
Tool–Supported Systematic Model Assessment

Joanna Chimiak–Opoka, Gunnar Giesinger,
Frank Innerhofer–Oberperfler, Bernd Tilg

Institute of Computer Science, University of Innsbruck
Technikerstrasse 21a
A–6020 Innsbruck

joanna.opoka@uibk.ac.at

Abstract: In this paper we present a framework supporting domain–specific model
assessment in a heterogeneous modelling environment. The generic method we devel-
oped is based on a common meta model for all user models created within different
tools and notations. The method supports information retrieval for the set of models
by means of queries and views, which can be interpreted as model cross sections cor-
responding to given aspects. We present a technical description of our framework:
an architecture, a prototypic realisation and the technologies used in our implemen-
tation. A central point of the modular architecture is a common repository of model
elements. The queries and views provide aggregated information on model elements
to support the modeller during modelling and analysis processes.

1 Introduction

Nowadays there is a huge number of tools supporting model design in standardised no-
tations such as UML1. Together with the introduction of models in the software engi-
neering process many novel usage scenarios of models have emerged. This ranges from
model–driven architecture (MDA2) and model–based testing, e.g. [CCD04], to model–
based IT–governance, e.g. [BIO05, TB06]. Not surprisingly such usage of models in
real applications reveals new requirements and challenges. One of these challenges is
the quality assurance of the models developed. Complex models with hundreds or thou-
sands of model elements in general contain inconsistencies and gaps. Quality assurance
of these models cannot be done by pure manual inspection or review but requires tool
assistance. In the framework we are presenting in this paper we focus on the static analy-
sis of models, which supports model developers in checking the consistency and validity
of models. Our approach is based on two basic observations.

The first observation is that model quality mainly depends on the interplay of model ele-
ments and diagram types. For example, a requirements specification typically comprises
a set of sub–models (like business process model, use case model, schematic use case
descriptions) which use a set of common model elements (e.g. action, use case, actor,

1Unified Modelling Language, http://www.uml.org/
2Model Driven Architecture, http://www.omg.org/mda/

183



business class). The use of these model elements in different models creates complex in-
terrelationships and multiple sources of inconsistencies. For example, the initiating actor
in the use case description has to be an actor related with the use case in the use case
model. The model elements and their interrelationships cannot be defined in a general way
for the different UML diagram types but depend on the underlying method and application
context.

The second observation is that not in all cases the quality checks of a set of models can
be done in an automatic way [Jug04]. An appropriate way of supporting modellers in this
case is to generate model views that provide aggregated information about the models.
For instance, a view on an enterprise model may list all business classes and related ap-
plications in table form. This information can be generated from the models and enables
the quality manager to perform cross–checks on the model and its sub–models.

Based on these two observations we can characterise the backbone of our approach as fol-
lows. Our validation target is a set of interrelated models (which we call in the sequel
a model landscape). We consider a heterogeneous model landscape in which the models
may be UML models or other models conform to MOF3 notation. The models in the model
landscape use a common set of interrelated model elements. The model elements to-
gether with their relationships are described in a domain–specific meta model. The meta
model defines the universe of discourse in which quality checks can be formulated and
be evaluated. Based on the structures of the meta models we define executable model
validation checks. Both our meta modelling approach and the syntactic framework have
been presented in [BCO05]. In this paper we focus on the tool support of our framework.
Our tool operates on a heterogeneous model and tool landscape based on a generic model
repository. Our method is fully generic in the sense that both the model repository and
the language interpreter are independent of the meta model. Our framework can be applied
in many–fold contexts in which complex model landscapes are developed. In particular,
our approach is aligned with the requirements and experiences of three projects we con-
duct in cooperation with industrial partners. Moreover, we show that our approach is fully
compliant with OMG’s MDA approach.

This paper is an extended version of [COGB+], where we presented our tool in the context
of medical process analysis. In this paper we show also other aspects and usage possibil-
ities of our framework. The sequel of this paper is structured as follows. In section 2
the brief description of our projects and their technical and architectural requirements are
presented. Section 3 includes a short summary of basic notions and concepts used in our
approach. The core of the paper is section 4, in which the technical aspects of our frame-
work are presented. Finally, the last section gives a link to related work and a conclusion.

