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Abstract: NUMA systems with multiple CPUs and large main memories
are common today. Consequently, database management systems (DBMSs)
in data centers are deployed on NUMA systems. They serve a wide range of
database use-cases, single large applications having high performance needs
as well as many small applications that are consolidated on one machine to
save resources and increase utilization.

Database servers often show a natural partitioning in the data that is ac-
cessed, e.g., caused by multiple applications accessing only their data. Knowl-
edge about these partitions can be used to allocate a database’s memory on
the different nodes accordingly: a strategy that increases memory locality
and reduces expensive communication between CPUs.

In this work, we show that partitioning a database’s memory with respect
to the data’s access patterns can improve the query performance by as much
as 75%. The allocation strategy is enabled by knowledge that is available
only inside the DBMS. Additionally, we show that grouping database worker
threads on CPUs, based on their data partitions, improves cache behavior,
which in turn improves query performance. We use a self-developed synthetic,
low-level benchmark as well as a real database benchmark executed on the
MySQL DBMS to verify our hypotheses. We also give an outlook on how
our findings can be used to improve future DBMS performance on NUMA
systems.

1 Introduction

Servers with 2, 4, or 8 CPUs on a single board, many cores, and non-uniform
memory access (NUMA systems) to 64, 128, or more gigabytes of RAM are com-
mon today. NUMA systems are scalable and offer the ease of programming with
distributed memory hidden behind a global address space and a cache coherence
protocol. Compared to other parallel or distributed systems, NUMA systems are
tightly coupled with fast communication links. Both, bandwidth and latency, of
the links that connect different CPUs have greatly improved in the last few years.
However, applications with high performance needs may still benefit from careful
memory and thread placement and optimized memory locality.
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Database management systems in data centers are increasingly often deployed on
NUMA systems where they serve different use-cases: single large applications as
well as many small applications that are consolidated on one machine. The large
amount of memory combined with the intensive use of compression techniques
[WKHMO00, ZHNBO6] lead to structured data that often completely fit in memory.
Therefore, main-memory database systems will gradually outnumber disk-based
database systems. With more and more data in memory, there often is no need
to perform expensive I/O operations to execute a query, which in turn reduces
the relevance of traditional buffering mechanisms in the DBMS (buffer pools).
Hence, the design and performance optimization focus shifts from disk-centric,
with I/O having been the main bottleneck for decades, to memory-centric with
new challenging research topics like optimal memory layout and access.

Database servers often show a natural partitioning in the data that is accessed,
caused by, e.g., (a) multi-database operation, (b) private schema multi-tenancy, or
(¢) business or application requirements. A single database server can host differ-
ent databases (a) for one or multiple applications. This can be used to allow an
application access to all the databases it needs on a single machine or to introduce
multi-tenancy and hence let applications with moderate performance requirements
share resources [CJMB11, KL11]. Resource consolidation also motivates (b): pri-
vate schema multi-tenancy. Here, different applications share a single database but
operate on private tables. Some Database-as-a-Service providers use this scheme
to provide scalable solutions, e.g., Microsoft SQL Azure [BCD*11]. The third case
of data partitioning (c) occurs when a single large database stores data of different
parts of the same business. Although, e.g., marketing and sales tables are stored
in the same database, it is likely that they are never accessed together in one
transaction. All cases of database partitioning have in common that parts of the
database system (databases, schemas, or sets of tables) are accessed independently
of one another. Transactions that spread across multiple data partitions are either
impossible (private databases) or at most rare.

Knowledge about data partitions can be used to allocate a database’s memory on
the different CPUs’ memories accordingly. This strategy can increase memory lo-
cality and reduce expensive communication between CPUs. Our goal is to evaluate
the potential of thread/memory placement strategies in a set of experiments. We
quantify the performance improvement achieved by co-locating threads and the
memory they access. Additionally, we show that grouping database worker threads
that access the same data on one CPU improves cache behavior, which in turn
improves query performance. We use a thorough synthetic benchmark as well as
a real database benchmark based on the TPC-H schema, executed on the MySQL
database management system to verify our hypotheses. We also give an outlook
on how our findings can be used to improve future DBMS performance on NUMA
systems.

