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ABSTRACT
When a pianist is playing on a MIDI keyboard, the computer does
not know with which hand a key was pressed. With the help of
a Recurrent Neural Network (RNN), we assign played MIDI notes
to one of the two hands. We compare our new approach with an
existing heuristic algorithm and show that RNNs perform better.
The solution is real-time capable and can be used via Open Sound
Control (OSC) from any programming environment. A non real-
time capable variant provides slightly higher accuracy. Our solution
can be used in music notation software to assign the left or right
hand to the upper or lower staff automatically. Another application
is live playing, where different synthesizer sounds can be mapped
to the left and right hand.

CCS CONCEPTS
•Computingmethodologies→Neural networks; •Applied com-
puting → Performing arts.
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1 INTRODUCTION
Automatic music transcription is an important topic in Music Infor-
mation Retrieval. The goal is to create a symbolic representation
from a sound recording. Especially for piano music, many promis-
ing solutions have been proposed in recent years [2, 5, 8, 11, 13, 21].
But simply transcribing recordings to MIDI events represents only
the first step towards a useful piano score. Afterwards, the notes
must be quantized, divided into beats, and distributed to the lower
and upper staff. We introduce a method to determine which hand
was used by the piano player to play a note. The method only uses
MIDI data and does not need any additional hardware like cameras
over the keyboard. It is especially useful for two applications:

• Interactive notation: Many notation solutions allow the user
to record a piece using a MIDI interface. This is especially
well suited for pianomusic. But then, among other things like
quantization and correction of playing errors, the assignment
of the individual notes to the upper or lower staff must be
made. Usually the left hand is written in the lower staff
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and the right hand in the upper staff. So far, most systems
allocate notes by splitting at the middle C: deeper notes
are assigned to the lower staff; all others to the top. This
approach is highly inaccurate as soon as one hand crosses
this split point, which is why the users then have to manually
correct the assignment.

• Live playing: The assignment of notes to hands can also
be interesting for live playing with synthesizers or other
virtual instruments. It opens up the possibility to assign
different sounds to the left and right hand. Thus, new expres-
sion dimensions are created without the need for additional
hardware.

This paper provides three contributions:

• We show that the assignment of notes to hand with an RNN
is possible. We achieve accuracies of 93.25% in real-time
operation and 94.47% in non-real-time operation.

• We are extending an existing Kalman filter based approach
[10] to bidirectional non real-time operation. With 92.17%
accuracy, this is about 1.4 percentage points more accurate
than the existing real-time capable solution.

• We have created an extensive dataset for training the RNN. It
contains live piano music, with right and left hand encoded
as separate MIDI tracks. In addition to the outlined use cases,
the data set may be of interest to other projects, especially
in musical performance research.

Dataset and code are publicly available on Github under an open
source license: https://github.com/cemfi/hannds

2 RELATEDWORK
Kilian and Hoos [14] proposed a method that separates a piece into
different voices for notation. Chords may occur in one voice. The
method allows to select the number of available voices. Therefore,
it can be used to find a left and a right part of a MIDI performance
if one chooses the number of voices = 2. To separate voices, Kilan’s
and Hoos’s method divides the piece into a sequence of slices with
overlapping notes and determines the voice separation by mini-
mizing a cost function using stochastic local search. While this
approach is applicable for notation, it can not be used in real time
because the slice of overlapping notes can not be instantly deter-
mined when a note is played. In addition, the stochastic local search
algorithm operates on the entire piece. Gorodnichy & Yogeswaran
[9] use a camera mounted over the keyboard to detect which hand
and which finger has played a note. Oka & Hashimoto use a similar
setup for this, but use a depth camera instead [18]. Akbari & Cheng
[1] transcribe whole pieces of music with a camera image of the
keyboard.
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In 1997, Parncutt et al. [19] proposed a piano fingering prediction
system based on ergonomic constraints of the hand. More recently,
HMM-based solutions have been proposed [17, 24]. To perform
fingering prediciton, it is necessary to assign each note to one hand.
Nakamura et al. [17] report the accuracy of predicting the accuracy
of hand detection with their merged-output HMM. The reported
error rates range from 1.4% to 18.7% depending on the piece. A
comparison with our results reported in Section 4 is problematic
since the results depend heavily on the analyzed pieces.

There are many approaches to separate the voices contained
in the piece from MIDI data. Among others there are rule-based
solutions [3, 15, 23], solutions based on Hidden Markov Models
[16] and solutions based on information theory [7]. Particularly
relevant to us is the use of neural networks for voice separation,
such as the approach of de Valk & Weyde [6]. They used a neural
network for voice separation in MIDI representations of Fugues and
Inventions by J.S. Bach. For each note a feature vector consisting
of 33 handcrafted entries is given to the neural network.

