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NESTML: a modeling language for spiking neurons
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Abstract:

Biological nervous systems exhibit astonishing complexity. Neuroscientists aim to capture this com-
plexity by modeling and simulation of biological processes. Often very complex models are nec-
essary to depict the processes, which makes it difficult to create these models. Powerful tools are
thus necessary, which enable neuroscientists to express models in a comprehensive and concise way
and generate efficient code for digital simulations. Several modeling languages for computational
neuroscience have been proposed [Gl10, Ra11]. However, as these languages seek simulator inde-
pendence they typically only support a subset of the features desired by the modeler. In this article,
we present the modular and extensible domain specific language NESTML, which provides neuro-
science domain concepts as first-class language constructs and supports domain experts in creating
neuron models for the neural simulation tool NEST. NESTML and a set of example models are
publically available on GitHub.

Keywords: Simulation, modeling, biological neural networks, neuronal modeling, neuroscience,

NEST, NESTML, MontiCore, domain specific language, code generation, C++.

1 Introduction

Classical neuroscience investigates the biophysical processes behind single neuron behav-

ior and higher brain function. The first experimental studies of the nervous system were

conducted already hundreds of years ago [Sh91], but observing single-cell activity in a cell

culture or slice (in vitro) or in an intact brain (in vivo) is a technically challenging task. It

was thus not before the beginning of the last century that details about the structure and

function of the building blocks of the brain became known.

In the early 40s of the last century, McCulloch and Pitts [MP43] explored the idea of using

simple threshold elements to mimic the behavior of interconnected nerve cells. However,

it soon turned out that these artificially built circuits were too simple and limited to study

the principles at work in living brains.
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3 Norwegian University of Life Sciences, Dept. of Mathematical Sciences and Technology, 1432 Ås, Norway
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The field of neural networks consequently split: the descendants of the early neural net-

works are still used under the term artificial neural networks (ANN) to solve learning

and classification tasks in engineering applications. Biologically more plausible models of

neural circuits are nowadays known as spiking or biological neural networks.

1.1 Neural modeling and simulation

Computational neuroscience builds models for nerve cells (neurons) and their connections

(synapses) that capture certain aspects of their anatomy and physiology. Depending on

the study, different aspects are important (Section 2). As theoreticians prefer to use the

simplest model that still exhibits the behavior they are interested in, a multitude of different

models was published. The level of detail ranges from compartmental models that include

many biophysical details to reduced point neuron models that describe the basic quantities

or the cell by a small set of differential equations (Section 2). The simulation of networks

of such model neurons (i.e. the propagation of the underlying equations in time) allows to

execute in silico experiments to test hypotheses in a stable and controllable environment.

As the simulation of different classes of neurons requires different technical infrastructure

(e.g. for the storage of connections or the communication between elements), different

simulators have been developed. Each of them is specialized on a specific part of the

spectrum of modeling tasks. This makes it hard to develop new neuron and synapse models

in a general way and even harder to compare and verify findings across simulators, since

models must be re-implemented for every simulator [Cr12].

To ease model-sharing and improve reproducibility in the field, several modeling lan-

guages were conceived (Section 3). They usually consist of the language itself and tools

to generate a model implementation from a model specification. As the majority of the

languages are simulator agnostic, they cannot take advantage of the convenience functions

of a given simulator. This often results in models with lower performance or accuracy

compared to a hand-written version of the same model.

1.2 The neural simulation tool NEST

NEST [GD07] is a simulator for large networks of spiking point neurons available as open

source software (www.nest-simulator.org). Using hybrid parallelization it runs on all ma-

chines from laptops to the world’s largest supercomputers [He12, Ku14]. Over 450 pub-

lished studies used NEST and 360 users are currently subscribed to the mailing list. Due to

its reliability and popularity, NEST was selected as simulator for brain-scale networks of

simplified neurons in EU’s Flagship Human Brain Project (http://humanbrainproject.eu).

At the outset of this study, NEST contained 36 neuron models, each of which implemented

by hand as a C++ class using NEST’s model API and embedded into NEST’s infrastruc-

ture. Developing new models requires expert knowledge of the neuroscience context, as

well as of C++ and NEST’s internals. Changes to NEST’s infrastructure or API often re-

quire changes to all models, which impairs the maintainability of NEST.
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The C++ classes mix the model description (i.e. the equations and algorithms governing

the dynamic behavior) with the model implementation, which impairs model comprehen-

sion. An example are the linear models in NEST, which use an exact solution for the

differential equation rather than one obtained by a general solver [RD99]. This hides the

actual equations deep in the model code.

