Two types of
tuples are deĄned, one for the links and one for the correspondences. The Ąrst type of the
tuples are for links and the letters a and b represent the source and target node e.g. for
LV (a,b) SwVa is the source and SrVb is the target element (Figure 5 d). The second type is
for the correspondences and the Ąrst part represents virtual and the second the substrate
element e.g. for LSr(a,b),c L(a,b) is in the VN and Src in the SN.

Rule (a) creates a new virtual switch (SwVa) and mapping candidate (SwSw(a,b)) to an
existing substrate switch (SwSb). Rule (b) and (c) are similar to rule (a) except that in rule (c)
an attribute constraint SrSb .freeSlots≥ 1 is added which means that this rule only matches
if the attribute constraint is fulĄlled. FreeSlots represent, similar to freeBandwidth, the
number of slots that are not occupied by an active mapping before the mapping phase has

SwVa : VSwitch
++

SrSb : SServerSwSr(a,b)

++

(b) Mapping of a virtual switch to a substrate server

(a) Mapping of a virtual to a substrate switch

SwVa : VSwitch
++

SwSb : SSwitchSwSw(a,b)

++

SrSb.freeSlots >= 1

(c) Mapping of a virtual to a substrate server

SrVa : VServer
++

SrSb : SServerSrSr(a,b)

++

LSr(a,b),c

++

SrSr(b,c)

SwSr(a,c)

SrSc : SServer

LV(a,b) : VLink
++

SrVb : VServer

SwVa : VSwitch

++

++

(d) Mapping of a virtual link to a substrate server (e) Mapping of a virtual to a substrate link

LL(a,b),(c,d)

++

SrSr(b,d)

SwSw(a,c)

LS(c,d) : SLink

SrSd : SServer

SwSc : SSwitch

LV(a,b) : VLink
++

SrVb : VServer

SwVa : VSwitch

++
++

LS(c,d).freeBandwidth > 0
SwVa.latency != LOW

Fig. 5: TGG rules for creating the mapping of the VN to the SN.
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started. Rule (d) creates a virtual link (LV (a,b)) with a mapping candidate (LSr(a,b),c) to
an existing substrate server (SrSc), if the mappings SwSr(a,c) and SrSr(b,c) already exist.
The last rule (e) creates a mapping of a virtual link (LV (a,b)) to a substrate link (LS(c,d)) if
the mappings SwSw(a,c) and SrSr(b,d) exist, freeBandwidth of LS(c,d) is greater than 0 and
the latency of the switch SwVa is not LOW. This implicates that if SwVa has latency LOW

only rule (d) can produce a link mapping. After the TGG rules are explained in detail, the
connection of the constraints from section 3 to the TGG rules are summarized in Table 1.

Constraint TGG rule Annotation

(1) (a) and (b) A virtual switch can be mapped to a substrate server or switch.

(2) (c) A substrate server must have a free slot to map a virtual server.

(3) (d) and (e) A virtual link can be mapped to a substrate server or link.

(4) (d) and (e) Rule (d) must be executed to map a virtual link because rule (e)
cannot be executed if latency = LOW.

(5), (6) - Is not represented by TGG rules

Tab. 1: Representation of the constraints from section 3 by the TGG rules from Figure 5.

To generate all mapping candidates, the TGG rules are executed on the example instance
from Figure 2. An example of these mapping candidates of VN (c) from Figure 2 is shown
in Figure 6, which shows a subset of all created elements and neglects VLink 2 and VServer

2 for brevity. During the creation of all correspondences e.g. SwSr(1,1) further constraints
are internally created as integer (in-)equalities. These constraints are described and listed in
the next subsection.