186



CPU 1 CPU 2

corej||core|=+(core corej||core|==|core

RAM QPllinks RAM
<—|[IMC /0 | QPI | "———=|[ QPI | /0 [ IMC || <>

)

<—|[IMC /0 | QPI || >|[ QP! [ 1/0 | IMC || <—
RAM L3 cache L3 cache RAM
CPU3 CPU4

Figure 1: Overview of a NUMA system (e.g., Intel Westmere Architecture)

2 Preliminaries on NUMA Architecture

This section gives an overview on NUMA systems, main characteristics, and meth-
ods to influence application behavior on NUMA systems.

A NUMA system consists of multiple CPUs (also called sockets or nodes) that are
connected via point-to-point connections. Each CPU has its own local memory
that can be accessed with a lower latency and a higher bandwidth compared to the
memories of the other CPUs (remote memory). Depending on the CPU vendor,
the nodes are connected using different standards: Intel systems use QuickPath
Interconnect! (QPI) whereas AMD systems use HyperTransport?. Figure 1 illus-
trates an Intel NUMA system with four sockets. Each of the CPUs has its own
RAM that is connected via an integrated memory controller (IMC). The cores of a
CPU each have a dedicated L1- and L2-cache (not shown); the L3-cache (also last
level cache or LLC) is usually shared among all cores of a CPU. Each CPU has
four outgoing and incoming QPT links, of which three are connected to other CPUs.
Hence, four CPUs can be fully connected, i.e., each CPU can access any remote
memory with only a single hop. Larger systems are usually not fully connected.

All currently available NUMA systems ensure cache coherency to keep the caches
of the participating CPUs consistent (sometimes denoted as ccNUMA systems).
There are several cache-coherence protocols like MESI, MOESI, and MESIF. QPI
relies on the MESIF protocol, which adds a fifth state (Forward) to the MESI
protocol, while HyperTransport uses MOESI with (Owner) being the fifth state.

By default, the operating system scheduler places threads based on the utilization
of the CPUs. More precisely, a thread is created on the CPU that has the lowest
CPU usage. For this reason, it is common that the threads of a single process are
spread over all CPUs of a NUMA system. The scheduler can also place threads
(possibly on a different CPU) after they were interrupted or sleeping. Moving a
thread to another CPU can be quite expensive because the thread’s cache state has

Thttp://www.intel.de/content /www/us/en/io/quickpath-technology/quick-path-intercon
nect-introduction-paper.html
2http: / /www.hypertransport.org/docs/uploads/HT_General_QOverview.pdf
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to be also moved and the thread’s memory may not be local anymore. Therefore,
the linux scheduler has a concept of scheduling domains that model the memory
hierarchy and that reduce the likelihood of threads to migrate between nodes.
To further control the risk of thread migrations, programming languages provide
functionality to forbid the scheduler to move threads, i.e., threads can be bound to
a specific CPU or even a specific core. Linux sched_setaffinity or functions of
linux libnuma allow to do that. The linux tool numactl can also be used to force
application-to-node bindings for all threads of an application. However, binding
threads to specific CPUs or cores limits the scheduler’s opportunities for balancing
the load. This can lead to worse performance when some CPUs are overloaded while
others are underutilized. For this reason, explicitly binding threads to single CPUs
is a method that should be used carefully and only with the necessary application
and context knowledge.

Besides thread placement, data placement is the second important aspect to con-
sider on NUMA architectures. Naturally, data should be located close to the CPU
that accesses it frequently. The default data placement policy of linux is called
first touch. Newly allocated memory is placed local to the thread that actually
uses (touches) it for the first time. This policy is especially advantageous when a
single thread allocates large amounts of memory for multiple worker threads that
are eventually executed on different nodes. The libnuma library provides function-
ality to directly specify a set of CPUs on which a thread allocates memory. Similar
to the placement of threads, the numactl tool can be used for the placement of
memory for an entire application. It provides standard placement policies like pre-
ferred allocation on a single CPU or interleaved and local allocation on a defined
set of CPUs. Interleaved allocation allocates memory in a round-robin manner on
the CPUs while local allocation is similar to the first touch strategy but with a
restricted set of CPUs.