Due to the lack of modularity in the C++ model code, new neuron models are mostly

created by copy&paste from existing models. The fact that this task is often carried out

by neuroscientists who are not experts in programming leads to redundancy, suboptimal

performance, improper documentation and reduced maintainability. Preliminary investiga-

tions show cases where two models share more than 90% of their implementation.

1.3 The NEST modeling language NESTML

NESTML is a domain specific language that supports the specification of neuron models

in a precise and concise syntax, which is familiar to the domain experts. Model equations

can either be given as a simple string of mathematical notation or as an algorithm written

in the built-in procedural language. The equations are analyzed by NESTML to compute

an exact solution if possible or use an appropriate numeric solver otherwise (Section 4).

The simplicity of the explicit syntax of NESTML guarantees good comprehensibility and a

clear separation between the model specification and its implementation. A code generator

creates optimized model code alongside auxiliary code to load the model dynamically into

NEST (Section 5).

First class modularization concepts in the language simplify the reuse of neuron definitions

and parts thereof. This feature fosters the re-use of well tested components in models

instead of re-implementing them. Models expressed in other languages can be compiled

to NESTML by the code generation tools of the language.

Being built on top of the language workbench MontiCore [KRV07, KRV08], all tools

belonging to NESTML are generated from a language grammar. This allows us to conve-

niently update the language itself to new modeling requirements, and the code generator

to changes in the NEST infrastructure or API.

2 Modeling spiking neurons

As with all body cells, neurons are also confined by a membrane. Channels embedded into

the membrane selectively allow certain types of ions to pass, active transporter molecules

move ions in and out of the cell. These mechanisms maintain up a gradient of charges,

resulting in an electrical potential across the membrane.

An incoming signal (action potential, spike) leads to a short excursion of the membrane

potential. The direction of the excursion depends on the type of the sending (presynaptic)
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neuron, which can be either excitatory (positive excursion) or inhibitory (negative excur-

sion). If the input is strong enough or several inputs occur simultaneously, the membrane

potential eventually reaches a threshold and the neuron fires a spike itself. Spikes are trans-

mitted via the synapses to receiving (postsynaptic) neurons, where the spike again leads

to a change of the membrane potential. After emitting a spike, a neuron is inactive for a

certain time, called its refractory period [Ni01].

The work of Lapicque [La07] and later Hodgkin and Huxley [HH52] paved the way for

creating models of neurons with biologically realistic parameters. For the membrane po-

tential, they define an equivalent electrical circuit, in which the membrane itself is rep-

resented by a capacitor, ion channels by resistors and external inputs by an additional

current.

(A) (B)

CV̇ =−

1

R
V + Isyn

Figure 1: Electrical circuit corresponding to single compartment of a neuron. (A) circuit diagram.

(B) differential equation for the membrane potential V given capacitance C, resistance R and external

input current Isyn

.

A common approach to modeling neurons is to divide the 3D reconstruction of a real neu-

ron into compartments and use one Hodgkin and Huxley circuit for each compartment.

The compartments are coupled using the formalism of cable theory. In case the morphol-

ogy of such a multi-compartment model only consists of a single compartment, it is called

a point neuron model.

The basic differential equation shown in Figure 1 only characterizes the subthreshold dy-

namics of the neuron. Checks for threshold crossings, spike generation and refractoriness

are usually added in an algorithmic fashion using conditionals and wait cycles. Spiking

input enters the equation in form of a summed current Isyn. To obtain its value, the time

of each incoming spike is convolved with a kernel that represents the excursion of the

membrane potential (post-synaptic potential). Frequently used functions for this kernel are

α-shapes with varying time constants, exponentially decaying functions or delta pulses.

Multiple inputs are lumped together into Isyn before propagation of the equation to the

next time step. This approach is commonly referred to as current-based modeling.

Another way to model the influence of external input is the conductance-based approach.

