
Classifying Documents by Distributed P2P Clustering

Martin Eisenhardt Wolfgang Müller Andreas Henrich

Chair of Applied Computer Science I

University of Bayreuth, Germany

{eisenhardt|mueller2|henrich}@uni-bayreuth.de

Abstract: Clustering documents into classes is an important task in many Information
Retrieval (IR) systems. This achieved grouping enables a description of the contents
of the document collection in terms of the classes the documents fall into. The com-
pactness of such a description is even more desirable in cases where the document
collection is spread across different computers and locations; document classes can
then be used to describe each partial document collection in a conveniently short form
that can easily be exchanged with other nodes on the network. Unfortunately, most
clustering schemes cannot easily be distributed. Additionally, the costs of transferring
all data to a central clustering service are prohibitive in large-scale systems. In this
paper, we introduce an approach which is capable of classifying documents that are
distributed across a Peer-to-Peer (P2P) network. We present measurements taken on a
P2P network using synthetic and real-world data sets.

1 Motivation

In P2P IR systems and Distributed IR Systems, an important problem is the routing of
queries or the selection of sources which might contain relevant documents. Some ap-
proaches in this respect are based on compact representations of adjacent peers’ document
collections or the documents maintained on the reachable source nodes. In this context,
an interesting approach is to determine a consistent clustering of all documents in the net-
work, and to acquire knowledge about which node contains how many documents falling
into each cluster. Then, for a given query, the querying node can identify the most promis-
ing clusters by that compact representation of other peers’ collections; the query can then
be routed precisely to nodes potentially containing relevant documents.

In the scenario above, an efficient algorithm is needed to determine the clustering of the
global document collection. The present paper will describe and assess such an algorithm.
The concrete motivation behind this approach stems from our research on large-scale P2P
IR networks (cf. [EH02]). In environments like this, the costs of transferring documents
and/or data to a central clustering service become prohibitive; in some cases, it might
even be infeasible to transfer the data, as Skillicorn points out (see [Ski01]). Therefore, a
distributed clustering algorithm is needed.

286

2 Background

Our approach is based on two well-known algorithms from the areas of statistics and dis-
tributed systems. We use the k-means clustering algorithm to do the actual categorization
of the documents. A probe/echo mechanism is used to distribute the task through the P2P
network and propagate the results back to the initiator of the clustering.

The k-means Clustering Algorithm The k-means clustering algorithm is a non-hier-
archical approach to clustering (see the box titled Algorithm 1). Its input parameters are a
number κ of desired clusters, a set D of n-dimensional data objects di, and a initial set C
of n-dimensional cluster centroids cj where di, cj ∈ R

n; ci,l and dj,l depict the n single
vector elements. The clustering algorithm follows a very straight-forward approach: in
each iteration, the distances of each di ∈ D to all cj ∈ C are computed. Each di is
allocated to the nearest cj . Then, every centroid cj is recalculated as the centroid of all
data objects di allocated to it.

There are a few mostly equivalent termination conditions for the k-means algorithm. One
of the most widely used is that the algorithm terminates if the sum of all mean square
errors (MSE) within each cluster does no longer decrease from iteration to iteration.

Note that the function dist(di, cj) can be chosen according to the data set you are clus-
tering: a common class of distance metrics are the Minkowski metrics distmink(ci, dj) =

m

√∑
l

|di,l − cj,l|m where the parameter m ∈ N can be set to generate a specific metric,

e.g. the Manhattan metric (m = 1) or the Euclidean metric (m = 2); the latter metric
was used in our experiments. Other metrics (f.e. cosine metric) are also possible. Various
methods exist for the generation of initial cluster centroids, ranging from quite obvious
ones (just take |C| randomly chosen documents as the initial centroids) to sophisticated
ones that lead to a faster convergation and termination of the algorithm (see [BF98]).

As Modha and Dhillon point out in [DM00], the k-means algorithm is inherently data par-
allel. Since it involves no hierarchical scheme, the only data that must be shared among
the nodes are the cluster centroids; all locally refined centroids can then be merged at the
node which initiated the clustering; this node decides according to a termination condition
whether another iteration of the k-means algorithm is necessary. The advantage of this ap-
proach is that the transfer of relatively few centroids is feasible as opposed to transferring
whole data sets. Additionally, the k-means algorithm is well-suited for the clustering of
documents, as is shown in [SC02].

The Probe/Echo mechanism The Probe/Echo mechanism was first described by E. J. H.
Chang in [Cha82]. It is an algorithm to distribute a piece of information across a general
graph, in our case a computer network. We want every node to receive the information
only once to reduce the amount of messages sent and the number of processing steps. The
algorithm implicitly constructs a spanning tree of the graph. The message complexity on
a graph G = (V, E) with |E| edges is 2|E|.
The initiator of the probe/echo mechanism marks itself as both engaged and initiator
and sends a PROBE message to all its neighbours. When a node receives the first PROBE,

287

Algorithm 1: The k-means clustering algorithm.
Input : D ⊂ R

n – the set of data points di ∈ D.
Input : κ – the number of clusters the algorithm should calculate.
Output : C ⊂ R

n – the set of cluster centroids cj ∈ C.

