
A Generalized Framework for an Ontology-Based
Data-Extraction System

Alan Wessman,1 Stephen W. Liddle,2 David W. Embley1

1Department of Computer Science
2Rollins Center for eBusiness
Brigham Young University

Provo, UT 84602, USA
alanyst@gmail.com, liddle@byu.edu, embley@cs.byu.edu

Abstract: Extraction of information from semi-structured or unstructured
documents, such as web pages, is a useful yet complex task. Ontologies can
achieve a high degree of accuracy in data extraction while maintaining resiliency
in the face of document changes. Ontologies do not, however, diminish the
complexity of a data-extraction system. As research in the field progresses, the
need for a modular data-extraction system that decouples the associated processes
continues to grow.

In this paper we report on the implementation of such a system. The nature of
our framework allows new algorithms and ideas to be incorporated into a data
extraction system without requiring wholesale rewrites of a large part of the
system’s source code. It allows researchers to focus their attention on parts of the
system relevant to their research without having to worry about introducing
incompatibilities with the remaining components. We demonstrate the value of the
framework by providing an implementation that exhibits appropriate
characteristics.

1 Introduction

Making sense of the vast amount of information available on the World Wide Web
has become an increasingly important and lucrative endeavor. The success of Web
search companies such as Google demonstrates the vitality of this industry. Yet Web
search has much still to deliver. While traditional search engines can locate and retrieve
documents of interest, they lack the capacity to make sense of the information those
documents contain.

Data extraction addresses many of the problems associated with typical web
searches based on standard information retrieval techniques. Data extraction is the
activity of locating values of interest within electronic textual documents, and mapping
those values to a target conceptual schema [La02]. The conceptual schema may be as
simple as slots in a template (a wrapper) used to locate relevant data within a web page,
or it may be as complex as a large domain ontology that defines hierarchies of concepts
and intricate relationships between those concepts. The conceptual schema is usually
linked to a storage structure such as an XML file or a physical database model to permit
users to query the extracted data. In this way, the meaning of a document is detected,
captured, and made available to user queries or independent software programs.

239

Much of the research in data extraction has aimed at developing more accurate
wrappers while requiring less human intervention in the process (e.g. [Ha97] [KWD97]
[AK97] [CMM01] [La02]). The primary drawback of wrappers, whether they are
generated manually or semiautomatically, is that they depend on the particular syntax of
the document markup to detect boundaries between relevant and irrelevant data. The
main implication is that when a site’s markup changes (which happens often on the
web), the corresponding wrappers often break. Furthermore, since different sites in the
same domain generally use distinct markup, customized wrappers are required for each
site. Wrapper management can be quite complex and problematic.

Other data-extraction researchers have focused on the use of richer and more formal
conceptual schemas (ontologies) to improve accuracy in data extraction (e.g. [Em99]
[DMR02] [Eng02] [SFM03]). Because an ontology describes a subject domain rather
than a document, ontology-based data-extraction systems are resilient to changes in how
source documents are formatted, and they can handle documents from various sources
without impairing the accuracy of the extraction. This contrasts with wrappers, which
merely describe the locations of data values in a particular set of similarly-formatted
documents. Ontology-based extractors compare unfavorably to wrappers in one
important way: considerably more human effort is required up front to construct a high-
quality extraction ontology, while wrappers can be constructed more easily, even to the
point of automation of much of the process.

Our data-extraction system is called BYU-Ontos, or simply Ontos [Em99]. It is an
ontology-based engine whose present version accepts multi-record HTML documents,
determines record boundaries within those documents, and extracts the data from each
record. It generates SQL DDL statements for the model structure and stores the
extracted information as DML statements. This facilitates querying of the results but
also removes certain metadata (such as the original location of the data within the source
document) attached to the data during the extraction process. This metadata may be
important for learning algorithms or for further research.

The system is based on the Object-Oriented Systems Model (OSM) [EKW92]. OSM
is a set-theoretic modeling approach founded upon first-order predicate logic, which
enables it to express modeled concepts and constraints in terms of sets and relations. An
OSM instance can serve as an ontology: concepts are represented by object sets, which
group values (objects) that have similar characteristics; and connections between
concepts are expressed via relationship sets, which group object tuples (relationships)
that share common structure. Generalization-specialization is a special type of relation
that expresses “is-a” relationships between object sets. In Ontos, OSM is expressed by
OSML (OSM Language) [LEW00].

For use in extraction, OSM has been augmented by data frames, which describe
characteristics of objects, similar to an abstract data type [Emb80]. Data frames are
attached to object sets, and provide a means to recognize lexical values that correspond
to objects in the ontology.