LL(1,1),(1,2)

SrSr(1,2)

SwSw(1,1)

SrSr(1,1)

SwSr(1,1)

SwSr(1,2)

LSr(1,1),1

LSr(1,1),2

LL(1,1),(1,1)

SwS1

SrS1

LS(1,1)

LS(1,2)

SrS2

LS(1,3)

SrS3

SwV1

SrV1

LV(1,1)

Fig. 6: All possible mappings after executing the TGG rules for the VN (c) from Figure 2. The VLink

2 and VServer 2 are neglected to avoid diagram clutter.
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4.2 Linear inequalities

The execution of the TGG rules generates all potential candidates of mappings and integer
variables that match the required graph structures and attribute constraints as speciĄed in
the rules. Additionally, ILP constraints are generated to ensure that each virtual network
element is mapped to one and only one substrate element. In the next step, the linear
optimization problem is solved by establishing linear inequalities for all constraints and
passing them to the ILP solver. These linear inequalities specify which mappings will be
activated and which are discarded e.g. if SwSw(1,1) is activated, SwSr(1,1) is discarded as
they map the same virtual element and are thus mutually exclusive. To show the relationship
between the mapping candidates and their integer variables in the inequalities, the name
of the mapping candidate variables are retained with lowercase letters e.g. swsw(1,1) for
their integer variables with the value 0 or 1. Other necessary parameters for establishing the
linear inequalities are given in Table 2.

Variables for virtual network Variables for substrate network

MV Number of all virtual switches MS Number of all substrate switches

NV Number of all virtual servers NS Number of all substrate servers

KV Number of all virtual links KS Number of all substrate links

Tab. 2: Different parameters for the linear inequalities.

Some of the advantages of this approach are the reduction of the search space by using
graph grammars, and the inequalities automatically derived from the TGG rules if executed,
which prevent a virtual element from being mapped several times, or that the dependencies
between different mappings, e.g. lsr(1,1),2 and swsr(1,2) are taken into account.

In the following, the constraints and their linear inequalities are described in detail and
shown in a compact form in Table 3.

Constraint (1) is represented by TGG rule (a) and (b) (Table 1) and after their execution,
the generated inequalities are presented in Table 3. The Ąrst line is generated by rule (a)
considering that after the generation of all possible mappings between one virtual switch
and all substrate switches, a maximum of one mapping can be selected. Therefore, the
sum of all integer variables swsw(i, j) must be smaller or equal to 1 e.g. swsw(1,1) ≤ 1.
The inequalities generated by rule (b) are very similar to rule (a) with the only difference
that instead of a substrate switch a substrate server is used which leads to the following
exemplary inequality e.g. swsr(1,1) + swsr(1,2) ≤ 1.

Constraint (2) is represented by TGG rule (c) which leads to similar inequalities like rule
(a) and (b) e.g. srsr(1,1)+ srsr(1,2) ≤ 1. The additional attribute condition SrSb .freeSlots ≥ 1
is not included in the linear inequalities because the pattern matching checks this condition
before executing the rule and creating a potential mapping. Assuming that this constraint
is not encoded in the TGG rules, this attribute condition would be manually encoded and
added to the inequalities.
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Constraint Inequalities TGG rules

(1)
∀i, 1 ≤ i ≤ MV |

∑MS

j=1 swsw(i, j) ≤ 1 (a)

∀i, 1 ≤ i ≤ MV |
∑NS

j=1 swsr(i, j) ≤ 1 (b)

(2) ∀i, 1 ≤ i ≤ NV |
∑NS

j=1 srsr(i, j) ≤ 1

(3)
∀i, j, 1 ≤ i ≤ MV , 1 ≤ j ≤ NV |

∑NS

p=1 lsr(i, j),p ≤ 1;

∀i, j, p, 1 ≤ i ≤ MV , 1 ≤ j ≤ NV , 1 ≤ p ≤ NS |

lsr(i, j),p ≤ swsr(i,p), lsr(i, j),p ≤ srsr(j,p)

(d)

∀i, j, 1 ≤ i ≤ MV , 1 ≤ j ≤ NV |
∑MS

p=1

∑NS

q=1 ll(i, j),(p,q) ≤ 1,

ll(i, j),(p,q) ≤ swsw(i,p), ll(i, j),(p,q) ≤ srsr(j,q)

(e)

(4) No additional inequalities are needed. -

(5) ∀i, j, 1 ≤ i ≤ MS, 1 ≤ j ≤ NS |LS(i, j).bandwidth −
∑MV

p=1

∑NV

q=1 ll(i, j),(p,q) ∗ SwVp .bandwidth ≥ 0

-

(6) ∀i, 1 ≤ i ≤ KS |SrSi .slots −
∑j=1

NV
srsr(i, j) ≥ 0 -

Tab. 3: Representing linear inequalities for the constraints (section 3) and the TGG rules (Figure 5).