In contrast to integrating the inputs into a general current variable, the input instead in-

fluences the conductance of the membrane in this case. This is generally considered more

realistic, but leads to a non-linear differential equation, as changes to the conductance
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depend on the membrane potential and vice versa. Simulating these models is computa-

tionally more demanding than it is for the current-based approach.

Due to their property of integrating incoming spikes and firing one if a threshold is reached,

the family of models described above is known under the name integrate-and-fire neurons.

2.1 Neuron dynamics

Substituting the resistor and the capacitor of the RC circuit shown in Figure 1 by the rise

time τm (membrane time constant) and the capacitance C, we obtain the following equation

for the membrane potential V of the standard integrate-and-fire neuron:

d

dt
V =−

V

τm

+
1

C
I (1)

The input current I is the sum of the synaptic current and any external input. The α-shaped

synaptic current as a function of time t for one incoming spike is given by:
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Here ι̂ is the peak value of the incoming spike and τα is the rise time. The inhomoge-

neous differential equation (2) (for simplicity we assume that I == ι) is rephrased as a

homogeneous system of differential equations (or matrix differential equation):
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For a fixed time step t it is now possible to solve the differential equation by calculation of

the matrix exponential of the given matrix [RD99]. This way of propagating the model in

time is particularly efficient because it consists only of a few multiplications.

Although this calculation is done only once for each linear neuron model in NEST dur-

ing the implementation of the model, it is tedious and has to be done manually. With

NESTML, all necessary factors for the time propagation for any given synaptic current

and any linear differential equation can be calculated automatically, which solves one of

the major obstacles for developing new neuron models in NEST.

3 Related Work

Various modeling languages for neurons and neural networks exist, each of which focusing

on different aspects of neural modeling. Here, we describe the representative examples

NineML and NeuroML in detail.
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3.1 NineML

The Network Interchange for Neuroscience Modeling Language (NineML, [Ra11, Go11])

provides an unambiguous description of spiking neural networks for model sharing and

re-use. NineML defines a common object model that describes the different elements of a

model in a neuronal network. This object model corresponds to its abstract syntax, while

XML is used as its concrete syntax.

NineML consists of two semantic layers: the abstract layer describes the core concepts

of a model alongside its mathematical description, parameter and state variables and state

update rules. The user layer allows the description of state or parameter variables and

definition of initial or default values and units. Objects defined in the user layer can be

re-used in different models, while model re-use in the abstract layer is not supported.

In the abstract layer each network element is represented by a ComponentClass composed

of a Dynamics-block and a set of Interfaces. The Dynamics contain the internal model

dynamics, e.g. state variables and update rules. The Interfaces contain the parameters

that can be set from the user layer and ports for the communication with other network

elements. The advantage of the ComponentClass is that it supports any kind of network

element instead of just complete neuron or synapse models. The drawback is that the exact

kind of model modeled by the ComponentClass is unknown. It could be a neuron, a

synapse or an ion channel and the relation to domain concepts is hidden from the user.

To make NineML descriptions simulator agnostic, they only provide differential equations

to describe the dynamics of a model. As the system itself chooses the solver for the dy-

namics, this might lead to the generation of unnecessarily complex and inefficient code

for a specific simulator or to an inaccurate solution of the model equations. Expressing

neuron dynamics as a finite-state automaton with regimes and transitions as in NineML

works well to visualize them. However, for developing new neuron models and express-

ing complex relationships between states a procedural definition of the dynamics is more

intuitive.

3.2 NeuroML

The model description language NeuroML [Gl10] is a description language for biophysi-

cally detailed neuron and neural network models and enables interoperability across mul-

tiple simulators. Neuron models in NeuroML can have complex morphologies, voltage-

and ligand-gated conductances, and synaptic mechanisms. Network models contain the

3D positions of cells and synapses in the network.

NeuroML is optimized for complex compartmental models, but also supports simple point

neurons like the leaky integrate-and-fire model (Section 2). However, more advanced types

of point neuron models such as the exponential integrate-and-fire neuron [BG05] or the

Izhikevich model [Iz03] are not fully supported yet. The language itself is split in three

levels, each of which is responsible for describing a different scale of biological detail:
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Level 1 describes the morphology of a neuron model using the sub-language MorphML.

This contains the number and 3D position of compartments and their size and shape.

Additionally, it provides mechanisms to store metadata.