2 Projects and Requirements

In this section we describe our cooperation projects MedFlow, ProSecO, PRO2SA (sec-
tion 2.1) and give the summary of their requirements (section 2.2).

3Meta–Object Facility, http://www.omg.org/mof/
184



a. model types b. meta model

Figure 1: Model types and meta model in the MedFlow project.

2.1 Projects

Quality Requirement Checks Our research study on quality requirement checks was
initially inspired by modelling clinical processes within the MedFlow4 project [SAWCO05].
The aim of the project is the fusion of technical and socio–organisational views of processes.
In the clinical process modelling different types of models within different modelling tools
and notations can be created. Such a modelling scenario, where techniques of process mo-
delling (e.g. Aris5) are combined with techniques of IT–landscape modelling (e.g. using
the 3LGM6), is typical. In Figure 1.a we depicted model types created in the MedFlow
project (see Example 1 in section 3.1 for an examplary instance). To be able to analyse dif-
ferent model types we need to define a common meta model. In Figure 1.b we depict meta
model elements and relations among them. As a technical partner in the project we are
interested in the technical view, where we consider IT–support of processes and we model
IT–landscapes at different levels of granularity. Exemplary elements used in the analysis of
IT–support are physical and logical tools defined in the Logical and the Physical Tool Model,
respectively (in general a meta model element can be used in several models). For exem-
plary instances of meta elements see Example 1 (section 3.1) and the example in Figure 6
(section 3.2).

To analyse a heterogeneous model landscape we need a common repository to store in-
formation about all model elements. To support the modeller in the analysis of business
process models we provided queries, checks and views defined on the meta model level
and interpreted over a set of elements saved in the repository (see section 3).

4The project MedFlow—Modelling and Assessment of Socio–Technical Processes in Health Care—A Tool–
Assisted Modelling Method with Integrated code System supported by HITT, http://www.hitt.at/.

5Aris, http://www.ids-scheer.de/
63LGM, http://www.3lgm2.de/

185



IT Security Analysis In the research project ProSecO7 we develop a model based frame-
work for information security management in an enterprise context [BIO05]. The ap-
proach consists of an information security model and a security management process
on the basis of an enterprise model that is similar to the meta model of the MedFlow
project (see Figure 1). We use the enterprise model to identify the relevant business and
technical objects of an organisation. Every model element of the enterprise model is ex-
tended with security relevant information that is defined in the information security meta
model. The extended enterprise model allows the modeller to analyse security require-
ments, threats and controls. To support the collaborative usage of the enterprise model
by different stakeholders and to avoid inconsistencies we have defined rules that ensure
the correctness and consistency of the model. The adherence to these rules is controlled
running queries and checks against the extended enterprise model.

An important aspect of our model based approach to information security management are
the states of the security related information that are extending the enterprise model. The
security states allow the monitoring of the progress of the overall security management
process. An important requirement for a supporting framework is the ability to run evalu-
ation algorithms over the states of the security related information on either the entire or
part of the enterprise model.

Strategic Alignment of Information Technology The aim of the research project
PRO2SA is to provide adequate information for IT—and corporate—management to op-
timise the strategic alignment and the value delivery of IT8. Our approach is based on
the observation that strategic information management is not properly integrated in corpo-
rate governance. A main objective of IT–governance should be the methodical integration
of IT–management into enterprise–management, narrowing the gap between IT and busi-
ness [TB06].

In one of the first steps we use a meta model oriented business engineering approach. Our
business engineering domains are [TB06]: Strategy Management, Business Development,
Business Transformation and Information Technology. These domains are modelled using
an enterprise model that is extended with key–indicators for strategic alignment and value
of IT. It is possible to define key–indicators during run–time.

The information necessary for supporting managerial decisions are extracted from UML
models and integrated into the management framework of the company. For this purpose
the key–indicators are analysed using evaluation algorithms that are run over the model
landscape. The results are an aggregation of information over the entire set of models.
The model elements stored in the repository can be analysed running queries and views
and have to be visualised in different types of management charts.

7The project ProSecO—A model based framework for enterprise information security management is sup-
ported by trans IT, http://www.transit.ac.at/.

8The project PRO2SA—Process– and Project–Oriented Strategic Alignment

186



Rf1 The tool should enable the modeller to formulate and execute queries, checks and views
expressed in a predicative language based on the structure of the meta model.