OSM and data frames together provide the modeling power necessary for effective
ontology-based data extraction. Experiments on small- to medium-size ontologies (two
to twenty object sets) have demonstrated that Ontos exhibits a rather high degree of
accuracy with the resiliency and robustness to maintain that accuracy even when the
structure of the source records varies considerably [Em99].

240

OntologyEditor is a predominantly WYSIWYG tool for editing OSM-based data-
extraction ontologies which we presented an earlier ISTA Conference [LHE03]. It
performs no true data-extraction work itself, but provides a way for the user to preview
the effect of the value recognition rules defined in the data frames of the ontology on a
source document. As part of the preparation for this paper, the authors spent a
significant amount of effort in refactoring OntologyEditor to accommodate new
extraction ontology capabilities and to support a new ontology storage format.

Over the last several years, we have performed considerable amounts of successful
data-extraction research based on the tools just described. But our experiences have
served to exercise these tools in ways that were difficult to predict when they were first
developed. Much of the research conducted after the development of Ontos has, as a
side effect, shown the system to be inflexible when certain fundamental operational
parameters are changed. For instance, the system expects multiple-record documents as
input, and thus performs poorly on single-record or tabular document structures.
Research conducted on such document structures has required parallel versions of Ontos
to be developed, or significant portions of Ontos code to be extracted and customized for
newly developed systems, in order to perform effective experiments. Furthermore,
Ontos is not easily adapted when new features are added to the ontology specification.

Although there are many possible algorithms for extracting data based on an
ontology, and it is not yet clear which are best under which circumstances, Ontos is
heavily tailored to a single extraction algorithm and cannot readily be modified to
execute a substantially different one. For example, one of the authors devised an
extraction algorithm that involved inferring hidden Markov models from the ontology
and using those to map values to concepts. The new algorithm could not be readily tied
back into Ontos because the system was too strongly coupled with its original extraction
algorithm, and the project was eventually abandoned.

This inflexibility makes it difficult to evaluate different ideas or approaches for data
extraction. A higher number of hard-coded assumptions about operational parameters
makes it more likely that reimplementation of the system is required when these
assumptions are contradicted. In contrast, reducing the number of a priori assumptions
encoded into the system should make it easier to experiment with or improve certain
aspects of the process while keeping the rest of the system constant. This allows us to
make scientifically rigorous claims about the performance of the system and the impact
of the changes made.

Examples of such operational parameters include the chosen ontology language (e.g.
OSML in our case) and supported document types (e.g. multiple-record HTML
documents). We would like to experiment with ontology languages that conform to
W3C standards, and we would like to be able to experiment with recognition techniques
that can leverage the DOM tree structure of a document (which we currently ignore), or
take as input other document types (e.g. PDF and XML). At this point, expanding the
power of Ontos requires building a more general framework with fewer a priori
assumptions.

To address the need for high flexibility, modularity, and extensibility in a data-
extraction system, we propose a new framework for data extraction. We assert that such
a framework will provide the support for customization and experimentation needed to
efficiently conduct continued data-extraction research. Frameworks and design patterns
constitute the heart of our approach.

241

Frameworks provide the means to address the macro-level problems of a system
while allowing details to be implemented or varied after the initial design, so that
components may be interchanged and system performance may be tuned. A framework
thus provides a skeletal implementation for a general problem, and establishes
parameters for a set of solutions based on that partial implementation. Solution
providers can concentrate on satisfying those requirements that are unique to a particular
approach, using existing mechanisms provided by the framework to handle the rest of
the system.

The theory of design patterns has contributed to the rise of robust software
frameworks. Design patterns are collections of templates and principles for designing
code that solve commonly-encountered software design scenarios in an abstract manner.
An example of a design pattern is the Factory Method [Ga95], which provides a
model for instantiating new objects whose actual classes are known only at runtime
(dynamic binding) rather than at design time (static binding). These design patterns are
often encountered in frameworks due to their highly generalized architecture, which
enables frameworks to defer non-essential design decisions to their implementations.

A generalized framework of interfaces and abstract classes written in an object-
oriented language (such as Java) can decouple each operational module from the rest of
the engine to produce a highly flexible and configurable data-extraction system. The
framework can be sufficiently flexible both to allow the current heuristics to be re-
implemented under the framework and to enable new heuristics and other modules to be
created and incorporated into the Ontos system without requiring significant rewrites of
unrelated code.

The contributions of this paper include (1) an ontology-based data-extraction
framework written in Java, (2) a means for explicitly modeling extraction plans, (3) an
extraction-ontology schema, OSMX, written in XML Schema, and (4) a
reimplementation of the legacy version of Ontos within the new framework. The new
Ontos serves as a reference for future implementations of the framework. It retains
support for all essential features of the old Ontos system but also adds many new
capabilities.

