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Abstract: Many surveillance tasks rely on the generation of stable, continuous tracks
of objects of interest. Often, track continuity has a higher priority than track accuracy,
as valuable information on the identity or the origin of an object is lost by each track
drop. The main source of track fragmentation are missing detections due to a limited
field of view or technical or topographical masking. In the multi-target case, in addi-
tion, individual tracks can be interchanged by unknown data assignments. Therefore,
the exploitation of additional sensor data is required in order to discriminate individ-
ual objects and to associate track fragments. As signal strength measurements are
standard output of modern radar systems, the integration of this information into a
Bayesian tracking scheme is discussed in the present paper. In contrast to previous
approaches, the knowledge on the target’s signal strength is not only used for an im-
proved calculation of the association probabilities, but it enters into the algorithm as a
random variable which is estimated sequentially. By this approach it is not only pos-
sible to discriminate closely-spaced targets and improve the track continuity, but also
to support possible classification and identification tasks. The signal strength fluctu-
ations of the target returns are modeled by the Swerling-I and Swerling-III cases. As
a first performance evaluation, numerical results are presented based on a two-target
simulation scenario.

1 Introduction

In ground surveillance with airborne Ground Moving Target Indication (GMTI) radar, the
main task of establishing and maintaining tracks of relevant moving objects is challenged
not only by imprecise, uncertain, and ambiguous measurements. To a large degree, the
main difficulty arises from complex target dynamics, e.g. stop & go behavior or strong
maneuvers, masking due to the sensors Doppler blind zone, nontrivial topography caus-
ing terrain obscuration, situations with closely-spaced targets, a strong false alarm back-
ground, etc. In general, these factors quickly lead to a strong performance degradation or
even track loss. To counterbalance these factors, it is beneficial to incorporate additional
sources of information into the tracking process.
Being a standard output of a modern radar system, the target amplitude or the correspond-
ing target signal strength has already been used in the past to facilitate the problem of
associating a track with its correct measurement. But in contrast to previous approaches,
e.g. [LBS90, vK96, DCV10], in this work the knowledge on the target’s signal strength is
not only used for an improved calculation of the association probabilities, but it enters into
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the algorithm as a random variable which is estimated sequentially. With this approach it is
not only possible to discriminate closely-spaced targets and improve the track continuity,
but also to support possible subsequent classification and identification tasks. In addition,
for phased array antennas the signal strength estimates could also be used to contribute
to the radar resource management: depending on the estimated target SNR, the detection
threshold could be adapted to allow better target detections.

2 Signal strength model

Due to its complexity, a realistic modeling of a real target’s back-scattering characteris-
tics is in general impossible. Therefore statistical models are used instead which can be
handled analytically. In this work it is assumed that the fluctuations of the input signal at
the detector, resulting from fluctuations of the target cross section, can be described by the
Swerling models [Swe60].

The complex target signal v = (v1, v2) with orthogonal and statistically independent com-
ponents is added by white Gaussian noise within the receiver unit. The detector uses the
total signal u = (u1, u2) to form the signal strength ||u||2 = (u1)

2 + (u2)
2 with the pro-

bability density given by the Rice distribution. In connection with the above mentioned
fluctuation model and a detection threshold λ, this leads to explicit equations for the detec-
tion probability PD and the detected signal probability density p(s) as functions of target
strength and λ. The functions p(s) are given in terms of Gamma functions (see [Koc06])
and will play the role of the likelihood function in the Bayesian update below.

3 Incorporation of signal strength information

In Bayesian target tracking, e.g. [BSL93, BSLK01], the probability density p(xk|Z
k),

which describes the target state xk at time step tk, conditioned on the measurement se-
quence Zk = {z1, z2, ..., zk} with zk = {zik}

nk

i=1, is sequentially updated by

p(xk|Z
k) =

p(zk|xk) p(xk|Z
k−1)∫

dxk p(zk|xk) p(xk|Zk−1)
(1)

To incorporate signal strength, the kinematic target state xk is augmented with a target
strength variable sk and, thus, becomes Xk = (xk, sk). The signal strength measure-
ments κi

k, on the other hand, are introduced into the measurement set: Zk = {zik, κ
i
k}

nk

i=1.
We assume that the target density factorizes in xk and sk. As usual in the tracking liter-
ature, the density on xk is described by normal distributions, predicted and updated, for
given target–detection assignments, with the Kalman filter. Because of the structure of
the likelihood function, the density on sk is well described by an inverse Gamma function
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which keep its structure under successive application of the Bayes update:

p(sk|Z
k−1) = I(sk; ŝk−1, µk−1) = Nµk−1

s
−µk−1−1
k e

−
(µk−1−1)ŝk−1

sk (2)

with a normalization constant Nµk−1
. The probability density I(s; ŝ, µ) has the expecta-

tion value E[s] = ŝ. If the parameter µ > 2, then the variance exists with Var[s] = s2

µ−2 .

Because of d
dt SNR0 = 0, no “dynamics” is needed for the signal strength, thus the prior

density at tk is identical to the posterior density at tk−1.