Data : M ⊂ 2D – the set of sets mj where each mj contains the di closest to cj .

begin
MSE ← 0, MSEold ← ∞;

repeat
foreach mj ∈ M do mj ← ∅; // initialize all clusters as empty sets
foreach di ∈ D do

Find closest cj ∈ C;
mj ← mj ∪ {di}; // assign each object to its nearest cluster

foreach cj ∈ C do cj ← 1
|mj |

∑
di∈mj

di; // recalculate cluster centroids

MSEold ← MSE;
MSE ← ∑

j

1
|cj |

∑
di∈mj

(dist(di, cj))
2; // calculate cluster quality

until |MSEold − MSE| < ε

end

it marks itself as engaged and sends PROBEs to all adjacent nodes. All subsequent re-
ceived PROBEs do not cause the node to send an additional PROBE to its neighbours. After
a node has received PROBE or ECHO messages from all its neighbours it marks itself as
not engaged and sends an ECHO to the node it received its first PROBE from. When the
initiator has received ECHOs from all its neighbours, the algorithm terminates.

3 A Distributed Algorithm to Cluster Documents

Based on the two algorithms above, we have developed and implemented an algorithm
for the distributed clustering of documents (see box Algorithm 2). The initiator of the
clustering guesses an initial set of cluster centroids and sends these centroids along with
an PROBE to all its neighbouring peers. Every peer receiving a PROBE proceeds with
resending the PROBE to all its neighbours except the one it received the PROBE from
(the predecessor). Then, a k-means clustering on the locally available documents is done.
On receiving an ECHO from an adjacent peer, the peer merges the clustering done by the
remote peer Cp with the clustering resultant from the local clustering Cl; this is done by
calculating a weighted mean taking into account how many documents each peer grouped
into the respective clusters (Wl and Wp map clusters to their associated weights). After
having received either a PROBE or an ECHO from every adjacent peer, the peer sends an
ECHO containing the merged cluster centroids and the weighting to the peer it received the
first PROBE from. When the initiator has received ECHOs from all its adjacent peers, it has

288

Algorithm 2: Our distributed clustering algorithm.
Input : Neighbours – the set of all neighbouring nodes.
Input : D ⊂ R

n – the data points di ∈ D on the local peer.

Data : (Cp,Wp) – remote set of cluster centroids and associated weights.

Data : (Cl,Wl) – local set of cluster centroids and associated weights.
begin

receive (PROBE, Cp) or (ECHO, Cp, Wp) from p ∈ Neighbours;
if PROBE then

if ¬engaged then
engaged ← true; received ← 1; pred ← p; // received first PROBE
send (PROBE, Cp) to Neighbours\{pred};
(Cl,Wl) ← kmeans(Cp, D); // one local iteration of k-means

else received ← received + 1; // received additional PROBE

if ECHO then
received ← received + 1; // received ECHO
(Cl,Wl) ← mergeResults(Cl,Wl, Cp,Wp); // merge local and received results

if received = |Neighbours| then
engaged ← false; // termination condition fulfilled
if initiator then terminate;
else send (ECHO, Cl, Wl) to pred;

end

complete information on the current iteration of the k-means algorithm. Therefore, this
iteration is complete and terminates. Full k -means clustering typically requires more than
one iteration. Thus, based on a condition as described in section 2, the initiator decides
whether the currently achieved clustering needs to be improved by a further iteration. In
those subsequent iterations, the initiator sends the resultant cluster centroids Cl of the last
iteration as the new “guess” to its neighbours.

4 Experimental Setup

Hardware For our experiments, we used the computers in our laboratory and two other
computer laboratories on campus. The hardware used is quite heterogeneous, ranging from
Intel Pentium 4 processors at various speeds (≈ 1.4GHz – 2.0 GHz) to Athlon MPs at 1.5
GHz. The nodes were equipped with different amounts of main memory (≈ 256 MBytes
– 1024 MBytes). The three sites (our laboratory and the two laboratories on campus) were
interconnected by the university’s Fast Ethernet backbone; each site had a dedicated Fast
Ethernet switch to route local messages and to connect the site to the backbone.

Data Sets We used synthetic data as well as real-world data. The synthetic data sets con-
sist of evenly distributed random numbers ∈ [0; 1000]. We used data sets with

289

0.1

1

10

100

1000

0 5 10 15 20 25 30 35 40 45

T
im

e
(s

)
[lo

g
sc

al
e]

Number of Peers

128 clusters, 32 dimensions

|D|= 131,072
|D|= 262,144
|D|= 524,288
|D|=1,048,576
|D|=2,097,152

1

10

100

0 5 10 15 20 25 30 35 40 45

T
im

e
(s

)
[lo

g
sc

al
e]

Number of Peers

21,578 Documents, 3775 Dimensions, 57 Clusters

Each peer can connect to 4 to 8 others
Each peer can connect to 3 to 6 others

Figure 1: The left figure shows the times for one iteration of our Algorithm 2, measured on data sets
with 217 − 221 (131,072 - 2,097,152) tupels with 32 dimensions. The right figure shows the times
for clustering the Reuters-21578 collection (21,578 documents with 3,775 features).

