
Jens Knoop, Uwe Zdun (Hrsg.): Software Engineering 2016,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 101

A Simple and Scalable Static Analysis for Bound Analysis

and Amortized Complexity Analysis

Moritz Sinn, Florian Zuleger and Helmut Veith (TU Wien) 1

Automatic methods for computing bounds on the resource consumption of programs are

an active area of research. In [SZV14] we present the first scalable bound analysis for

imperative programs that achieves amortized complexity analysis. Our techniques can be

applied for deriving upper bounds on how often loops can be iterated as well as on how

often a single or several control locations can be visited in terms of the program input.

The majority of earlier work on bound analysis has focused on mathematically intriguing

frameworks for bound analysis. These analyses commonly employ general purpose rea-

soners such as abstract interpreters, software model checkers or computer algebra tools

and therefore rely on elaborate heuristics to work in practice. Our work [SZV14] takes

an orthogonal approach that complements previous research. We propose a bound analy-

sis based on a simple abstract program model, namely lossy vector addition systems with

states. We present a static analysis with four well-defined analysis phases that are exe-

cuted one after each other: program abstraction, control-flow abstraction, generation of a

lexicographic ranking function and bound computation.

void main(uint n) {
int a = n, b = 0;

l1 : while (a > 0) {
a--; b++;

l2 : while (b > 0) {
b--;

l3 : for (int i = n-1; i > 0; i--)

if (a > 0 && ?) {
l4 : a--; b++;

} } } }

begin

l1

l2

l3

l4

end

a = n

b = 0

i = 0

τ1 ≡

a′ ≤ a−1

b′ ≤ b+1

i′ ≤ i

τ2 ≡

a′ ≤ a

b′ ≤ b−1

i′ ≤ i+(n−1)

Id τ3 ≡

a′ ≤ a

b′ ≤ b

i′ ≤ i−1

τ4 ≡

a′ ≤ a−1

b′ ≤ b+1

i′ ≤ i−1

Id

Id

Id

Figure 1: Our running example, ’?’ denotes non-determinism (arising from a condition not modeled in the analysis). On the right we state the lossy VASS obtained by abstraction,

Id denotes a′ ≤ a, b′ ≤ b, i′ ≤ i.

The example presented in Figure 1 (encountered during our experiments) is challenging

for an automated bound analysis: (C1) There are loops whose loop counter is modified

by an inner loop: the innermost loop modifies the counter variables a and b of the two

outer loops. Thus, the inner loop cannot be ignored (i.e., cannot be sliced away) during the

analysis of the two outer loops. (C2) The middle loop with loop counter b requires a path-

sensitive analysis to establish the linear loop bound n: it is not enough to consider how

1 Supported by the Austrian National Research Network S11403-N23 (RiSE) of the Austrian Science Fund

(FWF) and by the Vienna Science and Technology Fund (WWTF) through grants PROSEED and ICT12-059.



102 Moritz Sinn et al.

often the innermost loop can be executed (at most n2 times) but rather how often the if-

branch of the innermost loop (on which b is actually incremented) can be executed (at most

n times). (C3) Current bound analysis techniques cannot model increments and instead

approximate increments by resets, e.g., approximate the increment of b by an assignment

to a value between 0 and n (using the fact that n is an upper bound of b)! Because of

this overapproximation existing bound analysis techniques fail to compute the linear loop

bound n for the middle loop. We illustrate the main steps of our analysis:

1. Program Abstraction: First, our analysis abstracts the program to the VASS depicted

in Figure 1. We are using parameterized VASSs, where we allow increments that are

symbolic but constant throughout the program (such as n− 1). We extract lossy VASSs

from C programs using simple invariant generation and symbolic execution techniques

(see [SZV14]).

2. Control Flow Abstraction: In [SZV14] we propose a new abstraction for bound analy-

sis, which we call control flow abstraction (CA). CA abstracts the VASS from Figure 1

into a transition system with four transitions: ρ1 ≡ a′ ≤ a−1∧b′ ≤ b+1∧ i′ ≤ i, ρ2 ≡
a′ ≤ a∧ b′ ≤ b− 1∧ i′ ≤ i+(n− 1), ρ3 ≡ a′ ≤ a∧ b′ ≤ b∧ i′ ≤ i− 1, ρ4 ≡ a′ ≤
a−1∧b′ ≤ b+1∧ i′ ≤ i−1.

CA effectively merges loops at different control locations into a single loop creating one

transition for every cyclic path of every loop (without unwinding inner loops). This signif-

icantly simplifies the design of the later analysis phases.

3. Ranking Function Generation: Our ranking function generation (discussed in [SZV14])

finds an order on the transitions resulting from CA such that there is a variable for every

transition, which decreases on that transition and does not increase on the transitions that

are lower in the order. This results in the lexicographic ranking function l = 〈a,a,b, i〉 for

the transitions ρ1,ρ4,ρ2,ρ3 in that order. Our soundness theorem (see [SZV14]) guarantees

that l proves the termination of Figure 1.

4. Bound Analysis: Our bound analysis (discussed in [SZV14]) computes a bound for ev-

ery transition ρ by adding for every other transition τ how often τ increases the variable of

ρ and by how much. In this way, our bound analysis computes the bound n for ρ2, because

ρ2 can be incremented by ρ1 and ρ4, but this can only happen n times, due to the initial

value n of a. Further, our bound analysis computes the bound n ∗ (n− 1) for ρ3 from the

fact that only ρ2 can increase the counter i by n−1 and that ρ2 has the already computed

transition-bound n. Our soundness result (see [SZV14]) guarantees that the bound n ob-

tained for ρ2 is indeed a bound on how often the middle loop of Figure 1 can be executed.

Our bound analysis solves the challenges (C1)-(C3): CA allows us to analyze all loops at

once (C1) creating one transition for every loop path (C2). The abstract model of lossy

VASS is precise enough to model counter increments, which is a key requirement for

achieving amortized complexity analysis (C3).

References

[SZV14] Sinn, Moritz; Zuleger, Florian; Veith, Helmut: A simple and scalable static analysis for
bound analysis and amortized complexity analysis. In: CAV. Springer, pp. 745–761,
2014.