3.1 Combined likelihood

The combined likelihood function p(Zk|Xk) = p(Zk|xk, sk) is the probability density of
the measurements and comprises all possibilities how the given sensor output Zk can be
interpreted, given the true target state Xk. Assuming independent, identically distributed
false alarm measurements with the number of false alarms determined by the Poisson
distribution, the likelihood function, up to a factor which does not depend on Xk, can be
written as

p(Zk|Xk) ∝ (1−PD(sk))ρF + PD(sk)

nk∑
i=1

N (zik;Hkxk,Rk)LR
i
S (3)

where ρF is the false alarm density and N (zik;Hkxk,Rk) is the normally distributed sin-
gle measurement likelihood, which results from a linear measurement model with additive
white Gaussian noise: zik = Hkxk + vk, vk ∝ N (vk; 0,Rk) with measurement matrix
Hk and measurement covariance Rk. The signal strength likelihood ratio LRi

S in (3) is
given by the above mentioned signal densities p(s).

3.2 Filter update step

Assuming strong targets, i.e. 1 + sk ≈ 2 + sk ≈ sk, the posterior density p(Xk|Z
k) =

p(xk, sk|Z
k) can be written as the sum of the product of a Gaussian with an inverse

Gamma density, describing the target’s kinematic state and signal strength, respectively:

p(Xk|Z
k) =

nk∑
i=0

wi
k N (xk;x

i
k|k,P

i
k|k) I(sk; s

i
k|k, µ

i
k|k) . (4)

where the estimates xi
k|k and covariances Pi

k|k are calculated by the known Kalman filter

update equations, and weights wi
k, signal strength estimates sik|k and µi

k|k are given in
[Koc06].
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3.3 Algorithmic implementation

The presented update scheme is implemented into the single-target PDAF [BSL93] and
the multi-target JPDAF [BSLK01] tracking algorithms. In the PDAF algorithm, nk mea-
surements lead to nk + 1 hypotheses which are merged to a single main hypothesis by
second-order moment matching at the end of the filter update step. In the JPDAF algo-
rithm, the complete set of possible global hypotheses is processed, i.e. all possible combi-
nations to associate measurements to tracks including missed detections and false alarms
are considered. Thus it avoids the association of a certain measurement to more than one
track, which is a shortcoming of the simple single-target PDAF.

Figure 1: Two-target simulation scenario. Shown is the snapshot at the final revisit time.

4 Simulation scenario & results

We consider a simulation with two targets approaching and moving along the same tra-
jectory for a considerable period of time (see Fig. 1), leading to a loss of identity when
traditional tracking algorithms are used. The objective is to determine the capability of tar-
get discrimination with signal strength information in the final stage of the scenario. Based
on the JPDAF algorithm and the simulation parameters given in Tab. 1, the results are plot-
ted in Fig. 2 for Swerling-I and III fluctuations, respectively, of the two targets. The figure
depicts the probability for correct (solid lines) and incorrect (dashed lines) association of
tracks with true targets at the final revisit for different signal strength combinations, based
on the two fluctuation models. The signal strength of one target is fixed, corresponding
to the minimum value of each line. The upper plots correspond to target tracking without
signal strength information. In this case, the signal strength only affects the true detection
probability and thus the occurrence of target detections. As expected, for all combinations
of the two targets’ signal strength the probability for correct association amounts to 50%.
The lower plots illustrate the advantage of taking signal strength information into account:
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Table 1: Simulation parameters

Monte Carlo runs NMC = 1000
Target velocity vtarget = 15m/s
Process noise σp = 0.5m/s2

Range error σr = 10m
Azimuth error σϕ = 0.25
Mean false alarms n̄FA = 1
Field of view |V | = 10 km × 10 km
Sensor position Rrsensor = [−1, 5, 10]0km
Revisit rate ΔT = 2 s
Detector threshold λ = 4
Mean clutter SNR CNR0 = 10

Figure 2: Probability for correct (solid lines) and incorrect (dashed lines) association of tracks with
true targets at final revisit for different signal strength combinations, based on fluctuation model
Swerling-I (left) and Swerling-III (right). The signal strength of one target is fixed, corresponding to
the minimum value of each line. Shown are the results for JPDAF without (above) and with (below)
exploitation of signal strength information.
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A clear performance gain in target discrimination is visible for both fluctuation models,
with a stronger separation capability for larger differences in signal strength. Comparing
the results in Fig. 2 (lower plots), apparently the discrimination performance of the algo-
rithm is slightly higher in case of Swerling-III. This is probably due to the distinct peak in
the probability density of Swerling-III fluctuations, leading to a more obvious discrimina-
tion of the two signal strength distributions.

5 Conclusions

In this paper we developed a tracking algorithm which incorporates signal strength infor-
mation. In contrast to previous approaches, the knowledge on the target’s signal strength
is not only used for an improved calculation of the association probabilities, but it enters
into the algorithm as a random variable which is sequentially estimated. Based on sim-
ulation scenarios, the performance of the presented algorithm is evaluated. As expected,
the exploitation of signal strength leads to a performance gain in target discrimination in a
multi-target scenario.
Further work will focus on the incorporation of signal strength information into the CPHD
algorithm [Mah07] and on a multiple model approach for different target fluctuation mod-
els.
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