Constraint (3) is represented by TGG rule (d) to map a virtual link to a substrate server
and rule (e) to map it to a substrate link. Compared to the previous constraints these rules
have implications to express that the context elements and mappings are already selected. In
rule (d) the implication is that a virtual switch and virtual server are already mapped to the
same substrate server. The result are two additional inequalities e.g. lsr(1,1),2 ≤ swsr(1,2),
lsr(1,1),2 ≤ srsr(1,2) meaning that if lsr(1,1),2 is selected then swsr(1,2) must also be chosen
because the link LV (1,1) can only be mapped to server SrS2 if the switch SwV1 is already
mapped to SrS2. The inequalities for rule (e) are similar except that a virtual link is mapped to
a substrate link and and a virtual switch to a substrate switch e.g. ll(1,1),(1,1) + ll(1,1),(1,2) ≤ 1,
ll(1,1),(1,1) ≤ swsw(1,1), ll(1,1),(1,1) ≤ srsr(1,1), and ll(1,1),(1,2) ≤ srsr(1,2).

Constraint (4) is represented by the combination of TGG rule (d) and (e) because if latency

= LOW then rule (e) is not executed (SwVa .latency , LOW) and, therefore, the virtual
network must be mapped to one server (rule (d)), if possible. Consequently, no additional
inequalities are needed to realize this constraint.

Constraint (5) cannot not be expressed by TGG rules because adding all mapping candidates
is (actually) not expressible by eMoĆon, the used to tool to specify TGGs and generate
executable code. Therefore, these must be manually added to the generated inequalities. The
constraint requires that the bandwidth of all mapped virtual links to a substrate link must no
exceed the available bandwidth of this substrate link e.g. LS(1,1).bandwidth − ll(1,1),(1,1) ∗

SwV1.bandwidth ≥ 0.

Constraint (6) is realized in a similar way as constraint (5) except that the sum of all virtual
servers mapped to a substrate server must not exceed the available slots of the substrate
server e.g. SrS1.slots − srsr(1,1) ≥ 0.
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After the generation of all linear inequalities, these inequalities are handed over to Gurobi,
the selected ILP solver, with the optimization goal to maximize the number of mapped
virtual elements. Depending on the application or scenario, the optimization goal can also
be modiĄed and, e.g. be designed to minimize energy consumption.

Comparing the search space for this running example for a brute-force method and the
TGG approach to generate all inequalities shows that the number of integer variables and
inequalities could be reduced signiĄcantly. Generating all mapping candidates without
checking additional attribute constraints result in more integer variables, e.g. SrSr(1,3)
cannot exist because SrS3 has no free slots, which implicates that the link mapping candidate
LSr(1,1),3 and LL(1,1),(1,3) can also not exist. The same holds for SrSr(2,3), LSr(1,2),3 and
LL(1,2),(1,3). In a brute-force approach, all attribute constraints freeSlots and freeBandwidth

must additionally be encoded as inequalities while the pattern matcher did already check
these constraints during the executing of the TGG rules. At the end, checking the latency

during the generation of the mapping candidates reduces the number of integer variables
and inequalities signiĄcantly. Looking at VN (c) from Figure 2 the TGG rule (e) is never
executed and, therefore, no mapping candidates for LL(a,b),(c,d), no inequalities to express
the implications for the source switch and target server and no attribute constraints have to
be encoded as inequalities.

5 Evaluation

In this section, the presented MdVNE approach is evaluated and compared with a brute force
and the Oktopus algorithm [Ba11], an established VNE algorithm for DCs, in relation to the
runtime and the number of ILP variables and constraints. After introducing the simulation
setup, the following three research questions are discussed:

RQ (1): How does the runtime, ILP constraints and variables change if the number of
servers in the SN increases?