The remainder of this paper is organized as follows. Section 2 describes our new
data-extraction framework at the architectural level. Section 3 briefly highlights the
main points of OSMX. In Section 4 we give a description of the reference
implementation of the framework. Section 5 describes the results of validating the
reference implementation, and we conclude in Section 6.

2 A framework for performing ontology-based data extraction
This section explains the design and construction of the data-extraction framework.

We describe each interface and abstract class, explain the essential contracts they define,
and discuss how they might be implemented.

A graphical overview of the framework appears in Figure 1. Control begins at the
engine at the top of the diagram, and passes to the extraction plan. The narrow boxes
running down the right side represent modules involved in the extraction process.

The DataExtractionEngine abstract class represents the overall data-extraction
system. Its primary purpose is to accept operational parameters, locate and load the
appropriate modules, perform any additional initialization steps, and initiate the

242

extraction process. It then performs cleanup as necessary and terminates.
DataExtractionEngine follows the Facade design pattern [Ga95]. A facade is a
simplified interface to a complex system; in this case, DataExtractionEngine defines
simple methods for initializing the system and executing the extraction process. This
pattern also allows clients such as the OntologyEditor to interact with the system at a
very high level without being coupled to specific components of the system.

The Ontology interface describes an in-memory representation of the extraction
ontology. The interface is designed to be independent of the language the ontology is
written in; thus we eliminate from the framework any assumption that the extraction
ontology is built with OSM, DAML, OWL, or any other specific ontology language.
Without knowing the features of the ontology language, how can we define the
capabilities of the Ontology interface? The answer is that we defer such details to
implementation classes, and use Ontology as primarily a marker interface for ensuring
that parameters and member variables representing the ontology are of the correct data
type.

Document is an interface that represents cohesive units of unstructured or semi-
structured information that may be interspersed with data that is not of interest. We
narrow the scope of our problem by choosing to focus only on textual data extraction.

Figure 0. The data-extraction framework.

DataExtractionEngine

public void doExtraction()Config parameters

ExtractionPlan

DocumentRetriever

DocumentStructureRecognizer

DocumentStructureParser

ContentFilter

ValueRecognizer

ValueMapper

OntologyWriter

Dynamically
loaded

components

execute()

Extraction
Algorithm

uses

243

We do not attempt to decode images or other non-text sources of information. Taking
our cue from XML’s successful general technique, we represent a document as a
sequence of (possibly zero-length) strings interleaved with sub-documents.

A sub-document is itself a Document, and thus may contain other sub-documents.
Th

presents the overall algorithm for carrying
out

 can occur, the extraction engine must provide a way
for

Retriever interface defines the module responsible for supplying

s an optional component of the system. Its
rol

order to
ma

ents contain a combination of meaningful data and formatting
information. An HTML document contains many tags that indicate how the document

is definition implies a tree structure with one Document at the root, and we formally
define the term sub-document to indicate any non-root node in a Document tree. We
note that Document is an instance of the Composite design pattern [Ga95], which
allows objects to be composed into treelike hierarchies while providing a uniform
interface both for interior nodes and leaves.

The ExtractionPlan abstract class re
the extraction activity. In this way, it is similar to an SQL extraction plan in a

relational database management system. ExtractionPlan eliminates assumptions
about the order of operations for a data-extraction system: one implementation might
proceed in a linear fashion, from retrieval straight through to mapping and output, while
another implementation might discover some new information (such as a relevant URL)
during extraction and immediately branch into a recursive execution based on that data.
In this sense, ExtractionPlan adheres to the Strategy design pattern [Ga95], which
encapsulates an algorithmic process and standardizes its invocation so that different
algorithms may be interchanged.

Before actual extraction work
 documents to be located and prepared for extraction. The following interfaces define

important aspects of this process: DocumentRetriever,
DocumentStructureParser, DocumentStructureRecognizer, and
ContentFilter.

The Document
the extraction engine with source documents. It may, for instance, represent a view of a
local file system, or it may wrap the functionality of a Web crawler or even a Web
search engine such as Google. The module accepts a URI as input and produces a set of
Documents. The DocumentRetriever will usually perform its functions at the
beginning of the extraction process. However, a sophisticated implementation might use
it to retrieve additional documents using extracted URLs from previously retrieved web
pages, in an intelligent spidering process.

DocumentStructureRecognizer i
e is to analyze a document to determine which available

DocumentStructureParser is best suited to decompose the document. This is useful
when the extraction engine is operating on a mixture of source document types.

