Constraint Functional Multicore Programming

Petra Hofstedt and Florian Lorenzen

Department of Software Engineering and Theoretical Computer Sciene
Technische Universitét Berlin, Germany
ph@cs.tu-berlin.de, florian.lorenzen @tu-berlin.de

We present the concurrent constraint functional programming language CCFL and the ab-
stract machine ATAF for the evaluation of CCFL programs in a multicore environment.

Multicore architectures have become more and more important in recent years. Unfortu-
nately, only truly parallel programs are able to benefit from their increase in computational
power. There is, however, not yet an established method of programming these architec-
tures, which is competitive to maintainability, stability, and performance of serial program
development. Especially, many parallel programs do not automatically turn an increase in
the number of cores into shorter run times like serial programs used to profit from higher
clock rates. Regarding stability and maintainability, a declarative programming approach
is desirable since side-effects, and explicit communication/synchronization of the impera-
tive style are the root of many bugs hard to find or reproduce.

The multiparadigm programming language CCFL combines concepts from the constraint-
based and functional paradigms and it supports the concurrent and parallel program de-
velopment. CCFL’s functional sub-language is a lazy language with a polymorphic type
system. It can be considered as computational core of CCFL while the coordination core
responsible for the coordination of concurrent processes is based on constraints. Ask- and
tell-constraints and conjunctions allow to express concurrently working processes. We in-
troduce the language and show how to elegantly and abstractly express typical data and
task parallel execution patterns using CCFL.

The data and task distribution as well as the process coordination is controlled by the
abstract machine ATAF. It implements a G-machine to evaluate functional expressions and
provides facilities to run multiple cooperating processes on a fixed set of CPUs. Processes
communicate via a shared constraint store realizing residuation semantics and committed
choice. ATAF provides load-balancing mechanisms to maximize the utilization of each
CPU and schedules processes accessing the shared constraint store with higher priority to
keep locking times of atomic operations short.

CCFL programs compiled to ATAF are able to utilize several cores to gain performance in
this way. Since CCFL is a declarative language, programs are written on a high level of ab-
straction by the virtue of a polymorphic type system, higher order functions, and recursive
datatypes, as well as robust and understandable because of the absence of side-effects.

We show a few scaling results for parallel programs obtained with a prototypical imple-
mentation of ATAF on a quadcore machine.

367



