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Abstract: Models are important artefacts that support human understan-
ding and communication. Often software development involves specialists
from a variety of fields, e.g. mathematicians, engineers, economists, soft-
ware designers, and programmers. This may result in different models, and
communication accross discipline boundaries requires to establish links
between these models. In this paper we investigate this issue in the case of
software development for vehicle routing and scheduling software. We
concentrate on three artefacts: a mathematical specification of require-
ments, an object-oriented software design, and program code written in
Java. Obviously these artefacts do not exist in isolation during software
development. We demonstrate how the Object Constraint Language can be
used to establish links between these three artefacts.

1 Introduction
Our company is presently involved in the maintenance of a successful commercial ve-
hicle routing and scheduling (VRS) software package that is part of a comprehensive
turn-key solution for trucks. This kind of software deals with the real-world version of
the famous NP-hard "Traveling Salesman Problem (TSP)".
Whereas the TSP can easily be modelled by a few mathematical formulas, its real-world
counterpart involves a number of additional factors, e.g. capacity constraints, time
windows, dynamic planning, randomness, etc. Naturally, software that takes these aspects
into account is very complex to specify, develop, and maintain.
VRS problems are at the core of operations research and management science. Software
for this type of problem gets ever more important with the emergence and broad
availability of new technology, e.g. geographic information systems (GIS) and larger
fleets of vehicles. The more complex problems become, and the more complex infor-
mation technology gets involved, the more human dispatchers must be supported by



powerful information systems to route their fleets economically. Therefore the market for
these systems is burgeoning.
The typical model of vehicle routing and scheduling problems is mathematically
orientated, consisting of an objective function that is to be optimised subject to a number
of constraints. The observation that motivates this paper is that requirements for VRS
software rely on constraints - and that the Unified Modeling Language (UML)
incorporates a formal language called "Object Constraint Language (OCL)" (cf.
[OMG00]). At first glance it seems that OCL and VRS might be an ideal match. The
question that will be addressed in this paper is whether OCL can help to bridge the gap
between the mathematical model, a software design model, and an eventual implemen-
tation during commercial VRS software development.
This paper describes the preliminary results of ongoing work that we have started in
April 2000 to assess the applicability of OCL to VRS software development. In the
course of that work an exploratory prototype has been implemented in Java to address
the transition from OCL constraints to executable code.
In section 2 some basic ideas behind OCL will be stated. In section 3 some examples
from our work will be used to demonstrate the integration of mathematical constraints in
an object-oriented software design model through the use of OCL. In section 4 we will
address issues that arise when OCL constraints are implemented using an imperative
programming language. In section 5 we will state some commonalities and differences of
OCL and the formal specification language Z to clarify the intentions behind OCL. In
section 6 we will report about a free OCL type checker.

2 The Object Constraint Language (OCL)
In this section we will only hint at the ideas behind the Object Constraint Language
(OCL), in particular as there is enough published material available on the subject, e.g.
[OMG00], [Pr00], [WK99a], [WK99b].
OCL is based on the proven and popular concepts of precondition, postcondition, and
invariant. We will follow the terminology introduced by B. Meyer in [Me97] and use the
term "assertion" as broader term for the individual terms "precondition",  "post-
condition", and "invariant". Preconditions and postconditions date back to work of A.
Hoare and E. Dijkstra in the 60s and 70s. Assertions are the informing idea of the
"Design by Contract" paradigm of software development established by the work of B.
Meyer, who has also designed a programming language called "Eiffel" that is centred
around the implementation of assertions.
Usually an assertion expresses a property of a system that is a necessary condition for its
integrity. If the integrity of the system is violated it cannot be assumed that the system
will behave according to its specification. Assertions are usually based on properties of
the system and first order predicate logic. OCL provides three essential things (cf. [Pr00,
p. 210]):



•  a way to adorn the graphical notation of UML with textual OCL assertions
•  a syntax to access properties of the entities in an UML model
•  a language to form predicates from these properties
Some other notable features of OCL are:
•  OCL is a declarative language, and therefore it does not have an explicit flow of

control. If OCL assertions must be implemented in an imperative language, then as a
result problems may arise, because an explicit flow of control is a fundamental
property of imperative languages (cf. [WK99a, pp. 84]).