3 Synthetic Memory-Access Benchmark

To better understand the effects of the NUMA architecture on a DBMSs’ query
performance, we have first designed and implemented a synthetic benchmark to
measure memory accesses in different situations. The benchmark’s intention is to
mimic a database system’s memory access behavior. Therefore, our benchmark is
positioned between low-level benchmarks like in [MHSMO09] and full-scale applica-
tion benchmarks. The results of our benchmark tool for simple setups are consistent
with established memory access benchmarks. By measuring our benchmark’s exe-
cution times and monitoring the operating system as well as hardware performance
counters, we are able to identify, quantify, and explain effects that memory and
thread placement have on the performance. As our experiments show, especially
cache sharing (sharing of LLCs among readers) and cache migrations (pulling the
content of the LLC to another socket after a thread has migrated) have major
impacts on performance.
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3.1 Benchmark Setup and Execution

The benchmark is based on a tool, developed by us and written in C4++. We have
made our code available to other researchers.® In the tool, threads access arrays of
configurable size by repeatedly reading or writing random entries. A benchmark
run consists of either reads or writes, mixed workloads are not supported. Multiple
threads can share access to an array to simulate multiple clients that read or write
the same data. The 1ibnuma library is used to control where threads are executed
and on which socket they allocate memory. It is also used to force threads to
migrate to another socket during the test run.

The metric of the benchmark is latency, i.e., how long it takes to execute a random
read /write operation. During the benchmark, we use a modified version of the Intel
Performance Counter Monitor* (PCM) to count and log certain events like LLC
hits and misses or the number of packets sent over any QPI link. All presented
results are measured on a 4-Socket Intel Westmere EX machine (see Table 2 in
Section 4 on page 10 for details on the Intel machine). For all tests, we report the
average access time of four billion accesses.

3.2 Benchmark Configuration: Custom Experiments

We use our benchmark tool with different configurations to measure remote memory
access costs, thread migration costs, and to isolate cache effects. All results are
summarized in Table 1.

Remote Memory Access Costs (Experiment 1) In a first experiment, we
compare random access latency to local and remote memory. We therefore con-
figure our tool to spawn a single thread that allocates an array of 128MBs. The
size of the array is chosen to be larger than the LLC of our machine so that we
observe and measure memory access and QPI link utilization. The working thread
repeatedly reads (respectively writes) random bytes in the array that is either al-
located in local memory or on a remote socket. Results are shown in Table 1. It
can be seen that executing the workload with remote memory access takes about
1.18 times longer compared to local access (26 nanoseconds for local access versus
30.8 nanoseconds for remote access).

Thread Migration Costs (Experiment 2) The second experiment evaluates
the costs for migrating a thread from one socket to another one. The benchmark
tool spawns a single thread that is either executed on one socket for the whole
benchmark or migrated to another socket frequently. We investigate two different
cases: 16MBs and 128 MBs of memory that are accessed. In the first case, the whole

Shttp://wwwdb.inf.tu-dresden.de/misc/user/kiefer/numa_benchmark.zip
4http://software.intel.com/en-us/articles/intel-performance-counter-monitor/
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array fits in the LLC of our machine. Hence, after the thread has migrated to each
socket once, all sockets contain the data in their LLCs. Any further migration only
costs a context switch and no consecutive remote memory access (we verify that
with performance counters for LLC hits, which show a hit rate of almost 100% after
3 migrations). In the second case (128MBs), the memory does not fit in cache and
hence each migration to a socket other than the first socket leads to consecutive
remote memory accesses. The results in Table 1 show the isolated context migration
costs for a small dataset (11.2 seconds versus 14.6 seconds for reads). For the large
dataset, costs for remote memory accesses and costs for context switches overlay.
The results show execution times comparable to Experiment 1, which suggests that
for larger datasets, remote access costs dominate costs for context switches.

