Intrusion Prevention with Active Networks: A
Performance Comparison between User and Kernel-Space
Implementation

A. Hess, T. Gingold, S. R. Garzon und G. Schifer

Telecommunication Networks Group, Technische Universitit Berlin, Germany
Email: [hess,gingold,rodriguez,schaefer]@tkn.tu-berlin.de

Abstract: Recent experiences with attacks in the Internet and especially the tremen-
dous increase in the propagation speed of self-distributing attacks clearly show that
the problem of exploiting vulnerabilities of hosts connected to the Internet can not
be countered appropriately with an approach that is only aiming to defend against
attacks by fixing security holes when patches become available. In order to over-
come this situation, various researchers are working on network based intrusion
prevention. One specific approach in this respect aims at deploying programmable
networking technology (sometimes also called active networking technology) that
allows to dynamically deploy task-specific services on so-called active routers for
intrusion prevention purposes.

However, as an intrusion prevention system (IPS) necessarily has a certain impact
on the network performance because each packet is analyzed in terms of malicious
content before being forwarded, the important criterion of processing efficiency has
to be taken into account in the design and implementation of such a system while
at the same time also considering further requirements like robustness and security.
One particular design question arising in this context is if specific intrusion preven-
tion modules should be executed in user- or in kernel-space. In order to thoroughly
discuss this question we realized two prototypes: a user- and a kernel-space imple-
mentation. In this paper we discuss both architectures and we present performance
results in terms of throughput, delay and loss rate.

1 Introduction

Self-spreading worms like Blaster [CERO03] in 2003 or MyDoom [CERO04] in 2004 are
getting a serious threat for todays communication networks. On the one hand the time
intervals between the occurrence of worms like these are getting smaller and on the other
hand the attacking speed accelerates. In order to cope with security issues like this one, we
propose to realize and deploy intrusion prevention functionalities in active network routers
(prevention is the task of keeping the attacker away from private network resources). An
underlying active network allows to dynamically distribute new security modules as new
attack signatures or algorithms to active routers.

In contrast to a normal network intrusion detection system (NIDS) — as for example Bro
[Pax99] — an intrusion prevention system (IPS) has capabilities that go beyond simply
monitoring attacks as an IPS can actually block them. An NIDS sniffs the network and
evaluates copies of the packets transmitted, whereas in the case of an IPS, all traffic is

&

&

350 A. Hess, T. Gingold, S. R. Garzon und G. Schifer

routed exclusively through the IPS and thus, it has the possibility to drop malicious pack-
ets. Hence, an ISP influences the network performance, as each packet is analyzed in
terms of malicious content before being routed and this must be considered when design-
ing and realizing an IPS, as applications, users and administrators have varying demands
with respect to throughput, latency, loss-rate, etc.

Consequently, the question arises how to implement an IPS in order to meet these re-
quirements. In [HJS03], we introduced and motivated the FIDRAN architecture which
is a generic IPS framework - in contrast to a monolithic system - for active networking
with modules that can dynamically be added, exchanged or removed . We showed that
FIDRAN allows to realize a demand-driven IPS, which means that FIDRAN can be fine-
grained adjusted to the security requirements posed by the private network.

Realizing a demand-driven IPS (only to monitor the network traffic for attacks which really
could do harm to the private network) is the first step in order to keep the impact on the
network performance small. Another specific design decision in this respect is to realize
the IPS functionality either in user- or kernel-space. Generally, the following differences
between user- and kernel-space implementations exist.

Regarding the fundamental requirement that an IPS must work as efficient as possible in
order to keep the impact on the network performance small it has to be noted that during
execution each user-space process on most Unix based systems is regularly interrupted in
order to allow preemptive multitasking; this is not the case for kernel "processes". Also
transferring data from kernel into user-space most often requires a set of copy operations
which further reduce execution performance. However, efficiency is not the only aspect
to be considered in the design, but appropriate attention needs also to be paid to security
and robustness. With regards to both aspects the fact that code which is executed in kernel
space cannot be restricted or supervised strongly demands for execution in user space.
There are, however, research projects like the open kernel environment (OKE) which try to
restrict kernel space modules but they are still evolving and have not yet reached sufficient
maturity. Processes that run in user-space, on the other hand, can be supervised and
restricted (e.g. sand-boxing, access control, etc.), but of course this supervision results in
performance degradation. In the context of FIDRAN, the security issue arising of modules
running in kernel space is addressed by requiring that only modules that originate from
trusted sources and have been checked for integrity are accepted for execution. Finally,
regarding robustness, the effects of a system-fault in kernel space are much more serious
than in user-space, a fact that also strongly votes for user space implementation of intrusion
prevention modules.