•  OCL does not specify what happens if an assertion is violated. Anyway, because it
does not have side-effects any form of failure resumption model is precluded
[WK99a, pp. 85]).

•  OCL provides some primitive data types, namely Boolean, Integer, Real, and String.
•  OCL provides collection types, namely Set, Bag, and Sequence, and these types come

with a variety of powerful operations.
•  OCL provides versatile iterators for the collection types.

3 Modelling of Vehicle Routing and Scheduling Problems
The classic representation of combinatorial optimisation problems is that of an objective
function that is to be optimised subject to certain constraints that come in the shape of
equations and inequalities. The objective function and the constraints involve a common
set of variables, e.g. binary flow variables, time variables, and load variables (cf.
[DDS91]). We will denote this approach and notation toward modelling for VRS
software development a "mathematical model" in this paper.
Mathematical models are ideally suited to linear programming methods but less ideal for
most other algorithms. VRS problems are NP hard, and even finding a feasible solution
may already be an NP complete problem under certain conditions [So87, p. 255].
Therefore approximation algorithms are the only way to solve practical size VRS
problems.
Before the emergence of object-oriented methods the typical implementation languages
were stricly imperative in nature. For example the VRS software we are currently work-
ing on had been developed in Fortran 15 years ago, and it was reengineered and
implemented in C 10 years ago.
In the absence of powerful implementation languages the usual software design has been
based on the mathematical model, pseudocode, and simple data structures like matrices
and vectors. There was little incentive for more sophisticated modelling techniques,
because the programming languages did not provide matching language constructs.
Clearly, the primitive implementation languages and the basic mathematical models have
supplemented each other well in the past.
Our customer is considering to shift to C++ as object-oriented implementation language
for the VRS software in the long term. With the shift to an object-oriented imple-
mentation language, the question is, whether the old and proven modelling techniques are
still appropriate in conjunction with C++ as an implementation language. During our
work we have found, that a mathematical model adorned with some pseudo code does



not make good use of the powerful abstraction mechanisms offered by an object-oriented
language like C++. There is an "impedance mismatch" between modelling technique and
implementation technique.
Our customer uses a sophisticated mathematical model for VRS software development.
This model has been developed by a degree-educated mathematician and is clearly the
most convenient and efficient means of expression for a person with such a background.
Many programmers are not degree-educated at all, and only a minority of programmers
has a strong mathematical background. Therefore software development clearly
necessitates a different kind of model to describe the relevant software artefacts and their
relationships. Such a model is usually denoted a "software design model" in the industry,
and we adopt this terminology in the following. These days the Unified Modeling
Language is widely accepted as graphical notation for object-oriented software design
models.
Accordingly, there are two separate models that we have to cope with during software
development. On the one hand there is the mathematical model, on the other hand there
is the software design model. Therefore there are two fundamental options: First, one
could keep the two models separate and make them express different aspects of the VRS
software. Second, one could try to integrate the two models.
The information conveyed by the mathematical model mainly comes in the shape of
constraints on the variables. A part of the Unified Modeling Language is the Object
Constraint Language (OCL). The objective of OCL is to provide a means to integrate
quantitative constraints into an object-oriented software design model [WK99a]. There-
fore it is a reasonable idea to use OCL to integrate constraints expressed by the mathe-
matical model into an object-oriented software design model. This establishes links
between the two models that can be used as basis for efficient requirements tracing
[Ja98] during the whole software life cycle. In the following we demonstrate how this can
be achieved.
A typical set of constraints found in VRS problems is given in [DDS91, (6) - (22)].
These constraints must be met by any feasible solution. From an operational point of
view the constraints are postconditions of any algorithm that solves the modelled VRS
problem. Some typical examples of such postconditions are:

 ∑   ∑   Xij
v = 1,   ∀  i∈ P+

v∈ V  j∈ N
[DDS91, (6)]

Xij
v = 1  Ti + si + tij ≤ Tj , ∀  i, j∈ P- ∪  P+, ∀  v ∈ V [DDS91, (12)]

Y0 = 0  ∧   di ≤ Yi ≤ D, ∀  i∈ P+ [DDS91, (21)]

The constraints [DDS91, (6) - (22)] deal with a special variant of VRS problem, the so
called "Pickup and Delivery Problem with Time Windows (PDPTW)". In this problem
the network is modelled by a set N of nodes in an associated network graph. One node
from N represents a depot, the set P+ represents the pickup nodes, and the set P-

represents the delivery nodes. The fleet V of vehicles must be routed through the net-



work. Each vehicle departs empty from the depot, visits a number of pickup nodes and
delivery nodes and eventually returns to the depot empty again.
Constraint [DDS91, (6)] requires that any node from the set P+ of pickup nodes must be
served by exactly one vehicle v from the set V of all vehicles. In this expression Xij

v

denotes a binary decision variable, with Xij
v  = 1 if vehicle v travels from node i to node

j, and Xij
v  = 0 otherwise.

Constraint [DDS91, (12)] expresses time constraints. In this the variable Ti denotes the
time when vehicle v arrives at node i. The service time for pickup or delivery is si. After
that the vehicle travels to node j in time tij, and naturally the vehicle will arrive at node j
not before time Ti + si + tij.
Constraint [DDS91, (21)] models capacity restrictions. The total load on a vehicle at
departure from a node i is Yi. The depot is assigned node number zero, therefore Y0 = 0,
because vehicles are empty when they leave the depot. On departure from any pickup
node the load on the vehicle is subject to restrictions: it must at least be the amount di
loaded on at the pickup node, it can at most be the capacity D of the vehicle (in this
model all vehicles have the same capacity D).
In an object-oriented software design model there will probably not be a large matrix of
decision variables  Xij

v, instead there will be classes and objects representing the network
(e.g. locations), vehicles, routes, and schedules. A corresponding UML class diagram is
shown in Figure 1.

Figure 1: UML class diagram for schedules
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The central class in Figure 1 is DataModel, and the only instance of DataModel repre-
sents the particular PDPTW that is to be solved. The operation createSchedules() is
invoked to calculate alternative schedules according to some algorithm. To this end the
operation creates a network of objects that is subject to the constraints of the PDPTW.
We use a two step approach to integrate these constraints into the software design model
using OCL. In the first step the variables from the mathematical model are modelled by
corresponding query operations. In the second step we use these operations to express the
constraints.
Class Schedule in Figure 1 has a query operation Xijv(...) that corresponds to the
decision variables Xij

v  in the mathematical model. Using OCL it is surprisingly simple to
specify this operation in terms of the software design model:

context Schedule::Xijv(i : Location, j : Location,
v : Vehicle) : Boolean

post: result = route→exists(r : Route
| r.location→exists(l : Location

| l = i and r.successor(l) = j))

Given the query operation Xijv(...) it is straightforward to integrate constraint [DDS91,
(6)] into the software design model as a postcondition of a method createSchedules():

context DataModel::createSchedules()
post: let P_plus = Location.allInstances→select(

type = #TYPE_PICKUP)
in

Schedule.allInstances→forAll(s : Schedule
| P_plus→forAll(i : Location

| Vehicle.allInstances→iterate(
v : Vehicle; sum_1 : Integer = 0

| sum_1 + Location.allInstances→iterate(
j : Location; sum_2 : Integer = 0

| if s.Xijv(i, j, v)
then sum_2 + 1 else sum_2

endif)))
= 1)