3 HAND ASSIGNMENT
We realized hand assignment in two different ways:

• with an RNN that makes a prediction with a binary output
for each MIDI event (Section 3.1) and

• with an extension of a Kalman filter based approach, inwhich
the hand positions are modeled as Gaussian distributions
(Section 3.2).

3.1 Recurrent Neural Network
To collect training data, piano students of a music conservatory
played various pieces on two keyboards simultaneously. The key-
boards were placed on top of each other. Pianists played with their
right hand on the upper keyboard and their left on the lower one.
The parallel MIDI streams were recorded synchronously with a
digital audio workstation. We recorded 122 MIDI files with a total of
222,714 notes from different musical eras. Some of the pieces were
played prima vista while others were well rehearsed. The dataset
contains music ranging from the early 18th century up to modern
jazz pieces.

We used a very simple input feature vector with four entries. The
feature vector encoded MIDI pitch and MIDI velocity as a number
ranging from 0 to 127, the time difference to the previous event in
seconds and binary note-on / note-off information. Alternatively
we also used the same format introduced by the Magenta project
for their Performance RNN [22]. This feature vector consists of 388
entries in total:

• 2 × 128 entries indicate whether a note-on and note-off event
occurred at the current time.

• a 1-hot-encoding with 100 entries indicates the time differ-
ence between successive events. Encoded time intervals are
between 10ms and 1s.

• The MIDI velocity is quantized in 32 bins and also provided
as 1-hot-encoding.

The RNN consists of 2 hidden layers with 70 neurons each. We
use Gated Recurrent Units (GRU) [4] or Long Short-Term Memory
(LSTM) [12] units. The 1-dimensional output is calculated as a linear
combination of the output of the top layer followed by a sigmoid

Figure 1: Architecture of the neural network. The cells are
either LSTM or GRU units.

nonlinearity, see Fig. 1. At each time step, the RNN provides a 1-
dimensional output indicating whether the left (output = 0) or the
right hand (output = 1) has played the note. It is possible that the
network (erroneously) predicts that the note-on event originated
from one hand and the note-off event from the other. The RNN is
trained with cross-entropy loss. We use the Adam optimizer with
standard hyperparameter settings.

For non-real-time operation, it is possible to use the RNN bidi-
rectionally. While the forward RNN processes the MIDI data in the
normal time course, the backward RNN handles the MIDI sequence
from back to front. The 70-dimensional outputs of the two RNNs are
combined in each time step. The combined 140-dimensional vector
is the input for the 1-dimensional output neuron. As our evaluation
shows, the bidirectional approach achieves better accuracy.

3.2 Kalman filter
One of the authors [10] developed an algorithm for detecting hands
based on a Kalman filter. This algorithm is described in the following
Section 3.2.1. Section 3.2.2 introduces a new bidirectional extension
of the algorithm.

3.2.1 Existing approach. Hand assignment is accomplished through
two mechanisms: the identification of "unique notes" and the rela-
tion of a played note with respect to estimated hand positions.

While MIDI data is arriving, the computer recognizes "unique
notes". These are notes where it seems implausible that they were
played with one hand alone because they are too far apart. If two
notes more than one eleventh apart sound simultaneously, they are
recognized as unique notes. The lower note is then assigned to the
left hand and the upper note to the right hand. If a note is not a
unique, it is assigned to a hand based on the distance of the note to
the estimated hand positions.

The position of the hands is estimated with a Kalman filter for
each hand. Note-on events are passed to the Kalman filter of the
assigned hand. A received note-on event is interpreted as an approx-
imate measurement of hand position. The variance σ 2

m expresses
the measurement uncertainty. When a note-on message is received,
the variance is calculated, which expresses the uncertainty in the
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Bidirectional Simple MIDI Magenta MIDI Kalman
RNN using GRU 93.25% (0.09%) 92.64% (0.07%)
RNN using LSTM 93.03% (0.07%) 92.58% (0.07%)
Kalman filter 90.79%
RNN using GRU ✓ 94.47% (0.06%) 93.89% (0.05%)
RNN using LSTM ✓ 94.20% (0.02%) 93.65% (0.03%)
Kalman filter ✓ 92.17%

Table 1: Validation results for all proposed approaches. Best results are emphasized, standard deviation in parentheses.
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Figure 2: The Solfeggietto c minor (H 220, Wq. 117: 2) from the C.P.E. Bach (above) and the minuet from the French Suite no.
2 in c minor (BWV 813) by J.S. Bach (below).
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time difference between the two notes t2 − t1, a constant term σ 2
s

and updates the previous one Uncertainty after inclusion of the
measurement σ 2

p (t
+
1 ).