We may be interested in breaking up a document into sub-documents in
ke extraction easier or more accurate. For example, dividing a multi-record

document into sub-documents, each constituting an individual record, allows us to
process one record at a time without having to worry about missing a record boundary
and extracting values from an adjacent record. We define the
DocumentStructureParser interface as a solution to this problem. It is an optional
component of the system; left unspecified, the input document will be treated as an
indivisible unit.

Most docum

244

ma

xample, we may at times wish to strip all HTML
tag

ogy. Two interfaces
div

the value-recognition rules
ass

 this is
don

ack to the
doc

h
the

y be represented in a browser, but these tags usually do not lend additional meaning
to the content. We find it convenient therefore to remove text that is exclusively for
formatting purposes from the document before proceeding with extraction. We define
the ContentFilter interface to support this requirement. This is another optional
component of a data-extraction system, as going without a filter simply means extracting
from the document’s original content.

Filtering out the formatting data from a document is a process that demands a
substantial degree of flexibility. For e

s from a document, leaving behind only the text content found between those tags.
On the other hand, we might desire to preserve quasi-meaningful pieces of information
found within certain HTML tags, such as the contents of the ALT attribute of an IMG
tag. Consider the example of a series of icons used to depict amenities provided at a
campground. The icons express information that we wish to extract into an ontology for
campgrounds, and by extracting from the ALT attribute of those IMG tags we hope to
glean the desired knowledge without having to attempt to decode the graphics
themselves. By providing a flexible means to implement various filters, we allow
implementers to target those portions of the document that they deem most likely to
yield useful data, while discarding data that simply gets in the way.

With the document retrieved, parsed, and filtered, we can perform the actual task of
extracting values from the document and mapping them to the ontol

ide this work: ValueRecognizer, and ValueMapper.
ValueRecognizer occupies a key role in a data-extraction system, and is a required

component of the framework. Its responsibility is to apply
ociated with the extraction ontology to the input document, producing a set of

candidate extractions. We say “candidate” because it does not resolve conflicts about
which matched values belong to which parts of the ontology; it merely identifies from
the document the values we can find that might belong in the final data instance.

Locating and interpreting the extraction rules is a process that can differ according to
the ontology language used, so at the framework level we do not restrict how

e. Nor do we specify how the rules are to be applied to the document or how the
matching results are to be stored. Our reference implementation associates match values
with the ontology through composition; but other methods of handling the match results
(such as annotations inline with the document content) may be equally valid.

The ValueRecognizer also bears the responsibility of maintaining location
information for each candidate value. This provides a traceable path b

ument content and also can supply useful data for the algorithms that resolve match
conflicts and create mappings from candidate values to elements of the ontology. We do
not specify a format for the location data, but <start position, end position> or <start
position, length> pairs generally make the most sense for character-based text sources.

Perhaps the most important and difficult part of the extraction system is the process
that takes candidate value matches and uses them to build a data instance consistent wit

 constraints specified by the ontology. Since this process maps candidate values to
elements of the ontology, we name this interface ValueMapper. There are four tasks
that a ValueMapper must perform to transform candidate value matches into a data
instance: (1) resolve conflicting claims that different elements of the ontology make
upon the same matched value, (2) transform lexical values into objects (instances of
concepts defined in the ontology), (3) infer the existence of objects that have no direct

245

lexical representation in the text, and (4) infer relationships between objects. The
ValueMapper’s work yields a data instance: a collection of objects and relationships
between those objects.

When the ValueMapper process has finished, the OntologyWriter abstract class
provides a standard way for an implementation to export the objects and relationships to
a u

ntologies with OSMX
ework is the language

 The ontology language
est

document defines the standards for
cre

ays. First, we enhanced data frames by allowing the specification of
an

s an augmented form of a Perl-5 compatible regular expression. The
lev

ssion as follows:

seful storage format via the Java Writer interface. The particular storage format is
up to the implementation to define.

3 Constructing extraction o
Fundamental to an implementation of the data-extraction fram

used to define the ontologies involved in the extraction process.
ablishes the capability of the ontology to represent a given subject domain. The

previous ontology description language, OSML, is adequate for representing extraction
ontologies, but because it is a proprietary language with a highly ambiguous grammar
that is difficult to parse correctly, interchange with other tools has always been difficult.
Our new XML-based language, OSMX, is more portable and much easier to integrate
with modern Java implementation environments.

The official OSMX specification is defined by an XML Schema document
(http://www.deg.byu.edu/xml/osmx.xsd). This

ating a well-formed and valid OSMX document. We use the Java Architecture for
XML Binding (JAXB) technology to generate, from the OSMX specification, Java
classes and interfaces that represent OSMX constructs. Modifying the OSMX definition
is generally a straightforward process: we adjust the definitions in the XML Schema
document, and then execute a JAXB program that rebuilds the classes and interfaces
automatically. We use these classes and interfaces to access and manipulate portions of
an ontology from within the data-extraction framework reference implementation. This
standards-based approach is far more convenient and modifiable than the proprietary
solution had been.