Level 2 uses ChannelML to describe voltage-gated membrane conductances together with

static and plastic synaptic conductance processes. It also extends level 1 descriptions

by specifying the location and density of membrane conductances in the cell model.

Level 3 describes neural networks with 3D locations of individual neurons, synaptic con-

nections between neurons (in projections) and external inputs via NetworkML.

NeuroML can define neuron models by using predefined elements for segments, channel

mechanisms or synapse mechanisms. This results in compact and clear definitions of mod-

els by outsourcing and reusing mechanism definitions. On the other hand, the limited set of

possible language elements reduces the expressiveness of NeuroML to models for which

corresponding elements exist. Defining new mechanisms requires changes to the language

definition itself.

3.3 XML as carrier language

Most of the established modeling languages use XML [Ye04] as their concrete representa-

tion, because an ecosystem of tools already exists and no additional lexers and parsers have

to be developed to check syntactic correctness. However, this approach has two disadvan-

tages: first, the verbosity of XML makes writing and reading models difficult for modelers

[Ch01] and sophisticated tools are required for creating, visualizing and understanding

more complex models. Second, the model descriptions have to be processed separately

to ensure semantic correctness. An example for this is NineML’s MathInline statement,

which requires custom parsers to check the contained mathematical expressions for cor-

rectness. Listing 1 illustrates these two problems of XML using an excerpt of a NineML

file.

1 ...
2 <Dynamics >
3 <StateVariable name="V" dimension="voltage" />
4 <StateVariable name="U" dimension="voltagedperdtime" />
5 <Alias name="rv" dimension="none">
6 <MathInline >V*U</MathInline >
7 </Alias >
8 <Regime name="subthresholdRegime">
9 <TimeDerivative variable="U">

10 <MathInline >a*(b*V - U)</MathInline >
11 </TimeDerivative >
12 <TimeDerivative variable="V">
13 <MathInline >0.04*V*V + 5*V + 140.0 - U + iSyn</MathInline >
14 </TimeDerivative >
15 </Regime >
16 </Dynamics >
17 ...

Listing 1: Excerpt from a NineML file. To declare the simple mathematical expression rv =
V ∗U , three lines of code are required (cf. lines 5-7). The MathInline element in line 13

contains only a string that cannot be checked for syntactic or semantic correctness with existing

XML tools.
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3.4 Simulators

Before the existence of general model description languages, simulators already had their

own languages for specifying models. In the case of NEST (Section 1.2) this language so

far is just plain C++ and the features provided by the simulator API. The remainder of this

section introduces two other approaches for the definition of neuron and network models

for completeness.

Brian [St14] is a simulator for spiking neural networks written entirely in Python. It uses

code generation based on SymPy, NumPy and Cython to obtain reasonable performance,

but lacks the facilities for running distributed simulations. Neuron models are defined by

specifying the differential equations written in a text-based mathematical notation. How-

ever, as these definitions are ordinary Python strings, checking context conditions and

semantically analyzing them is difficult. Unless own extensions to Brian are provided, it

is up to the simulator to chose a solver method for the equations, which can have nega-

tive effects on accuracy or efficiency. Brian is mainly used for small-scale and exploratory

simulations on laptops and workstations.

NEURON [HC97] is a simulator mainly for compartmental neuron models with biophys-

ical properties. Neuron and synapse models can be defined with a set of graphical tools

or using the custom programming language HOC. NEURON’s focus is not on large-scale

modeling, but on the simulation of very detailed neuron models on large computer clusters

and supercomputers. In principle, it also supports simulations of large networks of simple

neuron models, but falls behind the performance and memory footprint of simulators that

are aimed specifically at these simulations.

4 Modeling spiking neurons with NESTML

NESTML consists of three modular and separately usable sub-languages, a symbol ta-

ble and context conditions. These languages together form the NESTML domain specific

language (DSL).

Procedural DSL (PL) defines the imperative logic of the model. PL also provides a li-

brary with methods for emitting messages, logging and working with buffer objects.

Units DSL (UL) enables defining and checking variables with physical units like Volt (V)

and Ampere (A). UL also supports common magnitudes like mili (m) and pico (p).

Differential Equation DSL (DL) provides the possibility to define differential equations

in the form of a string of math notation and analyze these equations.