217 ≤ |D| ≤ 221 data points and 2 ≤ n ≤ 32 dimensions or features. Our real-world
data set is an index of the Reuters-21578 news article collection. It contains 21,578 docu-
ments; n = 3, 775 features remained after stopword elimination, elimination of extremely
rare terms, and Porter stemming.

Measurements Each measurement was performed on 2, 4, 8, 16, 32 and 48 peers. The
measurements on the synthetic data sets were additionally made with only one peer run-
ning, to achieve a baseline against which the distributed case can be compared. The syn-
thetic data sets were clustered into κ = 8, 32, 128 clusters, whereas the real-world data
set from the Reuters-21578 news article collection was clustered into 57 clusters, which
seems to be a reasonable value, since the collection has been classified by human experts
into 57 clusters with at least 20 documents each1. For our experiments, we allowed each
peer to communicate with 4 to 8 other randomly chosen peers. We took care to make
inter-sites connections as probable as intra-site connections.

5 Experimental Results

From the measurements as described above, we depicted two especially interesting results.
As can be seen on the left side of figure 1, the time for clustering the synthetic data sets
diminishes with an increasing number of peers. Best results can be obtained if the size of
the local document collection on each peer as well as the number of desired clusters does
not fall beyond a certain limit. This explains why the times for the two smaller data sets
with 131,072 and 262,144 tupels increase when clustered on 48 peers instead of 32 peers.
A similar observation has been made in [DM00].

Figure 1, right, contains the results obtained from measurements on the Reuters-21578 text
collection. Clearly, our approach is capable to perform the clustering of such a collection.

1See http://www.daviddlewis.com/resources/testcollections/reuters21578/readme.txt for
more information.

290

http://www.daviddlewis.com/resources/testcollections/reuters21578/readme.txt

Again, the times for one iteration are higher in the case of 48 clustering peers than they are
in the case of 32 peers; in the first case, there are only 21578

48 ≈ 450 documents per peer;
with a document collection this small our algorithm shows only a limited amount of its
potential. An interesting fact is that the network topology has an important impact on the
times measured. When changing the connectivity—each peer now only connects to 3 – 6
other peers—the measured times for one iteration decrease, especially when 16, 32, or 48
peers participate in the distributed clusterings shown in the graph.

6 Conclusion

In this paper, we presented an algorithm for the distributed clustering of documents. We
have shown that our algorithm is capable of handling real-world-sized problems and that
distribution creates—even in our P2P setting—speed ups in comparison to centralized
processing. For data sets such as text (many features, many documents with respect to
the number of desired clusters), the savings in transfer time alone justify our distributed
approach.

We find these results very encouraging for our setting of P2P IR, as in addition to the
documented speedup, the processor load in each peer is dramatically reduced with respect
to a client/server scenario in which clients send data to a dedicated clustering service. It can
thus be safely assumed that a distributed calculation of k-means clusters can be performed
as a background task in a P2P IR network. As a consequence, the achieved clustering can
be used for a compact representation of peer contents in the form of histograms denoting
the number of documents per peer falling into each cluster. These representations can be
distributed in the network and used as a basis for source selection and query routing in a
P2P network.

References

[BF98] Paul S. Bradley and Usama M. Fayyad. Refining initial points for K-Means clustering.
In Proc. 15th International Conf. on Machine Learning, pages 91–99. Morgan Kaufmann,
San Francisco, CA, 1998.

[Cha82] E. J. H. Chang. Echo Algorithms: Depth Parallel Operations on General Graphs. IEEE
Transactions on Software Engineering, 8(4):391–401, 1982.

[DM00] Inderjit S. Dhillon and Dharmendra S. Modha. A Data-Clustering Algorithm on Dis-
tributed Memory Multiprocessors. In Large-Scale Parallel Data Mining, Workshop on
Large-Scale Parallel KDD Systems, SIGKDD, Aug 15, 1999, San Diego, USA, volume
1759 of Lecture Notes in Computer Science, pages 245–260. Springer, 2000.

[EH02] Martin Eisenhardt and Andreas Henrich. Problems and Solutions for P2P IR Systems (in
german). In Sigrid Schubert, Bernd Reusch, and Norbert Jesse, editors, Informatik 2002,
volume 19 of LNI, Dortmund, 2002. GI.

[SC02] Mark Sinka and David Corne. A Large Benchmark Dataset for Web Document Clustering.
In Soft Computing Systems: Design, Management and Applications, Vol. 87 of Frontiers in
Artificial Intelligence and Applications, pages 881–890, 2002.

[Ski01] David B. Skillicorn. The Case for Datacentric Grids. External technical report, Dept. of
Computing and Information Science, Queen’s University, Kingston, Canada, Nov. 2001.

291