In order to thoroughly discuss the question of execution performance, we made a com-
parison between FIDRAN [HJS03] and MIPSA. FIDRAN is a flexible intrusion detection
and response framework for active networks which analyzes packets in kernel-space. Al-
though it is possible to install user-space modules, a part of the packet processing always
takes place in the kernel. Thus, we realized a second prototype of an IPS, a modular
intrusion prevention system based on AMnet (MIPSA), which runs completely in user-
space and which is designed to cooperate with the active networking environment AMnet
[FHSZ02].

&

&

Intrusion Prevention with Active Networks 351

The paper is structured as follows. The next section shortly introduces the two intrusion
prevention systems that were used for the performance comparison. Subsequently, we
present the testbed configuration, the conducted experiments and finally, we discuss the
achieved results.

2 The Architectures

In this section, we give a short introduction to both architectures we used for the perfor-
mance comparison. Both systems were designed and realized for a Linux-based operat-
ing system and both systems use the netfilter architecture [net], which is part of Linux
(> 2.4.x2x). The netfilter framework provides a set of hooks within the Linux kernel, that
allows to do packet filtering, network address translation (NA[P]T) and other packet man-
gling operations. It also allows kernel modules to register callback functions within the
network stack. Accordingly, the registered callback function is invoked for every packet
that traverses the respective hook within the network stack.

Another design requirement that is fulfilled by both systems is a modular architecture in
order to allow the distribution of security operations among several active routers, which
is the main particularity of our approach. Snort-Inline [BFP*03] for example, which is
a modified version of the intrusion detection system Snort, is a monolithic system.

2.1 MIPSA

MIPSA is a modular intrusion prevention system for the active networking environment
AMnet. A programmable node that is running the AMnet software can execute services
which are loadable on demand from a service module repository and enhance the func-
tionality of intermediate systems in a flexible manner. A service is composed of one or
more service modules which are linked to a process chain. This chain is connected to
an Execution Environment (EE) which hands packets to the first module in the chain and
picks up the packet from the last.

The basic functionality of MIPSA is realized in the IP-checker, the interpreter and the send
module (see figure 1). The other integrated modules are loadable on demand (realized as
active networking services) and they form a tree with the IP-checker as root node. The
underlying active networking environment passes all packets to the IP-checker, which does
some preprocessing on each packet (setting of variables, pointers, etc.) and forwards the
packet to the next registered module (TCP, UDP, etc.). Moreover, each running module has
the capability to log, forward or drop a packet (also combinations). The last module of the
processing flow is the send module, which is the outgoing interface between MIPSA and
the underlying active networking infrastructure. Finally, the interpreter introduces a simple
description language into MIPSA which is used to specify attack signatures. Each module
contains a packet switching part, specifying the successor module for specific packets (e.g.
TCP and Port 80 — HTTP-module).

&

&

352 A. Hess, T. Gingold, S. R. Garzon und G. Schifer

User-Space
ﬂsE \
|ICMP-Checker »| ICMP-Payload
A _o©
S
IP-Checker »| TCP-Checker »| HTTP-Payload »| Send
A
UDP-Checker Payload
DNS-Rate
Interpreter
#/ IP-Queue
IP-Stack Kernel-Space
NIC

| A y - [NIC, I
r etwor I_i’

Figure 1: The MIPSA Architecture

2.2 FIDRAN

FIDRAN utilizes the mechanism of loadable kernel modules that is provided by the Linux
OS. The architecture is depicted in figure 2. The system is composed of the following
units:

e configuration and managements components:
— management module,
control module,
traffic selector,
security policy and
FIDRAN queue.
e intrusion prevention components:
— varying set of loadable on demand op-modules (realized as active networking
services).

Configuration and management components are in charge of administrative tasks, whereas
the op-modules contain the intrusion prevention intelligence which in fact realizes the
protection against attacks. As most attacks base on a vulnerability that is specific for an
operating system (OS), protocol or application, a modularization of the protection services
is possible. Now, in order to realize a demand-driven intrusion prevention system, the
required op-modules for a specific set of targets are concatenated and stored in an op-

&

&

Intrusion Prevention with Active Networks 353

module process chain. An op-module can be part of one or more process chains. It is
the task of the control module to pass a packet to the correct op-module process chain.
The last module of a process chain passes the packet back to the control module, which
in turn forwards the packet to the kernel packet sending routine. A detailed description
of FIDRAN is given in [HIS03].

User-Space Management Active

Module | Node

Kernel-Space /

Security
Policy

Traffic
Selector

Control
Module

Network

Figure 2: The FIDRAN Architecture

3 Implementation and Measurements

In this section, we start with a short description of a packet’s processing path in both
systems. Afterwards, we explain the testbed configuration and finally, we discuss the
measured results.