σ 2
p (t

−
2 ) = σ 2

p (t
+
1 ) + (t2 − t1) · σ

2
s (1)
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Letn be the pitch of the note received at t2. Then the new position
p(t2) is estimated based on the old position p(t1), the uncertainty
of the position before incorporating the measurement σ 2

p (t
−
2 ), and

the pitch of the received note n.

p(t2) = p(t1) +
σ 2
p (t

−
2 )

σ 2
p (t

−
2 ) + σ

2
m
(n − p(t1)) (3)

3.2.2 Bidirectional extension. In addition to the normal time course,
a second Kalman filter is operated backwards. Furthermore, the
roles of note-on and note-off events are changed. The Kalman filter
operates as in the normal direction only that a note "begins" with
a note-off event and "ends" with a note-on event. Other than that
the assignment for the backward pass is identical to the procedure
described in Section 3.2.1. This results in an alternative assignment,
which may assign a note differently than the Kalman filter in the
forward pass.

But how can possibly contradictory assignment be meaningfully
combined with simultaneous use of forward and backward direc-
tion? This is possible through a maximum likelihood approach. For
the assignment we can look at the 4 likelihoods, which are deter-
mined using the MIDI pitch of the note in question, the respective
predicted position (mean value) and the standard deviation of the
four following Gaussian distributions: (1) right hand, forward pass;
(2) left hand, forward pass; (3) right hand, backward pass; (4) left
hand, backward pass. If the note evaluated at (1) or (3) produces the
largest likelihood, the note is assigned to the right hand, otherwise
it is assigned to the left.

4 RESULTS & DISCUSSION
We evaluated the RNN with 10-fold cross-validation. For this pur-
pose, 10 percent of the pieces were held out for the evaluation while
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the RNN was trained with the other pieces. This ensures that the
evaluation data is completely disjoint. If we had cut pieces in the
middle, repetitions and parallel variations could interfere with the
results. The bidirectional variant of the RNN achieves better scores
with 93.1 to 94.6%. The real-time forward variant provides an ac-
curacy of 92.8 to 93.3%. For the features under consideration, the
format "Simple MIDI" performs slightly better than the Magenta
format and GRU units perform slightly better than LSTM units.

The results of the Kalman-based approach on the same data
are slightly worse compared to the RNN. Again, the bidirectional
approach with 92.17% accuracy gives the best results. The real-time
forward approach provides an accuracy of 90.79% percent. Tab. 1
gives an overview over all results.

Both the RNN and the Kalman-based approach show large vari-
ances in recognition accuracy from piece to piece. As an example
we will consider the Solfeggietto c minor (H 220, Wq. 117: 2) by
C.P.E. Bach and the Minuet from the French Suite no. 2 in c minor
(BWV 813) by J.S. Bach (see Fig. 2). The first bars of the Minuet
allow only one sensible division of notes to hands. Things are quite
different with the Solfegietto: the monophonic melody is usually
played alternately on both hands. But quite different solutions are
very well conceivable. For example, it would be possible to play
everything with the right hand. It is therefore hard to determine
which sound was played with which hand. The accuracy of hand
assignment in the Solfeggietto lies between 60 and 80% while it
works with 100% accuracy in the Menuet.

5 CONCLUSION AND FUTUREWORK
We have shown that it is possible to detect which hand a pianist
has played a note based on MIDI data that is fed into a RNN. We
have developed both a real-time capable forward variant and a
non real-time capable bidirectional variant that provides a better
accuracy. While the achievable accuracy depends on the piece, we
achieve an overall accuracy of 94.47% in non real-time and 93.25%
in real-time conditions. We have extended an existing real-time
capable Kalman filter based approach for non real-time bidirectional
processing, which increases its accuracy by about 1.4 percentage
points to 92.17%.

We have implemented an OSC-based service for the real-time
capable hand assignment variants. For this purpose the MIDI infor-
mation is sent from a programming environment such as Max/MSP
or pureData to the Python-based hand assignment service as an
OSC message. After the analysis, the service returns an OSC mes-
sage indicating the result.

Our RNN could be adapted for the prediction of fingerings. While
the input would remain unchanged, the fingers in the output layer
could be represented using a 1-hot-encoding. The training data
needed for this could be created with the Dactylize system [20]. In
the Dactylize system, the finger-to-sound mapping is determined
by an electronic measuring system, with the keys of a MIDI piano
coveredwithmetal tape and the fingers wrappedwith an electrically
conductive material.
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