NESTML separates model definition from simulator specific code and thereby allows the

user to concentrate on the development of models instead of implementation details. Au-

tomatic analysis of differential equations simplifies the formulation of new models by out-

sourcing the task of finding an accurate solution to NESTML’s infrastructure. This section

introduces NESTML with the example of a simple integrate-and-fire neuron [RD99].
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4.1 Basic design and definitions

The general syntax of NESTML is inspired by that of Python, which is widely known to

researchers in the computational neuroscience community [Mu09, Da13]. This lowers the

entry barrier for new users and improves comprehensibility of models. NESTML supports

common data types like integer, real and string as well as physical data types with units

provided by the PL. Variables are defined by stating the name followed by a type or unit.

 neuron iaf_neuron:

 state:

y0, y1, y2, y3, V_m mV [V_m >= -99.0]

# Membrane potential

alias V_rel mV = V_m + E_L

end

 function set_V_rel(v mV):

y3 = v - E_L

end

 parameter:

# Capacity of the membrane.

C_m pF = 250 [C_m > 0]

end

 internal:

h ms = resolution()

P11 real = exp(-h / tau_syn)

...

P32 real = 1 / C_m * (P33 - P11)

/ (-1/tau_m - -1/tau_syn)

end

 input:

spikeBuffer <- inhibitory

excitatory spike

currentBuffer <- current

end

 output: spike

 dynamics timestep(t ms):

if r == 0: # not refractory

V_m = P30 * (y0 + I_e) + P31 *

y1 + P32 * y2 + P33 * V_m

else:

r = r - 1

end

# alpha shape PSCs

V_m = P21 * y1 + P22 * y2

y1 = y1 * P11

y0 = currentBuffer.getSum(t);

end

end
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Figure 2: Excerpt from the integrate-and-fire neuron expressed in NESTML. See https://github.com/

nest/nestml for the complete neuron model description.

A neuron in NESTML is declared by the keyword neuron and a name ( 1 in Figure 2).

The name can be used to reference the model from other NESTML models. Each neuron is

composed of blocks with definitions of state and parameter variables, inputs and outputs.

A dynamics function is responsible for the behavior of the neuron when the model is

simulated. All blocks in NESTML start with a colon and end with the keyword end

state 2 contains the variables of the dynamic state of the neuron. An example for a state

variable is the membrane potential of a neuron (V m). An alias variable describes

the dependency between variables using an expression (V rel). For setting a value

on an alias a setter function is required (set V rel), as the defining expression

cannot be inverted automatically for the general case. Plausibility constraints can

be added in square brackets after the variable definition (V m >= -99.0). These are

useful for debugging and during the development phase of the model and can be

removed in the production version for better performance.

parameter 4 contains attributes that do not change over time, but may vary among neu-

ron instances. Examples are the length of the refractory period or the membrane

capacitance (C m). To ensure that values are in a sensible range, it is possible to de-

fine guards which are evaluated every time a parameter is changed by the user. The

syntax is the same as for the plausibility constraints in the state block.
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internal 5 contains values that depend on the parameters, but can be precalculated once

or auxiliary variables needed for the implementation. In Figure 2 for example, the

propagator matrix (i.e. the solution of the model equation) is defined in this block.

input 6 Several named inputs can be declared using the name of the buffer that should

receive the specified input during simulation. The input type can specified as spike

or current. A spike input can further be inhibitory, excitatory or both. De-

pending on the sign of the input, incoming spikes are routed to the corresponding

sub-buffer. If no such modifier is given the buffer receives all spikes.

output 7 Each neuron in NEST can just send one type of event during simulation.

NESTML supports spike or current output, which is specified after the keyword

output.

Functions allow the convenient reuse of code (e.g. 3 in Figure 2). Their definition starts

with the keyword function followed by the function name and a list of zero or more

function parameters in parentheses. Just like declaring a variable, a parameter is declared

by first stating its name and then its type. Multiple parameters are separated by a comma.

The parameter list is followed by an optional return type.

The definition of the dynamics of a neuron is similar to that of a function (e.g. 8 in Fig-

ure 2). It starts with the keyword dynamics followed by the type of the dynamics. De-

pending on the type, the function is called once per update step (timestep) or just once

per minimum delay interval in the simulated network (minDelay). A list of parameters

can be defined in parentheses.