A packet that is received by a network interface card (NIC), triggers the execution of
a hardware interrupt (disregarding NAPI and interrupt mitigation for the moment). Ac-
cording to the event of a hardware interrupt a corresponding interrupt handler routine is
executed which transfers the packet from NIC to kernel-space. There, the kernel verifies
the IP-header checksum and passes the packet — assuming that the IP-header checksum
was correct — to the netfilter architecture Up to this point both systems process the packets
in the same manner.

The MIPSA system uses the ip_queue module of the netfilter framework in order to for-
ward the packets to user-space. The netfilter framework copies the packets and inserts
them into the user-space queue for the IP-checker module (see figure 1). The IP-checker

&

&

354 A. Hess, T. Gingold, S. R. Garzon und G. Schifer

analyzes the packets and forwards them to the appropriate successor module. Finally,
each packet reaches (if not dropped) the send module, which passes back the packets to
the netfilter architecture in kernel-space. As MIPSA is realized as a regular user-space pro-
cess, it is intercepted by the scheduler (regularly) and by events that are of higher priority
(irregularly).

In case of the FIDRAN system, it is the traffic selector which is the interface between
FIDRAN system and IP stack. It is a kernel module that is registered to the PREROUTING
netfilter hook. Each packet is analyzed by the traffic selector whether the packet must be
analyzed or not (specification via IP address in the security policy). If so, it is inserted into
the FIDRAN queue (no copy operation required). The control module takes the packets
from the FIDRAN queue and passes them to the correct op-module chain. Each op-module
performs its own analyzing functions and the last module of a chain passes the packets
back to the control module, which in turn forwards them to the kernel sending routine.
The intrusion prevention part of the FIDRAN system is running as a kernel thread, which
means that it has all I/O privileges and cannot be pre-empted by the scheduler.

Regarding both systems the behavior on a per packet basis of both systems is defined
through the following factors:

1. traffic load,
2. depth of module chain and
3. complexity of integrated algorithms.

In order to compare both systems we used three Pentium III 800 machines running Linux
2.4.24 and being connected via 100 MBit/s ethernet links. The middle host was running
the intrusion prevention system (either MIPSA or FIDRAN) and thus, it was equipped
with two network interface cards. In addition, we used the Real-time UDP Data Emitter
(RUDE) [LSP] and the Collector for RUDE (CRUDE) for traffic generation and evaluation.

3.1 Basic Performance Degradation

In a first experiment we measured the influence of both systems on the network perfor-
mance without doing intrusion prevention — meaning both systems were tested without
integrated modules. Figure 3 shows that for loads higher than 500 Bit/s a noticeable
difference between MIPSA and FIDRAN can be remarked. The decrease of the delay
curve for higher loads is due to the fact that MIPSA looses packets when being operated in
this range.

3.2 Performance Comparison on the Basis of Signatures

In a further experiment both systems were tested with the same set of signatures and
algorithms. In a first run a varying number (0-200) of TCP-Null scan signatures were
used. Each signature checks for every packet if it is a TCP segment and, if so, whether
at least one of the TCP-flags SYN, ACK, FIN, RST, URG, or PSH is set. Beyond this,
in a second experiment a varying number (0-200) of payload signatures were used. Each
packet is analyzed whether it contains a specific sub-string or not. Both systems were
using the Boyer-Moore algorithm.

&

&

Intrusion Prevention with Active Networks 355
2,500
MIPSA
2,000 -
@ 1 J
£ ,500
>
T
& 1,000 -
0,500 -
FIDRAN
0,000 BF ' ' ' e <> o—0
0 20 40 60 80 100

Load [MBit/s]
Figure 3: Basic Packet Delay

The results are depicted in figure 4. The left picture shows the results for the header
analysis and the right one those for the payload analysis. Apparently, FIDRAN, which
processes the packets in kernel-space, attains in both experiments the higher throughput.
Regarding the results for the inspection of the packet headers, no obvious decline of the
throughput was remarked, whereas this is the case for the payload analysis.

In contrast to FIDRAN, MIPSA decrements the network throughput while analyzing
packet headers. However, the performance difference between both systems gets smallers
when payload analysis has to be performed. Figure 4(b) depicts, that with an increasing
number of substring searches that have to be performed, the relative difference between
MIPSA and FIDRAN decreases.

3.3 Performance Comparison on the Basis of Modules of Constant Delay

In order to compare both system independent of signatures or algorithms used, we realized
a so-called sleep module for both systems. A sleep module introduces an exact delay into
the system. In our configuration, it delays each packet for 0.1ms before passing it to
the next module. In a first run both systems were compared with only one sleep module
integrated. The results are depicted in figures 5(a), 5(b) and 5(c).