Rf2 The tool should enable the modeller to formulate and execute evaluation algorithms
[PRO2SA, ProSecO].

Rf3 The tool should support meta model extensions: additional attributes for elements (at run–
time) [PRO2SA], additional state–based elements [ProSecO], links between elements and files
with additional information [both].

Rf4 The tool should present results in graphical and textual form (modification of model represen-
tation, graphs, trees, tables, etc.).

Rf5 The tool should provide interfaces to different modelling tools and notations [MedFlow].

Rf6 The tool should guarantee (or at least support) the consistency of models according to user–
defined rules.

Rf7 The tool should store information about a complex enterprise model landscape, where all
models correspond to a given meta model and are strongly connected with each other.

Figure 2: List of functional requirements.

Rt1 The tool should reuse and extend existing frameworks and tools.

Rt2 The tool should be based on well–known open standards and software.

Rt3 The tool should be platform–independent as far as possible.

Figure 3: List of technical requirements.

2.2 Common Requirements

The designed tool should meet the requirements of the three projects described in the pre-
vious sections. Below we present two kinds of requirements, namely functional and tech-
nical.

Functional Requirements The main common goal is a mechanism for aggregating in-
formation from a model landscape, which give the analyst some guidelines to further
analysis (see requirement Rf1 in Figure 2). It should also be possible to evaluate some sta-
tistics based on additional figures attached to model elements (Rf2,Rf3) The aggregated
information should be presented using different formats (Rf4).

In practice modellers use different modelling notations and tools, thus the second goal
is to create a framework supporting consistency maintenance in heterogeneous modelling
environments (Rf5, Rf6) with a centralised data storage (Rf7).

Technical Requirements We decided to extend existing tools and to use established
development technologies (see requirement Rt1 in Figure 3). This requirement entails
the usage of open standards and open source tools, which can be extended easier (Rt2).
To increase the number of potential users of the tool the framework should preferably be
platform–independent and MDA conform (Rt3).

187



Meta Model Level User Model Level

Figure 4: Modelling concepts.

3 Methodological Background

In this section we briefly describe both modelling (section 3.1) and analysis (section 3.2)
within our framework. For a full description and more examples see [BCO05].

3.1 Modelling on Meta and User Levels

We consider two levels of abstraction, namely the meta model level and the user model
level (see Figure 4). The meta model defines the model elements of the application domain
(called meta model elements, for short meta elements) and the relations between them. We
call instances of meta elements elements (see Example 1). The model type component
defines the model types and their relationships. An instance of the model type component
is a model landscape and the instances of model types are models (see Example 1).

Example 1 In the MedFlow project meta model (see Figure 1) the information element is
defined. An example of its instance is �information�Referral (see example in Figure 6
for other instances). An exemplary instance of Business Process Model (model type in
MedFlow project, see Figure 1) can be a �BPM�X–ray examination.

Additionally we have an element–model–mapping (an EM–mapping for short), which in-
terconnects meta elements and model types. In the EM–mapping each meta element is
associated with the model type where it is defined and with the set of model types where
it can be used. The last concept, queries, checks and views, is described in section 3.2.

3.2 Model Analysis

Concepts described in the previous section create a basic environment for analysis of
the model set. For analysis purpose we use different types of queries and views described
in the subsequent sections.

The goal of a query is to provide the modeller with information on the model landscape.
The queries are formulated over elements defined in the meta model. There are different
types of queries regarding the type of the returned value: queries returning a boolean value

188



• Is a given information saved in a given logical tool? (a check, a boolean result)
• Number of logical tools in the model landscape. (an integer result)
• The set of logical tools an information is saved in. (a set of elements result)
• Each information used in BPMs has to be defined in the Information Model.(a predefined check)

Figure 5: Exemplary queries for the MedFlow project.

1. The query definition: Is a given information saved in a given logical tool?
2. The defining element instance sets:

• set of all information objects defined in the model landscape:
I = {Referral, Diagnostic Findings, Image, . . . }

• set of all logical tools: LT = {KIS, PACS, PaterNoster, . . . }
3. The result table:

Information \ Logical Tool KIS PACS PaterNoster . . .
Referral false false false . . .
Diagnostic Findings true false true . . .
Image false true true . . .
. . . . . . . . . . . . . . .

4. The analysis of the result table:

• A warning for the set of elements {Referral} is activated:
Each information should have a medium!