4.2 Modularity and component concept

In order to reuse parts of a model they must be defined in a block starting with the keyword

component and a name ( 2 in Figure 3). The component is then imported into a neuron

(see 1 ) and made available using the keyword use and optionally giving a convenient

name (see 3 ). Functions and variables from the component can be referenced using the

dot-notation (see 4 ).

 import PSPHelpers

neuron iaf_neuron:

 use PSPHelpers as PSP

dynamics timestep(t ms):

 PSP.computePSPStep(t)

# alpha shape PSCs

y2 = P21 * y1 + P22 * y2

y1 = y1 * P11

end

...

end

 component PSPHelpers:

state:

- y0, y1, y2, V_m mV [V_m >= 0]

alias V_rel mV = y3 + E_L

end

function computePSPStep(t ms):

if r == 0: # not refractory

y3 = P30 * (y0 + I_e) + P31 *

y1 + P32 * y2 + P33 * y3

else:

r = r - 1

end

end

...

end

Figure 3: An example for a neuron that reuses a function from a component. Left panel: the code of

the referencing neuron; right panel: the code of the component.
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This concludes the description of the imperative approach, where the solution of the under-

lying differential equation is described completely and explicitly in the blocks internal

and dynamics. This approach maps directly to the current implementation of models in

NEST. In addition, NESTML provides a declarative approach that is more intuitive, be-

cause it is closer to the mathematical description of neuron models common in computa-

tional neuroscience.

4.3 Declarative model definition

One of the main difficulties in writing models for NEST is writing the code for solving

the equations, as this requires advanced knowledge of mathematics and numerics. In the

declarative approach, differential equations are directly expressed as a string in mathemat-

ical notation under an ODE block. Figure 4 shows the declaration of an equation for the

current (see 3 ) and the differential equation for the membrane potential V m (see 4 ). As

this is also the way how models are presented in publications, this syntax makes it easy to

re-implement published models in NESTML.

neuron iaf_neuron:

internal:

h ms = resolution()

P11 real = exp(-h / tau_syn)

...

P32 real = 1 / C_m * (P33 - P11)

/ (-1/tau_m - -1/tau_syn)

end

dynamics timestep(t ms):

if r == 0: # not refractory

 V_m = P30 * (y0 + I_e) + P31 *

z1 + P32 * y2 + P33 * y3

else:

r = r - 1

end

# alpha shape PSCs

 V_m = P21 * y1 + P22 * V_m

y1 = y1 * P11

end

end

neuron iaf_neuron_ode:

internal:

h ms = resolution()

end

dynamics timestep(t ms):

if r == 0: # not refractory

ODE:

 I_shape == w * (E/tau_in) * t *

exp(-1/tau_in*t)

 d/dt V_m == -1/Tau * V_m +

1/C_m*I_shape

end

else:

r = r - 1

end

end

end

Figure 4: Modeling an integrate-and-fire neuron in NESTML. Left panel: using the imperative ap-

proach calculating V m explicitly (see 1 and 2 ). Right panel: just specifying the shape of the synap-

tic current (see 3 ) and the differntial equation for V m (see 4 ).

Calculating the matrix for propagating the state is usually a time consuming manual task in

NEST. The possibility to write models in a declarative fashion thus considerably reduces

the work required to define new models. With the imperative approach still available, we

don’t have to sacrifice control over other parts of the neuron dynamics, which can nonethe-

less be expressed as procedural code.

The detailed mathematical and algorithmic techniques for transforming neural dynamics

equations to efficient and accurate C++ code are out of scope of the current manuscript,

and will be published in a follow-up article.
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4.4 Implementation of NESTML

NESTML is implemented using the MontiCore [KRV08, KRV07] language workbench,

which enables an agile development of DSLs. Based on a context-free grammar, Monti-

Core defines concrete and abstract representation as abstract syntax tree (AST) and pro-

vides infrastructure for checking the compliance to the rules via context conditions [Vö11].

MontiCore supports various mechanisms for heterogeneous language integration, e.g. lan-

guage aggregation, inheritance, and embedding. These features were used for implement-

ing the NESMTL language inheritance and embedding [Lo13].

The modular design of NESTML gives users the flexibility to exchanges parts of NESTML.

For example it enables us to embed Python to be used instead of the Procedural DSL in

the future.