In the process of designing OSMX, we augmented the prior ontology language in
several important w

internal representation for a lexical object’s value. This allows us to interpret the
value as a particular data type, such as String or Double. We may also designate a
canonicalization method that converts extracted values into a canonical format
compatible with the internal representation. The prior framework only allowed limited
regular-expression based string substitutions for manipulating extracted values. The
new approach lets us integrate complex methods written in Java to manage
canonicalization.

The most basic element of an extraction rule for a data frame is a matching
expression. This i

el of regular expression support is defined by the Java regular expression package
java.util.regex. We augment regular expressions by allowing the rule designer to
embed macro and lexicon references within the expression itself.

A macro defines a simple string substitution rule. For example, we might define a
macro named “DayOfWeek”, which can be used in a regular expre

((from|on|starting|beginning) {DayOfWeek})

246

When this t expands into the

clical
ref

nt and context.
OS

a that adheres to the
arc

e start with the highest level of functionality, the DataExtractionEngine.
Fig

expression is applied to a text, the macro reference firs
substitution value, and the resulting regular expression is matched against the text.

Macro references are fully recursive in our reference implementation, but cy
erences are forced to terminate at the first recurrence of a previously expanded macro,

so that infinite recursion does not occur. Lexicon substitution is similar.
OSML data frames combined certain aspects of the concepts of consta
MX data frames fully separate the two. Value phrases in OSMX have one set of

regular expressions to describe constants to be extracted, and another set of expressions
to describe contextual clues (characters that must appear or that may appear near the
constant to be extracted). OSMX also gives better control over keyword phrases,
allowing them to be associated with individual value phrases or the entire data frame.

4 OntosEngine: an OSMX-based implementation
We have created a working data-extraction system in Jav
hitecture defined by the data-extraction framework. We intend for this new system to

serve as a point of reference for future implementations or enhancements, so we refer to
the system as the reference implementation of the framework. This term should not be
confused with the term framework definition, which is the set of classes, interfaces, and
other architectural components that establish the parameters of the framework itself,
without respect to any particular implementation.

Application
OntologySource

Descriptor
Docume
Retriever

nt

Figure 2. Architecture of the new Ontos system under the framework.

W
ure 2 shows a high-level flow diagram of the reference implementation. We extend

this abstract class, creating the OntosEngine class, in order to implement the
doExtraction() method. We also implement initialization code that allows
command-line parameters or entries in a configuration file to specify the implementation
modules’ subclasses at runtime.

Object sets, relationship sets,
and constraints

Value and keyword
matching rules

Value
Recognizer

Structure
Recognizer

Candidate matches

Extracted objects and relationships
Document

Structur
Parser

e

Content
Filter

Document

DocumentDocumentDocument

Value
Mapper

Ontology
Writer

Structure
Output

Data
Output

URI LocalDocumentRetriever

DOMDocument

(no DocumentStructureRecognizer)

FanoutRe

TextDocument

HTMLF

DataFrameMatcher

OSMX ontology

HeuristicBasedMapper

ObjectRelationshipWriter

(no structural output) HTML representation

cordSeparator

ilter

247

After loading all necessary modules, the doExtraction() method instantiates an
OntosExtractionPlan and invokes its execute() method. As its name suggests,
OntosExtractionPlan extends the ExtractionPlan abstract class. For our
implementation of ExtractionPlan, we define a straightforward algorithm for
performing the extraction. Iterating over each Document returned by the
DocumentRetriever module, we obtain a document tree from the available
DocumentStructureParser or retain the original Document if no parser module was
specified in the initialization phase. For each Document in the document tree, we
remove markup with the available ContentFilter and then perform value recognition
and mapping with the appropriate components. Finally, we write the results to a human-
readable HTML file. Table 1 lists the correspondences between framework classes and
their respective reifications in the reference implementation.

Framework Class Reference-Implementation Class
DataExtractionEngine OntosEngine
ExtractionPlan OntosExtractionPlan
DocumentRetriever LocalDocumentRetriever
DocumentStructureRecognizer not needed in reference implementation
DocumentStructureParser FanoutRecordSeparator
Document DOMDocument, TextDocument
ContentFilter HTMLFilter
ValueRecognizer DataFrameMatcher
ValueMapper HeuristicBasedMapper
OntologyWriter ObjectRelationshipWriter

Table 1. Correspondences between framework and reference-implementation classes.