Cache Migration Costs (Experiment 3) The third experiment is intended to
measure the costs for repeated migration of a thread followed by loading the data
into the local last level cache. In contrast to the second experiment, a thread that
migrates to a socket does not find any data in the last level cache (from a possible
previous execution on that socket) because the data was evicted from the cache by

Experiment Setup Access Times in Nanoseconds
Local Access Remote Access
Experiment 1  read 128MB 26.0 30.8
write 128MB 26.0 31.0
w/o Migrations 100 Migrations
Experiment 2 read 16MB 11.2 14.6
write 16MB 12.5 15.2
read 128MB 25.7 31.6
write 128MB 26.5 32.3
w/o Migrations 100 Migrations
Experiment 3 4 threads read 16MB 11.1 31.8
4 threads write 16MB 114 27.0
4 threads read 128MB 26.4 40.9
4 threads write 128MB 27.5 50.3
Co-located Round-robin
Experiment 4 4 groups read 16MB 10.8 26.3
4 groups write 16MB 11.0 21.3
4 groups read 128MB 30.0 36.2
4 groups write 128MB 43.5 47.5

Table 1: Synthetic benchmark results
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Figure 2: LLC rates for experiments with context switches

another thread in the meanwhile. The third experiment simulates the worst case
costs for a thread migration.

To measure this effect, our benchmark tool spawns four threads, each reading
randomly from an array of 16MBs. Without migration, each thread can fit the
whole array in the local LLC and therefore read quickly from it. With thread
migrations, a thread that migrates has to pull the data it reads to the socket where
it migrated to. Doing so, this thread also evicts all the data that the previous
thread on this socket held in cache. Hence, each migration comprises costs for
the context switch and the following re-load of the last level cache. The results
in Table 1 show that frequent migrations lead to about 2.8 times higher execution
times compared to the experiment without migrations. The results in the table also
show that for larger datasets (128MBs), the penalty for frequent thread migrations
and the following re-load of the LLC is lower because most of the data does not fit
in the LLC and needs to be read from memory.

We confirmed the described LLC behavior with measurements from the Intel PCM.
They show that with migrations, the LLC hit rate drops for an instant after each
migration because the thread has to pull the data from memory to the new LLC
(shown in Figure 2a for only 3 migrations). With 200 migrations, the average hit
ratio over the entire benchmark run drops to about 78% compared to 99% for the
experiment without migrations. Figure 2b shows how the LLC hit rates decline
while the execution times increase for a growing number of thread migrations.

Cache Concurrency Costs (Experiment 4) The fourth experiment shows
and measures the effect of cache concurrency, which occurs when multiple threads
access the same data but from different sockets. For this experiment, four instances
of our benchmark tool are started in parallel. Each instance spawns four threads,
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which have access to the same array (comparable to multiple users accessing the
same data in a database). We call the threads that share data a thread group.

Each thread in a group tries to load the data to the (thread-local) LLC. When all
threads of a group are executed on the same socket, they beneficially share the LLC
(see Figure 3a). When all threads are distributed across the sockets (see Figure 3b),
they all try to load their respective data to the local LLC. This leads to constant
cache line eviction of other groups’ data and considerably lower cache hit rates. In
the worst case scenario, where each group has a hot set of data that is about as large
as a socket’s last level cache, the effective LLC size is reduced by a factor as high
as the number of sockets. The results in Table 1 show that for a 16MBs dataset,
reading with distributed threads (round-robin) takes about 2.4 times longer than
with co-located threads. The table also shows that for larger datasets, the effect is
less important (reading only takes 1.2 times longer for 128MBs).

Our measurements with the Intel PCM verify the explained behavior. They show
that the average LLC hit rate drops from about 98% when threads are co-located
to as little as 33% with distributed threads (for the 16MBs experiment). They
furthermore show that with distributed threads the data are replicated to all LLCs.
With co-located threads, almost all cache hits (99%) are unshared hits, i.e., on cache
lines in modified or exclusive state. With distributed threads on the other hand,
cache line hits are mostly (94%) on cache lines that are either in forward or in
share state and hence present in multiple LLCs.
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3.3 Synthetic Benchmark Conclusion

Our results show that for certain memory access patterns such as multiple threads
accessing the same data, which are common in modern database management sys-
tems, thread and memory placement can have a significant impact on performance.
Our results also confirm the “common wisdom” that sharing of caches and mem-
ory with non-uniform access, although transparent to the software, can lead to
performance benefits when instrumented properly or penalties when it is ignored.

Our expectation is that the demonstrated performance impact of thread and mem-
ory placement is also visible in a database management system that aims and is
implemented for the highest-possible performance.