RQ (2): How does the runtime behave in comparison to a brute force mapping approach
and the Oktopus algorithm in a speciĄc scenario?

RQ (3): Does the reduction of the search space for the mapping candidates by MdVNE offer
advantages with respect to the total runtime compared to a brute force mapping
approach?

5.1 Simulation setup

The structure and underlying scenario for the evaluation is based on the presented running
example. As shown in Figure 2, a DC with a two-tier network infrastructure is used in
which virtual networks are stored in a queue and mapped one after the other to the DC. The
two-tier DC infrastructure consists of two aggregation switches each connected to a varying
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number of racks (marked area in Figure 2 (a)), each with a top of the rack switch (ToR
switch) and 10 servers with four slots. Each server is connected to the ToR switch with a
bandwidth of 10, and the ToR switches with a bandwidth of 100 to each aggregation switch.
The virtual networks are implemented as virtual clusters [Ba11], which have a central switch
connected to all virtual servers with a bandwidth of two. The following evaluation will
vary the number of racks in the DC and the number of virtual servers. All other parameters
remain constant. In order to obtain a wide range of virtual server distribution conĄgurations,
a random sequence of virtual networks with virtual servers between 2 and 10 is generated
and used for all further evaluations to map one virtual network after the other to the DC. The
evaluation is done on an Intel Core i7-7700HQ with 2.80 GHz with Windows 10 (version
1703) and the Java SE Development Kit 8u141.

In the following, three approaches are presented and compared with each other. The Ąrst and
second approach are the presented MdVNE and a brute force ILP mapping approach. They
are quite similar to each other except that in the brute force approach no attribute constraints
are used further restricting the execution of the rules, e.g. SrSb ≥ f reeSlots (Figure 5 c).
These attribute constraints are encoded into the ILP problem by additional inequalities
after variables and formulas have been generated for all possible mappings of virtual to
substrate elements. As a last comparison, the established Oktopus algorithm [Ba11] is
executed and evaluated. Because this algorithm is not based on graph transformations or
the Eclipse Modeling Framework (EMF), other data structures in the background are used
which makes the comparison more difficult. In addition, Oktopus uses heuristics to map the
virtual networks in contrast to the MdVNE approach. A qualitative comparison of the three
algorithms is nevertheless out of scope of this paper.

5.2 Results

In the following, the results in combination with the research questions are presented and
discussed.

RQ (1): To answer the Ąrst research question, the MdVNE approach is used to map 40
virtual networks and increases the number of racks from 2 to 50. This corresponds to a
total server count of 20 to 500. After all 40 virtual networks are mapped, an average value
for the total runtime of the mapping process, the runtime of Gurobi, the ILP solver, the
number of ILP variables and constraints are being calculated. The mapping process of the
Ąrst network is ignored in this calculation, as many Java and EMF initializations take place
and the system is not in a steady state. In order to obtain reliable results all simulations were
performed three times with a maximum percentage deviation from the average value of 9 %.
The evaluation of the runtime for the MdVNE approach over the number of racks can be
found in Figure 7. The complete mapping process seems to have a polynomial growth that
can be explained by the fact that the distribution of the virtual servers to different substrate
servers generates mapping candidates in a combinatorial manner. The growth of the ILP
solver runtime values depends on the internal heuristics of the solver but it seems to be
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a polynomial growth in this scenario. The inĆuence of the ILP solver for the complete
runtime of the MdVNE approach grows continuously from 15 % for three racks to 48 % at
50 racks (Figure 8) because the number of the generated ILP constraints and variables is
also growing proportionally to the number of racks (Figure 9). The linear growth of both
parameters can be explained by the steady increase of the elements in the model that are
proportional to the number of combinatorial pairs of virtual servers as mapping candidates.