The above two step approach can be applied to other constraints like [DDS91, (12)] and
[DDS91, (21)] as well. As an example this is now demonstrated in the case of  [DDS91,
(21)]. First the load variable Yi can be expressed in terms of the software design model:

context Route::Yi(i : Location) : Integer
pre: self→contains(i)
post: let subseq = location→iterate(

l_1; seq : Sequence(Location) = Sequence{}
| if seq→contains(i)

then seq else seq→append(l_1)
endif)

in



result = subseq→iterate(
l_2; load : Integer = 0
| if l_2.type = #TYPE_PICKUP

then load + l_2.d
else load - l_2.d

endif)

The mathematical constraint [DDS91, (21)] can now be translated into the following
OCL postcondition:

context DataModel::createSchedules()
post: let P_plus = Location.allInstances→select(

type = #TYPE_PICKUP)
in
P_plus→forAll(i : Location

| Route.allInstances→select(r_1 : Route
| r_1.includes(i))

→forAll(r_2 : Route
| i.d <= r_2.Yi(i)

and r_2.Yi(i) <= Vehicle.D))

Naturally a software design model becomes more formal if constraints from a mathe-
matical model are integrated. This has had a remarkably beneficial effect on our work,
because formal notations "work largely by making you think very hard about the system
you propose to build" [Ha90, p. 19]. In fact the use of OCL exposed a number of short-
comings in the software design model during our work. If a formal notation is used to
specify a software design then problems like inconsistencies, abiguities, and vaguenesses
often become visible. The formal notation makes communication among software
developers clearer, and this supports efficient discussions about designs. We have found
these discussions to be a crucial factor for error detection as well as the improvement of
our software design.

4 Implementation of OCL in Executable Code
From a paradigmatical point of view OCL can be counted among the logical paradigm of
programming (cf. [Lo93]). Therefore problems may arise if OCL constraints are imple-
mented using a programming language that follows the imperative paradigm, because
OCL does not define a flow of control [WK99a]. We have implemented a prototype in
Java, to study aspects of the transition from OCL to executable code.
The collection types defined in OCL are very powerful, and interestingly they are quite
similar to the corresponding container interfaces in Java's Collection Framework. Given
that, it is often straightforward to transform OCL assertions into Java code. Iterators are
one of the very powerful concepts of OCL, and the Java Collection Framework provides
useful realisations which facilitate the implementation of OCL constraints.
It might be a tempting idea to generate executable code from OCL assertions. This might
be reasonable in some cases, but often we found that this would result in prohibitively
inefficient executable code. The reason for this is that OCL assertions are often



formulated with the human reader in mind. As is well-known from logical programming,
the most elegant, concise, and comprehensible formulation of a problem is often a very
inefficient formulation for execution by a machine (cf. [MS98]). Therefore in many cases
where OCL assertions could have been translated into executable code in a mechanical
fashion this turned out to be undesirable because of performance considerations. The
following OCL class invariant illustrates this case:

context Route inv:
location→forAll(type <> #TYPE_DEPOT)

This simple OCL assertion expresses that in a certain data structure there must not be any
object with the property denoted "type" set to the value "#TYPE_DEPOT". Here the
OCL iterator operation forAll(...) is used to iterate over the full collection any time the
invariant is checked. As invariants have to be ensured after every change in the state of
an object, this would result in a prohibitive run-time overhead. Therefore the imple-
mentation of this invariant in executable code followed a completely different path:
There were only three operations on the data structure that added elements to it, and only
in these cases a precondition was added to these operations that ensured that the added
element satisfied the condition "type <> #TYPE_DEPOT".
A serious problem during the implementation of OCL assertions in executable code is
their placement. The Eiffel language described in [Me97] provides special keywords that
standardise the placement of assertions in program code, which clearly facilitates the
traceability of OCL assertions in a software product. Other languages like for example
Java do not provide a mechanism for the systematic integration of code resulting from
OCL. This may lead to arbitrary placement of the assertions, which can cause difficulties
during maintenance.