4 TImpact of NUMA Architecture on DBMS Performance

In this section, we describe our experiments with a database management system
on two different NUMA systems. Our goal is to transfer the results of our syn-
thetic benchmark to the significantly more complex software of a DBMS. In our
experiments, we concentrate on fixed placements of threads and memory and hence
on remote access costs and cache concurrency effects. Incorporating thread migra-
tions in a controllable fashion to also measure related effects was out of the scope of
this paper and is considered future work. After detailing the experiment setup, we
will show and interpret results from various runs of the chosen workload on both
machines.

4.1 Experiment Setup

Metrics and Methodology We always report the average query throughput of
multiple runs as the metric of our benchmarks. The MULTE database benchmark
framework [KSL12] is used to execute multiple queries without think time in parallel
and to measure the throughput of the database server. Additionally, we measure
and log selected system parameters, e.g., hardware performance counters (Intel
machine only, see next paragraph), to confirm a certain configuration or to help
explaining certain effects. We are especially interested in core events like cache
hits and misses and uncore events like QPI link utilization or events related to the
cache coherence protocol.

Machines We use two different machines for our experiments, a 2-socket AMD
architecture (AMD machine) and a 4-socket Intel machine (Intel machine). The
machines were selected because they allow us to compare results for two different
architectures and because they were readily available to us. An extended exper-
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Table 2: Machines Used for Experiments

AMD machine Intel machine
2x AMD Opteron (Istanbul) 4x Intel Xeon (Westmere EX)
2.6 GHz 2.13 GHz
6 cores per CPU 8 cores per CPU (2 HW threads)
16GB main memory per socket 32 GB main memory per socket
64KB L1, 512KB L2-cache per core 32KB L1, 256KB L2-cache per core
6MB LLC per socket 24MB LLC per socket
HyperTransport @ 9.6 GB/s per link QPI @ 12.8 GB/s per link
SLES 11 (2.6.32.12-0) Ubuntu 11.10 server (3.0.0-12)

iment with other machines, especially with more sockets, is planned as soon as
respective machines are available. Table 2 summarizes both machines used for our
experiments.

Database Management System All experiments are executed on the open-
source DBMS MySQL Community Server (v5.5.17). The availability of the source
code will allow us to implement future placement strategies in the DBMS (see Sec-
tion 5). MySQL allows the use of different storage engines, including the MEMORY
(HEAP) storage engine that holds all tables in memory. We use this in-memory
engine (although it does not offer any persistence layer) because we think it is the
best choice for our benchmark. It is a natural fit for data that resides in memory
all the time and it scales better with the number of concurrent users compared to,
e.g., the InnoDB engine.

Workload We base our experiments on the TPC-H database schema and work-
load [TPC12]. The scaling factor for the database is 1, i.e., 1GB of raw data.
We use a subset of the official benchmark queries together with some synthetic
queries that execute common data access patterns. All experiments are restricted
to read-only queries.

4.2 Data Partitioning

Our experiments are motivated by the observation that in DBMS data partitions
are accessed independently from one another. To mimic such partitions, we install
multiple MySQL Server instances, e.g., one for each user group that accesses the
data. Fach instance contains a database with the TPC-H schema. To simplify our
experiments, we use one instance per socket on each machine.

Fach instance of MySQL runs as a separate process. Therefore, we are able to
explicitly control thread placement and memory allocation on instance level, i.e.,
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Processor 1 Processor 2 Processor 1 Processor 2 Processor 1 Processor 2
Instance 1 - Instance 2 Instance 1 - Instance 2 Instance 1 - Instance 2
Threads Threads Threads Threads Threads Threads
Memory 1 Memory 2 Memory 1 Memory 2 Memory 1 Memory 2

(a) Aligned setup (b) 1-ahead setup (c) Interleaved setup

Figure 4: Thread and memory assignment strategies

process level, with the numactl tool. To show the potential of the NUMA effects
on database server performance, we compare three different setups with the default
case: aligned, 1-ahead, and interleave. The default case does not take the NUMA
architecture into consideration (beyond what the operating system does). In the
aligned setup—the expected best case—we bind each instance’s threads explicitly
to one socket and allocate all the memory on the same socket (shown in Figure 4a).
In the 1-ahead setup—the expected worst case—we bind threads to one socket and
allocate memory on the other one (AMD machine) or the next one® (Intel machine)
(shown in Figure 4b). The third setup (interleave) binds threads to a fixed socket
but interleaves memory on all sockets (shown in Figure 4c).