RQ (2): To answer the next two research questions the evaluation was modiĄed to a scenario
of 6 racks, which makes it possible to map the Ąrst 40 virtual networks from the queue
into the DC. The result of the average runtime measurement is shown in Figure 10 with
a logarithmic scaled runtime in ms over the number of mapped virtual networks e.g. 30
mapped virtual networks mean that 29 networks are already mapped.
As expected, the optimized and for this application scenario tailored Oktopus algorithm
has the lowest constant runtime between 2 ms to 5 ms in this comparison. The efficient
hand-tailored background data structure (in contrast to the usage of EMF models as data
structures for the MdVNE and brute force algorithm) minimizes the internal Java overhead
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and, therefore, reduces the runtime, too. The MdVNE approach has also an almost constant
runtime in a range of 140 ms to 500 ms, which is two magnitudes higher than the Oktopus
algorithm e.g. 184 ms for MdVNE and 2 ms for Oktopus. This overhead is mainly caused
by the usage of EMF as model framework. In both approaches, the higher values indicate
that a virtual network had to be distributed on several substrate servers because all positions
inside the tree have to be taken into account in a combinatorial manner. For the brute force
mapping approach, a polynomial growth can be approximately assumed because for every
combinatorial pair of elements in the increasing model an ILP variable is generated. This
can be seen in more detail for the MdVNE and the brute force approach in Figure 11.
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Fig. 11: ILP constraints and variables for the MdVNE and brute force approach over the number of
mapped virtual networks.

RQ(3): We can see in Figure 11 that the ILP variables and constraints can be signiĄcantly
reduced by using a more sophisticated ILP variable and constraint generation approach,
which uses attributed graph transformations (TGGs) to Ąlter/eliminate unfeasible mapping
conĄgurations early on in the MdVNE optimization algorithm. The result is a reduction in
the runtime of the mapping process by two orders of magnitude (Figure 10). Generally, as
many constraints as possible should be integrated into the TGG rules to reduce the complete
mapping process.

5.3 Conclusion

In this section, we see that using the MdVNE approach it is possible to specify algorithms for
the generation of ILP formulas to solve an optimization problem on a high level of abstraction
(TGGs). The VNE problem to map a varying number of virtual clusters into a two-tier
DC network by respecting constraints, attribute conditions and structural patterns could
be realized and evaluated. The algorithm scales because of the linear runtime complexity
and is thus in the same complexity class as the optimal tailored Oktopus algorithm. The
overhead of the TGG execution phase is acceptable against the ILP solver phase especially
when the number of servers increases in the DC. Furthermore, we see that with very little
implementation effort (adapting the TGG rules) the search space of the ILP problem and,
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therefore, the complete runtime of the mapping process can be signiĄcantly reduced. In the
evaluation and running example only conservative structural and attribute constraints were
speciĄed in the TGG rules, but it is also possible to deĄne more domain speciĄc complex
constraints to deĄne sort of heuristic algorithm to reduce the search space even more and to
improve the scalability.

6 Conclusion and Future Work

This paper presents a new methodology called model-driven virtual network embedding
(MdVNE) combining model transformation and integer linear programming techniques to
solve virtual network embedding problems. The model transformation and pattern matching
techniques are used to generate families of possible mappings and reduce the search space
by respecting a set of given constraints. Afterwards ILP solving techniques are used to select
optimal mapping candidates. The advantage of this methodology is that the embedding
algorithm can be speciĄed on a rather abstract level and a prototypical implementation
is automatically generated from this high-level speciĄcation. The development of new
algorithms with this method can be fastened and, therefore, easily adjusted to other
environments, applications and scenarios.

The evaluation has shown that it is possible to specify an algorithm for the VNE problem by
using TGGs and an ILP solver. This algorithm scales in the range of 20 to 500 servers in a
two-tier data center network with a linear runtime complexity. The reduction of the search
space by the usage of pattern matching techniques reduces the runtime signiĄcantly.

To develop and evaluate different algorithms, the simulation framework and the metamodel
of the DC and the VNs will be extended to support the deĄnition of new types of constraints
that take resources like e.g. CPU or demands e.g. latency into account. In addition, metrics
to measure the qualitative properties of different algorithms will be added. Because of
the high dynamics in this system, which requires a re-embedding or migration of existing
mappings, e.g. changes in the DC or the virtual networks, incremental mapping scenarios
are studied right now and will be supported in future versions of MdVNE.
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