5 Comparing OCL to Z
Z is one of the most established formal specification languages. It is a model-orientated,
strongly typed language that relies on set theory, and first order predicate logic. Z is
based on so-called schemas as the basic element of specification structure, and it
explicitly separates state schemas, describing admissible states of a system, and operation
schemas, describing admissible state transitions. Z provides an extremely powerful and
complicated schema calculus. It has an unmatched theoretical foundation and is
particularly suited for correctness proofs. Z uses a mathematical formula language with a
complex notation and a number of special characters (cf. [Po96]).
OCL is a model orientated, typed specification language too. But unlike Z it does not
have a strong mathematical foundation. It does not use a complicated notation and it does
not rely on special character sets. Any OCL expression is associated with a model
element from the underlying UML model as context, and therefore the vagueness of
UML translates into some degree of informality on the side of OCL assertions. For
example it is perfectly legal to use an operation from the underlying UML model in an
OCL expression, even if there is no formal definition of the semantics of the operation.
In cases like that, OCL allows to rely on the intuition of the modeler, whereas a formal
language like Z precludes such a situation completely.



Therefore OCL and Z address different groups of software specifiers. Z has emerged in
academic circles and enforces strict formality, which makes it suitable for formal rea-
soning about systems. OCL on the other hand has been influenced by practitioners and
offers a variable degree of formality. That allows to use OCL in practice where many
modelers do not have a formal education in computer science or mathematics.

6 Tool Support
OCL has only recently become popular, and therefore tool support is limited as yet. We
tested the free OCL Parser (Release 0.3, available from IBM at http://www.ibm.com)
developed by Jos Warmer (one of the autors of [WK99a] and  [WK99b]). At the time of
writing the parser does only cover some parts of OCL, and it should be regarded as a
learning tool rather than a productive tool. OCL is a typed language, and the OCL parser
is mainly restricted to type checking, although it does not perform complete type
checking yet. In particular the OCL parser does not do precondition and postcondition
checking for operations, it can handle class invariants only.
The input for the OCL parser must be specified as a text file in a description language
special to the OCL parser. This language is simple and straightforward, but it is not
standardised and therefore none of the leading UML drawing applications (e.g. Rational
Rose 4.0 or Together C++ 2.3) has an option to generate these files at present. Writing
up these files manually is obviously cumbersome, error-prone, and inefficient.

7 Conclusion
In this paper we have assessed the applicability of the OCL to VRS software develop-
ment. In that special application domain the established way to specify requirements is a
formal mathematical model. OCL allows to integrate constraints from this mathematical
model into an object-oriented software design model in a concise and seamless manner.
This is clearly an important step toward efficient requirements tracing which plays a
crucial role in the entire software life cycle. Formality in a software design model makes
it amenable to discussion, and efficient discussions among software developers are a key
factor for error detection and the improvement of software designs.
We think that the use of OCL in commercial software development can be beneficial if
three conditions are met. First, formality should be a requirement (this only applies to a
fraction of all software projects). Second, the use of the graphical UML should be an
established practice (many commercial software developers have no idea of UML at
present). Third, there should be an agreement among team members to use a more formal
language (often software developers resent the use of formal techniques).
In cases where the above conditions are met we think that OCL can have a positive
impact on software development in a commercial setting. The reasons for this are: First,
OCL is simple, and simplicity is a major criterion in commercial software development.
Second, OCL was clearly developed with the human user in mind, it is very convenient to
use and does not rely on complicated notations or special character sets. Third, OCL
enriches the established UML in a modular fashion, therefore it is the natural upgrade
path for the users of the graphical notation. Fourth, OCL allows a flexible degree of
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formality, and that makes it particularly appealing to practitioners, because it supports a
"learn as you go" approach. Fifth, OCL incorporates concepts that are already familiar to
users of object-oriented programming languages, e.g. containers and iterators.
Difficulties may arise during the implementation of OCL assertions in an imperative
language. These problems can be overcome in practice by a pragmatic attitude. The
problems could be alleviated by using a particularly suitable implementation language
like Eiffel, but this is not a feasible option in the commercial field.
When it comes to tool support then OCL lags far behind more traditional specification
languages like Z. The adoption of OCL in commercial software development will cru-
cially depend on the support provided for it by the leading UML drawing tools.
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