
Automatic Transformation and Enlargement of Similarity
Models for Case-Based Reasoning∗

Mirjam Minor‡ and Karsten Schmidt‡‡

‡Universität Trier, Lehrstuhl für Wirtschaftsinformatik II
54286 Trier, Germany

minor@uni-trier.de

‡‡ Universität Rostock, Institut für Informatik,
Albert-Einstein-Str.21, 18059 Rostock, Germany

karsten.schmidt@uni-rostock.de

1 Introduction

In this paper, we present a new approach how similarity models for Case-Based Reasoning
can be extended by means of operators for relations. A second contribution of the relations
approach is that the mathematical model can be transformed into an OWL notation as well
as in the proprietary format that is needed to build a Case Retrieval Net1

Inside a case-based system, a case c is represented by a set of information entities ei ε E:
c = {e1, e2, ..., en}. It is compared with a query q that is as well just a set of information
entities. A composite similarity function for q, c ⊆ E determines a numeric value for the
degree of similarity SIM(q, c). SIM is computed by means of a local similarity function
sim : E × E → R. A very simple example of SIM is the sum of the local values:
SIM(q, c) =

∑
eiεq

∑
ejεc sim(ei, ej).

To provide the values for sim, we need a similarity model. In small domains, this might
be a table of manually specified similarity values for the pairs of information entities like,
for instance, sim(MPEG − 4, XviD) = 0.3, sim(XviD, V ideocodec) = 0.7. In real
world applications, the similarity model is often too complex to be clearly arranged in a
table. We employ more abstract relations instead.

A similarity type is a binary relation between two information entities S ⊆ E × E.
Each similarity type has a qualitative or quantitative identifier, e.g. “IS SUCCESSOR”,
“IS ABSTRACTION”, “LOW SIMILARITY”. A set S of similarity types is called a sim-
ilarity dictionary. A weighting function g : S → R assigns a numeric value to a similarity

∗This work has been partly funded by the BMBF project URANOS (no. 01M3075)
1Mario Lenz and Hans-Dieter Burkhard. Lazy Propagation in Case Retrieval Nets. In Wolfgang Wahlster,

editor, 12th European Conf. on Artificial Intelligence (ECAI96), pages 127 131. John Wiley & Sons, 1996.

293



type.

2 Extending the similarity model by operators

Whether a pair of information entities belongs to a similarity type is empirically motivated.
We define operators for relations with the aim to generate new relations that fulfill some
formerly specified properties.

Definition (operators for relations)

An operator op : S 
→ S′ for a relation S ⊆ E×E generates a new relation S′. We cover
only some special cases of operators in the following. For further operators, we refer to
future work:

Identity: id(S) = S

Inverse: inv(S) = S−1

Transitive closure: t(S) =< S > (The transitive closure < S > of a
relation S is the smallest transitive relation including S.)

Symmetrical closure: s(S) = S ∪ S−1

Enlargement by the inverse of a partner relation: e(S) = S ∪ f(S)−1

(f : S → S is a function that assigns a partner relation to a relation.)

Induced brother relation: b(S) = (S−1 ◦S)\ I (I is the identity relation,
i.e. b(S) = {[b, c] | b �= c,∃a ε E : [a, b], [a, c] ε S})

t, s, and e are supposed to produce relations with the following properties: t extends a
relation, e.g. the ”IS ABSTRACTION” relation, to a new transitive relation. s results in
a symmetric relation. e can be applied to pairs of relations, e.g. the ”IS PART” and the
”HAS PART” relation, to generate a pair of real inverse relations.

Definition (Self-reflectivity) f is called self-reflexive if it holds: f(S) = R iff f(R) = S.

Conclusion 1 Is f self-reflexive then holds: e(S) = [e(f(S))]−1

The users specify which chains of operators will be applied to which relations (see Ta-
ble 2). We consider only the eight special cases {te, tse, se, e, bte, btse, bse, be}.