For each instance of MySQL, we use as many parallel connections to query the
database as there are cores (AMD machine) or hardware threads (Intel machine).
We compute the sum of the throughputs of all instances to get the overall system
throughput. We measure a single query at a time (multiple executions of the same
query with different parameter values) to minimize the side effects that may occur
in a mixed workload.

4.3 Results and Interpretation

The results of our experiments are shown in Figure 5 for the AMD machine and
in Figure 6 for the Intel machine. Both charts show the query throughputs of the
aligned, 1-ahead, and interleave setups, normalized to the default case. Dotted
lines separate TPC-H queries from the synthetic ones.

It can be seen in Figure 5 that on the AMD machine the aligned setup either is as
fast as the default setup or outperforms it by as much as 18%. On average, aligning
threads and memory leads to improvements between 10% and 15% which is notable,
given the simple modification that is necessary to achieve the improvement. Also,
one expects that the effects will be amplified in systems with more sockets. The

5Since all sockets are fully connected in our machine, the next socket, can be an arbitrary one.
We use the current socket ID, incremented by one and modulo the number of sockets as the next
socket.
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Figure 5: Normalized query throughput on the AMD machine

chart furthermore shows that placing threads and memory on different sockets
(1-ahead) often leads to a degradation of the query throughput. This is to be
expected, given the higher amount of communication. It is interesting to see that
even the naive approach of interleaving the memory on all sockets leads to a slight
improvement in some cases and no degradation for any of the queries. We account
this to the threads of each instance being assigned to a fixed socket and the resulting
improved LLC usage. We will revisit this effect further down when we analyze the
results on the Intel machine.

Figure 6 shows the results for the Intel machine. The throughput improvement
when aligning threads and memory can be as high as 75%. Interestingly, even
the 1-ahead setup does not degrade query throughput, but slight improves it in
most cases. The interleaved setup lies between aligned and 1-ahead. The result for
1-ahead is counter-intuitive, given the communication that is needed to access the
data on the remote socket. We believe that improvements in LLC usage—caused
by assigning each instances’s threads to a fixed socket—Ilead to the better query
throughput. The last result we take from both experiments is that only the first
synthetic query stands out as it shows the worst performance degradation among all
queries with the 1-ahead and interleaved setups. The other synthetic queries show
average improvements. Finding better synthetic queries that show the connection
between access pattern and performance improvements is subject to future work.
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Figure 6: Normalized query throughput on the Intel machine

Cache Behavior: All three setups (aligned, 1-ahead, and interleave) have in
common that all threads that access the same data are executed on the same socket.
Hence, data that one thread reads is more likely to stay in the LLC for another
thread that reads the same data. In the default case (without numactl), threads of
all instances are executed on all sockets and even migrate between sockets from time
to time (we have verified that with data monitored in the /proc pseudo-filesystem).
This is comparable to the Cache Concurrency Costs experiment (Experiment 4)
of our synthetic benchmark: multiple threads from one instance run on different
sockets and therefore load the same data to their local LLCs. The effective size
of the cache is considerably reduced due to data that is stored redundantly in
several caches. To support this claim, we again monitored the LLC hit rate and
cache line states for one query execution. Figures 7a and 7b show the respective
results. The LLC hit rate for the default case is lower (about 20%) than for all
other setups (about 35%). The second chart, shown in Figure 7b, confirms the
cache concurrency. In the default case (distributed threads), memory accesses
often hit shared cache lines, i.e., cache lines in shared or forward state (together
62.6%). There are fewer hits on unshared cache lines, i.e., in exclusive or modified
state (together 37.4%). The setups with co-located threads (aligned, 1-ahead, and
interleave all use numactl with cpubind) show significantly higher hit rates on
unshared cache lines (together 74%) while shared and forward lines are hit only
with a rate of 26%.
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Figure 7: L3-cache usage and QPI link utilization