MontiCore provides a symbol table infrastructure [Ha15]. The symbol table stores symbols

of the model and provides them to the language mechanisms. An example are NESTML

components, which provide available functions with their signature, but hide the imple-

mentation. NESTML’s symbol table automatically handles the resolution of model ele-

ments distributed over several files.

All languages of NESTML are strongly typed to allow type compatibility checks within

and between models. The checks are performed using information from the symbol table.

A constraint inside a model could be one that checks if the dynamics block only changes

values of the state block, while one between models could be a check if a function

called from an imported component is actually defined there. The framework to check

such context conditions is also provided by MontiCore.

5 NESTML Tool Support

We provide a command line interface to the NESTML tools. They process NESTML

model descriptions by parsing them, checking context conditions on the described model

and generating the C++ model implementation and bootstrapping code for NEST. The

code generator is based on the MontiCore generation framework [Sc12], which uses ex-

ogenous model-based transformations [MVG06] to integrate the solution code for the dif-

ferential equation and a template-based system [CH06]. After executing the NESTML

tools on a model description, the generated code can be compiled and the model immedi-

ately be used in NEST.

During model processing (Figure 5) an abstract syntax tree (AST) is created from the

source model and context conditions are checked. From the AST, a SymPy script [Sy14]

is generated and executed later by the code generator. For linear neuron models, the script

returns the matrix entries of the propagator matrix, or the right hand side of the ODE

for use in a solver otherwise. The source AST is transformed by adding these entries

as variable declarations to the internal block. The altered AST is serialized by pretty

printing it again as a NESTML description. This way, the model developer can inspect
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Figure 5: Processing of models in the NESTML frontend. Processing steps include parsing, checking

context conditions, model transformations and code generation.

how the solution of the ODEs is implemented. If the model doesn’t contain any differential

equations, this step is skipped and code generation is performed on the initial AST.

The code generator produces C++ implementation and header files for each model. The

integration code consists of a C++ file describing the module and a set of scripts for boot-

strapping in NEST. depending on the SymPy analysis, the generated code either contains

an explicit implementation of the solution for the ODE, or code that relays the right hand

side of the ODE to a numerical solver, e.g. SUNDIALS [Hi05], GSL [Go09] or NAG

[HF01].

The frontend is implemented as a regular Java archive available as a download from https:

//github.com/nest/nestml. It has the following modes of execution:

parse Models are parsed and syntactic correctness will be reported.

contextConditions Models are parsed and checked against the context conditions.

Syntactic and semantic correctness will be reported.

generate The code generation workflow will be executed after parsing and checking

context conditions.

6 Discussion and Outlook

We presented the NEST Modeling Language NESTML to describe spiking neurons and

introduced a code generator for the NEST platform. NESTML supports two development

paradigms: an imperative scheme based on a procedural language and a declarative scheme

using a textual definition of differential equations. Both paradigms can be transparently

combined in the same neuron model in order to increase the expressiveness. A dedicated

module concept allows a seamless reuse of models and model components. The complex-

ity of model development is decreased by abstracting the implementation and infrastruc-

ture details.

Using NESTML, neuron models can be described using domain concepts. The syntax of

NESTML is similar to that of the Python programming language, which is well known to

the computational neuroscience community. As NESTML is implemented as a MontiCore

language, the development of language variants using language inheritance or language
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embedding is straightforward [Lo13]. This fact can be exploited in the future to develop a

family of NESTML languages targeting users with different technical expertise or adding

code generation for other simulators.

In order to demonstrate the usefulness of the proposed language, we reformulated about

30% of NEST’s models as NESTML in a collaboration with the developers of NEST. The

language and tools were generally well received and especially the concise syntax and

the code generation pipeline were mentioned as big improvements. NESTML provides a

20 fold reduction of code between model description and generated implementation code.

This value includes both the C++ model code as well as the bootstrapping code.

Large-scale modeling of nervous systems requires an abstraction as provided by NESTML

to increase modeling capabilities, reusability and maintainability. This is an interesting

challenge from the viewpoint of software language engineering and ongoing research will

show, how to raise the level of modeling capabilities even further.

NESTML is publically available on https://github.com/nest/nestml. Our ongoing work fo-

cuses on the addition of features for the description of synapse models in NESTML. The

language and the tools will be evaluated in a more structured way at a community work-

shop this winter and the feedback will be incorporated into the next public release of

NESTML.
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