LocalDocumentRetriever is a DocumentRetriever that locates and retrieves
documents from a specified directory in the local file system. Our reference
implementation does not attempt any retrieval from online sources such as Web search
engines, but since the built-in Java API makes retrieving URI’s straightforward, this
would not be difficult to implement.

Because our reference implementation mimics legacy Ontos in its focus on extraction
from single- and multiple-record documents, we only depend on one
DocumentStructureParser implementation, so no
DocumentStructureRecognizer is necessary.

Our DocumentStructureParser reference implementation,
FanoutRecordSeparator, anticipates that the document has a shallow multi-record
structure, and divides the document into sub-documents accordingly. It is possible for
the FanoutRecordSeparator to return a single-node document tree, in which case the
engine treats the tree as a single-record document.

Our present focus for extraction is on HTML documents, which contain a
considerable amount of markup extraneous to the data-extraction process. We therefore
provide an HTMLFilter implementation of ContentFilter. It essentially serves as an
Adapter [Ga95] for a preexisting utility that strips out unwanted HTML. This

248

exemplifies how we can incorporate existing code into the framework in addition to
writing original implementations.

In total, these modules (LocalDocumentRetriever, FanoutRecordSeparator,
and HTMLFilter) prepare a document for value recognition and mapping to the
ontology. At this point in processing, the framework requires an ontology, which for
testing and comparison purposes is the obituary ontology introduced in [Em99].

Our reference implementation of ValueRecognizer is called DataFrameMatcher,
which uses OSMX with its data frames as the ontology language. This module locates
the recognition rules specified by each data frame and applies them to the input text.
The matcher identifies all substrings in the text that match the recognition rules and, for
each such substring, constructs a MatchedText object that records the matched
substring, its starting and ending character positions (in the context of the filtered
document), and the URI of the Document from which it was extracted. A
MatchedText object also maintains a status attribute, indicating whether the match has
been accepted, rejected, or not yet processed by the ValueMapper.

We provide an OntologyWriter subclass called ObjectRelationshipWriter
that produces a human-readable hierarchical list of objects and relationships in each data
instance stored with the input ontology. The output format is HTML, which suits our
present purposes since we intend humans and not computers to process the results in our
reference implementation.

An aspect of the reference implementation that deserves further explanation is the
ValueMapper, which is the most complex part of the extraction system (and a primary
reason for creating this new framework, due to the difficulty of extending the legacy
version of Ontos). The module’s task is to infer a set of mappings between extracted
values (the MatchedText objects) and object sets in the ontology. Each mapping is
realized as a lexical object. ValueMapper must also infer the existence of nonlexical
objects and relationships between objects.

Not every MatchedText object will necessarily become a lexical object; nor will the
ValueMapper implementation infer an object or relationship wherever an object set or
relationship set exists. In fact, a key problem for the ValueMapper to solve is how to
decide when to generate an object or relationship. Our implementation employs various
heuristics to solve this problem (see [Em99]). Full details are found in [We05].

5 Evaluation of OntosEngine
We have claimed that our framework provides a flexible approach to building a data-

extraction system. While such a claim is not fully testable within the scope of this paper,
we can assess whether the framework is sufficient for supporting data extraction. Past
experience with other frameworks gives us a high degree of confidence in our approach.
Thus, we have provided a reference implementation of the framework to demonstrate
that it is sufficiently complete. We must now show the framework does not negatively
impact extraction results available from the legacy Ontos system. And indeed, our
reference implementation of the framework does achieve comparable, if not better,
results.

We demonstrate this by performing extraction using the same set of documents and
the same ontology on both our new implementation and the legacy system, then
comparing the results. The subject domain for this experiment is obituary listings such

249

as those commonly found in local newspapers. Our corpus is a set of recent obituaries
from two different newspapers—the Salt Lake Tribune and the Arizona Daily Star—
containing a total of 25 individual obituaries. The ontology used for both experiments is
the same, with the exception that for our new implementation we represent the ontology
with OSMX, and for the legacy system we represent it with the OSML language. The
representational differences between these languages do not influence extraction
accuracy.

In our experiment, we measure precision and recall with respect to the lexical object
sets from the ontology. Our basis for comparison is a set of manually derived extraction
results based on the judgment of the human experimenter. We score correct (exact and
partial) matches, false positives (incorrect mappings), and false negatives (missed
mappings). Exact matches are defined as identical values appearing in the same
mapping for both automatic and manual results; for partial matches, the automatically
extracted value may be a substring of the manual result, or it could subsume or overlap
the manual result. For example, a partial match might contain only “July 21,” where the
human would extract “July 21, 1993,” or vice versa. If the values are entirely different,
such as “August 23, 1979” and “July 21, 1993,” we consider them to be different
mappings and record a false positive. We record as a false negative the failure to extract
any sort of mapping (exact, partial, or incorrect) to correspond with one extracted
manually.