QPI Link Usage: All three setups (aligned, 1-ahead, and interleave) show the
same LLC but still differ in the query throughput results, likely caused by differ-
ences in communication between sockets. We have analyzed the QPI link utilization
and show the results for a single query and for a single QPI link (Figure 7¢); and
aggregated for all QPI links (Figure 7d). One can see that the throughput on a
single QPI link follows the intuition from the given setups. The aligned setup does
not need any inter-socket communication while the 1-ahead setup puts the most
pressure on a single QPI link. The interleave setup lies somewhere in between.
Interestingly, the default case that uses the first-touch policy to allocate memory
needs more communication than the interleave setup. The aggregated QPI link
utilization over all sockets and all links looks slightly different (Figure 7d). Inter-
esting here, the default case causes about as much communication as the expected
worst case (1-ahead). This and the improved LLC behavior can explain why on
the Intel machine, even the 1-ahead setup is often slightly faster than the default
setup.
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5 Towards Database-Level Scheduling

Our experiments were able to show the potential of NUMA awareness in DBMSs
which leads to many opportunities for future work. Control mechanisms for thread
placement and memory allocation need to be implemented in the DBMS (instead
of using numactl). Only there, the necessary knowledge about data partitions is
available and only there it is possible to allocate threads and memory in a fine-
grained fashion. Since DBMSs are usually deployed on dedicated machines, it is
safe to assume that all important threads and memory consumers of the whole
system are known to the DBMS. We have started to modify the MySQL DBMS
to support thread placement based on the data that an application will access but
detailed reports are subject to future work.

All data partitions (i.e., instances) were evenly queried in our experiments. A
NUMA-aware DBMS will have to deal with skewed loads and dynamic changes in
the query frequency of certain partitions. The workload used in the experiments
contained only single queries (no mixed workload) of a certain type. Database
workloads are traditionally classified as either being OLTP (online transaction pro-
cessing) or OLAP (online analytical processing). OLTP workload on the one hand
presents a high frequency of short queries that often access only a small amount of
data. The performance of OLTP queries is dominated by the latency of the data
access. OLAP queries on the other hand are usually less frequent. They access and
aggregate large amounts of data and not seldom read whole tables in the process.
Consequently, read operations are rather sequential and the performance is domi-
nated by the available bandwidth. Recent trends in database management systems
have weakened the separation of OLTP and OLAP systems and many systems are
nowadays used to answer both types of queries. Hence, a NUMA-aware DBMS
that takes care of thread and memory placement needs to take both query types
and therefore very different access patterns into account.

Once a DBMS is equipped with tools to allocate memory and assign threads based
on data partitioning and knowledge about the architecture, the next step will be
to develop a cost model to evaluate thread and memory placement. Based on the
cost model, the DBMS needs to decide where to execute threads and where to
allocate memory. Using more resources on multiple sockets has to be weighted
against having resources local to the execution.

Figure 8 shows a possible architecture for a NUMA-aware DBMS. The DBMS has
the necessary partitioning information and sends thread scheduling and memory
placement policies to the operating system. The operating system on the other
hand provides information about the NUMA architecture (like the memory topol-
ogy) and an interface to scheduling and memory placement decisions.
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Figure 8: Architecture of a NUMA-aware DBMS

6 Related Work

Related work from different communities is relevant for the given topic. We dis-
tinguish work that concentrates on NUMA in general from papers that investigate
DBMSs on modern hardware, possibly but not necessarily NUMA architectures.

6.1 Work related to NUMA architectures

The consequences of non-uniform memory access as well as thread-placement in
multicore systems have been studied in the operating systems and high-performance
computing communities for many years. Among the more recent results are Molka
and Hackenberg et al. who have investigated the low-level memory performance and
cache coherence effects at the granularity of single cache lines [HMNO09, MHSMO09].
McCurdy and Vetter give a general overview on finding and fixing NUMA-related
performance problems [MV10] and Blagodurov et al. propose a NUMA-aware
scheduler and user-level scheduling on NUMA systems, though not specific to a
certain application [BZFD10, BF11]. The problem of mapping threads to cores
(and possibly co-locating them) to reduce communication and increase data sharing
has been investigated by, e.g., Tam et al. [TAS07] and Tang et al. [TMV*T11].

6.2 Work related to DBMSs on modern hardware

There is little information available on NUMA awareness of commercial DBMSs.
From blogs® and personal communication, we know that Microsoft SQL Server and
the Oracle DBMS are NUMA-aware. In SQL Server, it is possible to direct user
connections to certain nodes and the system automatically partitions buffer pools
and prefers local memory for temporal and session data.