Chain of operators ωS

todo : S → {te, tse, se, e} is given by the user. We use the abbreviations ωS = todo(S),

hS =

⎧⎪⎪⎨
⎪⎪⎩

t , if ωS = te
ts, if ωS = tse
s , if ωS = se
id, if ωS = e

Specification of f (to be used by the operator e)

294



Identifier Weight g hS pf SE , Id.
NO SIMILARITY 0,0 id - -
ID 1.0 id - -
ABSTRACTION 0.3 t SPECIFICATION +, BROTH
SPECIFICATION 0.7 t ABSTRACTION -

HAS PART 0.5 t IS PART -
IS PART 0.5 t HAS PART -

USES AS MEANS 0.3 t IS MEANS FOR +, MBROTH
IS MEANS FOR 0.7 t USES AS MEANS -
STRONG SIM 0.75 id - -
WEAK SIM 0.25 id - -
MEDIUM SIM 0.5 id - -
BROTH 0.5 id - -
MBROTH 0.3 id - -

Table 1: Sample specification of the similarity types from the ExperienceBook project.

The user specifies the set of partner relations SP ⊆ S and the partner function pf :
SP → SP . With those, the function f is built as follows:

f(S) =
{

pf(S), if S ε SP
S−1 , else.

Parent relations The set of parent relations SE ⊆ S is specified by the user.

Definition (Enlargement of a similarity dictionary)

Be S, S′ two similarity dictionaries. The operator Ext : S 
→ S′ is defined as:

Ext(S) = {ωS(S) | S ε S} ∪
{bωS(S) | S ε SE}

Definition (Consistency of ωS with f ) ωS is consistent with f if holds: ωS = ωf(S)

Proposition (Properties of the relations generated by ωS)

(i) ωS ε {te, tse} ⇒ ωS(S) is transitive

(ii) ωS ε {tse, se} ⇒ ωS(S) is symmetric

(iii) Under the conditions S ε SP , f self-reflexive, and ωS consistent with f holds:

ωS(S) = (ωf(S)(f(S)))−1

Lemma 1 (i) t ◦ inv = inv ◦ t (ii) s ◦ inv = inv ◦ s (iii) ts ◦ inv = inv ◦ ts

Proof of the proposition ad (i) und (ii): as one can see, ad(iii):

295



Figure 1: An automatically extended Case Retrieval Net (new and modified edges are dotted).

ωS(S) = hS ◦ e(S) = hS ◦ (e(f(S)))−1 because of Conclusion 1

= hf(S) ◦ inv ◦ e(f(S)) because ωS is consistent with f

= inv(hf(S) ◦ e(f(S))) because of Lemma 1

= (ωf(S)(f(S)))−1. �
The mathematical description of the similarity model has been transformed into two alter-
native representations in computer files:

1. A proprietary notation that is helpful to build a Case Retrieval Net (see Fig. 1) lists
each pair of information entities explicitely in both directions.

2. An OWL notation can be visualized by ontological tools like Protégé.

The first benefit of the proposed approach is that we can import and export knowledge
about similarity from and to domain ontologies in the classical sense. We have imple-
mented this by means of Perl scripts. The danger of ontology pollution is obviously given,
but the impacts on the case-based retrieval are relatively small: In case a single local simi-
larity value is too strong or too weak, it is compensated by the other values in the composite
similarity function. A critical mass of pollution is reached when an empirically matching
case is squeezed out of the first positions of the ranking for a query by overestimated cases.
It is future work to investigate empirically when this critical mass is accomplished.

The second and major benefit of our approach is that we can make the modeling process
more comfortable for the knowledge engineers. Specifying a desired property of a relation
like transitivity is less time-consuming than verifying manually whether all members of a
family tree are properly connected. The “NO SIMILARITY” relationship allows to model
exceptions. Protégé is able to generate a visualisation of the similarity model.

296