Our results appear in Table 2. The first column lists the object sets of the ontology.
Other columns list the total correct matches (with partial matches in parentheses), the
total false positives, total false negatives, precision, and recall for each of the two
newspapers from which the input obituaries came. The rightmost columns give the
overall precision and recall numbers. Each row of the table gives the results for the
legacy Ontos system (top numbers) and the new Ontos system (bottom numbers, in
boldface).

Salt Lake Tribune 9-Oct-2004 Arizona Daily Star 9-Oct-2004 Overall
Object Set C(P) FP FN R% P% C(P) FP FN R% P% R% P%
Deceased
Person

15
15

2
2

0
0

100
100

88
88

9
10

0
0

1
0

90
100

100
100

96
100

92
93

Deceased
Name

8 (7)
8 (7)

0
0

0
0

100
100

100
100

5 (4)
6 (4)

0
0

0
0

100
100

100
100

100
100

100
100

Age 5
5

7
4

0
0

100
100

42
56

3
4

6
5

6
6

33
40

33
44

57
60

38
50

Death
Date

12
11

3
4

3
4

80
73

80
73

8
9

1
1

1
1

89
90

89
90

83
80

83
80

Birth
Date

13
11

2
4

2
4

87
73

87
73

2
2

5
6

1
1

67
67

29
25

83
72

68
57

Funeral 11
11

4
4

0
0

100
100

73
73

8
8

2
2

0
0

100
100

80
80

100
100

76
76

Funeral
Date

8
7

3
4

3
4

73
64

73
64

4
6

1
0

4
2

50
75

80
100

63
68

75
76

Funeral
Time

7
5

3
5

4
6

64
46

70
50

4
3

3
5

4
5

50
38

57
38

58
42

65
44

Funeral
Address

5 (2)
6 (2)

4
3

3
2

70
80

64
73

2
1

5
7

2
3

50
25

29
13

64
64

50
47

250

Interment 1
1

12
10

0
0

100
100

8
9

0
0

7
9

0
0

100
100

0
0

100
100

5
5

Interment
Date

1
1

0
0

0
0

100
100

100
100

-
-

-
-

-
-

-
-

-
-

100
100

100
100

Interment
Address

1
1

0
0

0
0

100
100

100
100

-
-

-
-

-
-

-
-

-
-

100
100

100
100

Viewing 10
7

47
5

0
3

100
70

18
58

4
5

18
2

1
0

80
100

18
71

93
80

18
63

Viewing
Date

1
0

4
6

0
1

100
0

20
0

0
0

0
1

5
5

0
0

0
0

17
0

25
0

Beginning
Time

5
4

1
2

5
6

50
40

83
67

4
4

0
1

1
1

80
80

100
80

60
53

90
73

Ending
Time

6
2

0
2

4
8

60
20

100
50

4
3

0
1

1
2

80
60

100
75

67
33

100
63

Viewing
Address

2
0

1
4

2
4

50
0

67
0

0
1

3
3

4
3

0
25

0
25

25
14

33
14

Relative
Name

75 (32)
67 (31)

196
191

28
38

77
72

35
34

58 (35)
69 (37)

94
78

45
32

67
77

50
58

73
74

41
43

Table 2. Results of extraction of obituaries from two newspapers.
(Boldface numbers give results from the new Ontos system; normal font indicates legacy Ontos results.
Columns are: C(P)=Correct (Partial); FP=False Positive; FN=False Negative; R%=Recall; P%=Precision.)

For half of the object sets, the new system performs as well as or better than the
legacy system. Of the remaining nine object sets, the new system performs worse for
seven, and for the other two it equals or excels the legacy system’s performance in either
recall or precision, but not both. Overall, the new system performs marginally better
than the legacy system, with the major differences stemming from a few intentional
departures by the new system from the rules followed by the legacy system. The logic
in the new system is significantly cleaner than in the legacy system, and rather than rely
on fortuitous quirks in the legacy system, we chose to implement a cleaner semantics
and see how the two would compare. Generally, the performance between the two
systems is remarkably similar, considering the very different algorithms at the heart of
the systems. Where performance degrades in the new system, the code is modular
enough to allow poorly performing code to be optimized or replaced without impacting
the rest of the system. This bears out our claim that the framework is sufficient to
support the task of data extraction at the same level as the legacy system, while
providing a much more capable supporting code infrastructure.