• A question for the set of elements {Diagnostic Findings, Image} is activated:
Is the consistency of redundant information guaranteed?

5. The further analysis of the results: a modeller could change the model to get rid of the warning
and find out the answer for the question.

Figure 6: An example view, for MedFlow project, linking information objects with logical tools.

(called checks), queries returning an integer value, and finally queries returning a set of
elements. There are two special types of queries, namely predefined checks and some
complementary queries. Predefined checks are defined by the meta modeller and are well–
formedness rules resulting from the structure of the meta model and the EM–mapping
specific for a given application. In the example in Figure 5 we give some exemplary
queries for the MedFlow project.

To provide more complete and cross–sectional information we aggregate the results of
queries in a view. Views provide information on sets of elements, unlike queries, which
take single instances as arguments. An exemplary view for the MedFlow project in given
in the example in Figure 6.

4 Prototypic Architecture

The following section is concerned with the prototypic implementation of our approach.
The utilised standards, tools and technologies are described in the context of our applica-
tion and the underlying architecture is depicted. On the topmost level we can hereby distin-
guish between parts connected with meta modelling, user–level modelling, data repository

189



Figure 7: Architecture model of prototypic implementation.

and analysis (see Figure 7). To highlight the motivation of our design decisions references
to both functional and technical requirements are listed in parentheses.

Model Repository To be able to analyse information on all model elements defined in
different modelling tools (Rf5) we decided to use one central model repository. Hereby
we utilise a relational database management system to persistently store model elements
generated by the different tools connected to our application. Due to the fact that our ap-
proach has to be capable of managing a user defined meta model (Rf7) we must provide
the ability to dynamically exchange both the database and the repository structure during
installation time. To achieve this central requirement we rely on technologies supported
by AndroMDA9, an open source implementation of the MDA approach (Rt1, Rt2, Rt3
). In a first step we hereby generate Java classes that reflect the structure of a MOF con-
form meta model provided as XMI10 file. Full support for the object/relational persistence
and query service Hibernate11 furthermore allows us to map these generated classes auto-
matically to a wide range of database management systems. The choice of the RDBMS
that is to be used can be postponed to the latest phase of the implementation which con-
forms with the requirement regarding platform independence (Rt3). The two remaining
parts of the repository (Generic Repository Access Layer and Generator) are concerned
with providing meta model independent interfaces to connect both modelling and analysis
tools to our common repository. Interactions with modelling tools are handled using spec-
ified XML messages sent and received via a J2EE12 application server. The generator on
the other hand will both translate queries from query languages to the repository internal
representation and provide the analysis tool with aggregated results.

Modelling Environment The prototypic implementation supports two model descrip-
tion notations: UML and XML (Rf5). UML is used in modelling tools and transformed
to the repository notation with the help of adapters (separately provided for each tool).
Currently we are developing adapters for MS Visio and MagicDraw (Rf5). The former is

9AndroMDA, http://www.andromda.org/
10XMI, http://www.omg.org/technology/documents/formal/xmi.htm
11Hibernate, http://www.hibernate.org/
12Java 2 Enterprise Edition, http://java.sun.com/j2ee/

190



not a strict UML modelling tool but as it is widely–used in practice providing support for
it is essential for our approach. MagicDraw on the other hand is a sophisticated platform–
independent UML modelling tool (Rt3). The tool–independent adapter is concerned with
models described using XML (Rt3) in a predefined format. To assure the repository con-
formity of models intended to be imported into the model repository all adapters interpret
the EM–mapping file and additionally derive class meta–information from the AndroMDA
generated Java classes using Java reflection mechanism (Rf6).

Analysis Tool Using the query language modellers can construct their own queries and
views (Rf1, Rf2) to aggregate information about models contained within the repository.
Both HTML pages and images illustrating the results graphically (Rf4) will be generated.
As our tool is implemented by means of server–side J2EE technologies network based
access can easily be provided.

5 Related Work and Conclusion

In this section we compare our approach with similar solutions, we stress a novelty of
our framework and give examples of different types of tools that can be used for model
analysis. In the last paragraph we conclude our results.