The research community has analyzed the impact of modern (multicore) processors
on existing DBMSs [ADHW99, HPJ07]. To overcome the general shortcomings
of these systems, i.e., their poor scalability with the number of CPUs and cores,

6E.g., http://blogs.msdn.com/b/slavao/archive/2005/08/02/446648.aspx or
http://kevinclosson.wordpress.com/2009/05/14/you-buy-a-numa-system-oracle-says-disab
le-numa-what-gives-part-ii/
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different solutions have been proposed. All solutions can roughly be categorized as
distributed systems, which treat multiple CPUs/cores as if they were a distributed
system, and shared systems, which try to overcome scalability issues by reducing
communication and contention.

Distributed system approaches Distributed database systems have been in-
vestigated first in the late 80s and early 90s [DGST90, AvdBFT92]. Many aspects
of these early distributed DBMSs can be used to improve scalability on modern sys-
tems. The Multimed system at ETH-Ziirich [SSGA11] deploys multiple instances
of an existing database engine (e.g., PostgreSQL or MySLQ) on non-overlapping
subsets of all cores. A master database on one partition receives all updates and
propagates them asynchronously to satellite databases, which in turn receive read-
only load. H-Store [SMAT07] partitions the data horizontally over nodes and cores
and executes transactions sequentially (single-threaded) on each core. Hence, there
is no synchronization of access to each partition needed. Depending on what data a
transaction accesses, multiple partitions need to communicate. The HyPer system
[KN11] is an in-memory system that uses processor-inherent lazy copy-on-write and
virtual memory management to support OLTP and parallel OLAP transactions.
Multiple read-only queries can be executed at a time, but writing requests are
executed sequentially to ensure consistency without synchronization. Also in the
context of distributed (or shared-nothing) database systems are works like Schism
by Curino et al. [CJZM10] that aim at reducing the need for inter-partition com-
munication by means of workload-aware partitioning of the data.

Shared system approaches An example for a shared-everything system is the
Shore-MT system by Johnson et al. [JPH'09]. After identifying bottlenecks in
existing database storage managers, the authors develop a multithreaded, scalable
storage manager by optimizing locks, latches, and synchronization and thereby
reducing contention. Physiological partitioning, a compromise between the dis-
tributed and the shared approach, was proposed by Pandis and Toéziin et al.
[PTJA11, TPJA12]. While the data is still shared, a multi-rooted B+ tree is used
to partition the data which avoids costly page-latches. The DORA-system, also by
Pandis et al. [PJHA10], binds threads to disjoint sets of the data and decomposes
transactions to smaller actions according to the data they access. Each thread has
private locking mechanism to control access to the data it owns. A recent work by
Albutiu et al. [AKN12] analyzes sort-merge joins in multi-core database systems.
The authors recognize the NUMA characteristics of such systems and motivate
their algorithm design with micro-benchmarks related to our synthetic benchmark.

A recent work that falls between the strictly shared or distributed approach and
that also aims at demonstrating and utilizing the NUMA effects in a DMBS was
published by Porobic et al. [PPB*12]. The authors perform a detailed analysis
of different shared and distributed deployments in NUMA systems. To show the
performance impact of the NUMA architecture on a DBMS, they use ShoreMT as
a scalable storage manager and TPC-C as an OLTP workload.
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7 Conclusion

We showed with our synthetic benchmark that remote memory access and cache
usage related to thread placement and thread movement heavily influence perfor-
mance on NUMA systems. We furthermore showed that database management
systems—when executed on NUMA systems—can benefit from careful thread and
memory placement. Executing an idealized workload showed the potential for
throughput improvements of up to 75% compared to the naive execution that ig-
nores the characteristics of the NUMA system. We had to experience that reliable
experiments with a DBMS are extremely hard to conduct. MySQL, used as we did
for our studies, suffers from different scalability and reliability issues so that we had
to revise our experiments many times to isolate and quantify the NUMA effects.
Nevertheless, our experiments have confirmed that not only the non-uniform main
memory access is responsible for performance differences but also the fact that
each node has its own cache hierarchy. This leads to disadvanteous cache evictions
when threads migrate between nodes or when threads access the same data from
different nodes.
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