6 Conclusion
We have proposed, designed, and provided a reference implementation for a

framework for ontology-based data extraction. This framework offers improved
modularity and extensibility to support further data-extraction research. We have
demonstrated that the framework is sufficiently developed to support a re-
implementation of BYU Ontos that preserves the quality of legacy Ontos while also
using modular heuristics code.

Additionally, we have designed an XML Schema, OSMX, that provides an XML
storage definition for OSM ontologies. Newly added features give OSMX greater
capabilities for representing data-extraction ontologies and the instance data extracted

251

for them. A library of JAXB-generated Java classes supports programmatic access to
OSMX-compliant documents. This library allows Ontos, OntologyEditor, and future
tools to exchange ontologies and data, expanding the research possibilities while
minimizing the need for specialized information interchange protocols or file formats.

The products of these efforts provide a solid basis for continued research on
ontology-based data extraction. Future researchers will be better able to focus on
specific problems in the field while maintaining confidence that plugging their code into
the existing system and comparing the results can rapidly validate their work. The value
of this contribution is in future ontology-based data extraction research opportunities
made possible or practical because of the framework.

Bibliography
[AK97] Ashish, N. and C. Knoblock. “Wrapper generation for semi-structured

Internet sources,” SIGMOD Record, Volume 26, Number 4, December
1997, pp. 8-15.

[CMM01] Crescenzi, V., G. Mecca, P. Merialdo. “RoadRunner: Towards automatic
data extraction from large Web sites,” In Proceedings of the 27th
International Conference on Very Large Data Bases, Rome, Italy, 11-14
September 2001, pp. 109-118.

[DMR02] Davulcu, H., S. Mukherjee, I.V. Ramakrishnan. “Extraction techniques for
mining services from Web sources,” In Proceedings of the IEEE
International Conference on Data Mining (ICDM), Maebashi, Japan, 9-12
December 2002, pp. 601-604.

[Em99] Embley, D.W., D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale,
Y.-K. Ng, R.D. Smith. “Conceptual-model-based data extraction from
multiple-record Web pages,” Data & Knowledge Engineering 31 (1999), pp.
227-251.

[EKW92] Embley, D.W., Barry D. Kurtz, Scott N. Woodfield. Object-Oriented
Systems Analysis: A Model-Driven Approach. Yourdon Press, 1992.

[Emb80] Embley, D.W. “Programming with data frames for everyday data items,”
AFIPS ’80 Proceedings, Anaheim, California, 19-22 May 1980, pp. 301-
305.

[Eng02] Engels, R. Del 7: CORPORUM OntoWrapper: Extraction of structured
information from web based resources. On-to-Knowledge Consortium,
2002. At http://www.ontoknowledge.org.

[Ga95] Gamma, E., R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Boston, 1995.

[Ha97] Hammer, J., H. Garcia-Molina, S. Nestorov, R. Yerneni, M. Breunig, V.
Vassalos. “Template-based wrappers in the Tsimmis system,” In
Proceedings of the ACM SIGMOD International Conference on
Management of Data, Tucson, Arizona, 13-15 May1997, pp. 532-535.

[KWD97] Kushmerick, N., D. Weld, R. Doorenbos. “Wrapper induction for
information extraction,” In Proceedings of the International Joint
Conference on Artificial Intelligence, Nagoya, Japan, 23-29 August 1997,
pp. 729-737.

252

[La02] Laender, A.H.F., B.A. Ribeiro-Neto, A.S. da Silva, J.S. Teixeira. “A brief
survey of Web data extraction tools,” SIGMOD Record, Volume 31,
Number 2, June 2002, pp. 84-93.

[LEW00] Liddle, S.W., D.W. Embley, S.N. Woodfield. “An active, object-oriented,
model-equivalent programming language.” Advances in Object-Oriented
Data Modeling, MIT Press, 2000, pp. 333-361.

[LHE03] Liddle, S.W., K.A. Hewett, D.W. Embley. “An Integrated Ontology
Development Environment for Data Extraction,” In Proceedings of the 2nd

International Conference on Information System Technology and its
Applications (ISTA2003) , Kharkiv, Ukraine, 19-21 June 2003, Lecture
Notes in Informatics, vol. P-30, pp. 21-33.

[SFM03] Shah, U., T. Finin, J. Mayfield. “Information retrieval on the Semantic
Web.” In Proceedings of the Eleventh International Conference on
Information and Knowledge Management, McLean, Virginia, 4-9
November 2002, pp. 461-468.

[We05] Wessman, A. “A Framework for Extraction Plans and Heuristics in an
Ontology-Based Data-Extraction System”, Masters Thesis, Computer
Science Department, Brigham Young University, 2005.

253