Existing methods and tools focus mainly on syntactical correctness independent of mode-
lling domains, as well as on providing modelling metrics [Gro04, Jug04]. The proposed
indicators of high quality models, such as for example general diagramming or diagram–
specific metrics, are too general and domain independent. Our approach focuses on se-
mantical, domain–specific analysis based on the conceptual model of a given domain,
which allows us to define checks over an entire model landscape. There are several ap-
proaches, mostly in industrial contexts that deal with quality checks of model landscapes.
Developed tools are dedicated for specific applications and support fixed sets of checks,
e.g. in [HMT02] a meta model for describing IT landscapes has been defined. In our
approach different meta models can be used and modellers can define their own queries.

Existing approaches deal with homogeneous modelling environments. In a study at BMW
[Jug04] a set of quality checks for model landscapes has been developed. The checks
are input to an in–house MDA tool. As further example Siemens Princeton has devel-
oped a tool13 for checking requirements specifications. For the implementation these ap-
proaches use the scripting facilities or programming interfaces of UML tools or graphic
programs such as Rational Rose, Together, Visio or Adonis14. Our approach is dedicated
to a heterogeneous modelling environment and the queries are defined and interpreted
in a tool independent way, only adapters are connected with specific tools.

We also consider heterogeneous modelling notations, while existing tools are mostly
dedicated to one notation only. For example the Executable UML [MB02] can be used to

13Design Advisor tool, http://www.scr.siemens.com/
14Business process management toolkit, http://www.boc-eu.com/advisor/adonis.html

191



execute and test models defined in UML. And with the OCLE tool15 it is possible to check
UML models against well formedness rules, methodological, profile or target implemen-
tation language rules expressed in OCL. It is also possible to obtain metric information
about UML models. This tool also uses XML, but only as a data tier, while we use XML
also for modelling purposes.

This paper presents a technical description of our framework for a domain–specific model
assessment. Our methodology is based on a common meta model describing model el-
ements and their relationships. All models in the model landscape are meta model con-
form, thus model elements can be saved in a common repository. Using queries and views
the information saved in the repository can be analysed. We showed how to implement
our methodology and integrate it with heterogeneous modelling environments. The imple-
mentation is work in progress. There are some limitations in the prototypic version of our
tool, such as a limited number of adapters or hard coded queries. In further work we plan
to implement a generic analysis tool and to increase the number of supported modelling
tools also for non–UML (but MOF conform) notations. Moreover run–time meta model
extension (Rf3) are as well subject of future tool extensions.

References

[BCO05] R. Breu and J. Chimiak-Opoka. Towards Systematic Model Assessment. In ER 2005
Workshops, volume 3770 of LNCS, pages 398–409. Springer, 2005.

[BIO05] R. Breu and F. Innerhofer-Oberperfler. Model based business driven IT security analy-
sis. In Proc. SREIS, August 2005.

[CCD04] A. Cavarra, C. Crichton, and J. Davies. A method for the automatic generation of test
suites from object models. Inf. & Software Tech., 46(5):309–314, 2004.

[COGB+] J. Chimiak-Opoka, G. Giesinger, R. Breu, S. Saboor, and E. Ammenwerth. Tool–
Supported Analysis of Clinical Processes. In Biomed 2006, pages 56–59. ACTA Press.

[Gro04] R.C. Gronback. Model Validation: Applying Audits and Metrics to UML Models.
Borland Developer Conference, 2004.

[HMT02] M. Heberling, C. Maier, and T. Tensi. Visual Modeling and Managing the Software
Architecture Landscape in a Large Enterprise by an Extension of the UML. In Second
Workshop on Domain-Specific Visual Languages. An OOPSLA Workshop, Nov 2002.

[Jug04] F. Jug. Methods and techniques for quality assurance in software development process
in BMW group (in German). Master’s thesis, Technical Univ. Munich, Sep. 2004.

[MB02] S.J. Mellor and M.J. Balcer. Executable UML. A Foundation for Model-Driven Archi-
tecture. Addison-Wesley, 2002.

[SAWCO05] S. Saboor, E. Ammenwerth, M. Wurz, and J. Chimiak-Opoka. MedFlow—improving
modelling and assessment of clinical processes. In Proc. MIE, pages 521–526, 2005.

[TB06] B. Tilg and R. Breu. PROSA—Ein modellgetriebener Ansatz zur Integration des
Strategic Business Alignments in die Business Intelligence. MKWI (accepted), 2006.

15Object Constraint Language Environment, http://lci.cs.ubbcluj.ro/ocle/

192