Figure 5(a) depicts the maximum throughput over the offered load for one integrated
sleep module. Up to an offered load of about 40M Bit/s both systems show the same
comportment. But for higher loads FIDRAN reaches a maximum throughput of about
70M Bit/s whereas the maximum value for MIPSA is about 35M Bit/s.

&

&

356 A. Hess, T. Gingold, S. R. Garzon und G. Schifer

100

90 1 el FIDRAN
. ..
g 80 ~ .. R
g 70 LR
S 60 MIPSA s
2
£ 50
3
2 404
=
F 30
k}
= 204

10 {

0 . . .

0 50 100 150 200

Header Analysis [Signatures]

(a) Header Analysis

100

Max. Throughput [MBit/s]

o o == w == o=

0 50 100 150 200
Payload Analysis [Signatures]

(b) Payload Analysis

Figure 4: Performance Comparison based on Signatures

In a next step we analyzed the delay that is caused by both systems. Figure 5(b) depicts
the delay that is introduced by either MIPSA or FIDRAN over the load. The basic delay
for a load of 1M Bit/s and one integrated sleep module is:

e (0.230ms for MIPSA and
e (0.167ms for FIDRAN.

Furthermore, it can be seen that for a load up to 60M Bit/s the FIDRAN system obviously
causes a smaller latency than MIPSA. For load rates higher than 20M Bit/s the latency
that is caused by MIPSA grows in a non-linear manner. The MIPSA graph has a peak at
a load of about 20M Bit/s and for higher loads it approaches the FIDRAN curve. This
comportment is caused by packet loss as depicted in figure 5(c).

Figure 5(c) depicts the packet loss over the load for both systems. Up to a load of about
30M Bit/s the packet loss stays within a negligible range, but then in case of MIPSA
the packet loss increases strongly in a linear manner. It must be said, that it is the netfilter

&

&

Intrusion Prevention with Active Networks

o 9 N ®
S & o ©

Throughput [MBit/s]
B
o

FIDRAN

20

40 60 80 100
Offered Load [MBit/s]

(a) Throughput

Delay [ms]

40 60 80 100
Load [MBit/s]

(b) Delay

800000
700000
600000
500000
400000 1

300000

No of Lost Packes

200000 1

100000

20

MIPSA

40 60 80 100
Load [MBit/s]

(c) Packet Loss

Figure 5: Comparison 1 Sleep Module: MIPSA < FIDRAN

&

357

&

358 A. Hess, T. Gingold, S. R. Garzon und G. Schifer

8
§
1
\
Q
k
N
< SR
e S5
> &
»S [34
© S
Figure 6: MIPSA Packet Loss
8
§
10
& o
k
~N

R
%
00,0020y 00,0, SEENR
berryy 0 000 QR >
AR RIS
00200090, %
gttt 5
QX2 L

Figure 7: FIDRAN Packet Loss

architecture respectively the integrated user-space queuing mechanism that is dropping the
packets. MIPSA still processes any packet that is forwarded by the ip_gueue. Regarding
FIDRAN, the point where the packet loss starts to increase significantly in a linear manner
is at a load of about 70M Bit/s.

Finally, figures 6 and 7 depict the packet loss for MIPSA and FIDRAN over load and a
varying number of sleep modules (1-10). It can be seen that the packet loss for the MIPSA
system is throughout higher than for the FIDRAN system. However, in case of FIDRAN

&

&

Intrusion Prevention with Active Networks 359

the integration of further sleep modules is noticeable whereas this is not necessarily the
case for MIPSA.

4 Conclusions

MIPSA and FIDRAN are modular intrusion prevention systems which can dynamically
be reconfigured, i. e. modules can be inserted or removed. MIPSA is designed as a user-
space process and works in combination with the active networking environment AMnet,
whereas FIDRAN runs in kernel space. In this paper we compared the performance of the
two in terms of throughput, delay and packet loss.

Recapitulating the results of section 3, for one integrated sleep module the two systems
show a similar comportment for load rates up to 20M Bit/s. For higher loads MIPSA
gets lossy (see figure 5(c)), whereas FIDRAN remains loss-free. Furthermore, FIDRAN
reaches twice the maximal throughput of MIPSA (figure 5(a)).

FIDRAN performs conspicuously better than MIPSA in terms of loss rates over sleep mod-
ules and load (figures 6 and 7). However, for extreme configurations (high load and many
integrated sleep modules) the packet loss of FIDRAN approximates that of MIPSA. Sum-
marizing, the main difference between MIPSA and FIDRAN is that the former requires
packet copying for user-space queuing and is steadily interrupted by the Linux scheduler.
The results show that these costs are noticeable.

References

[BFPT03] Jay Beale, James C. Foster, Jeffrey Posluns, Ryan Russell, and Brian Caswell. Snort
2.0 Intrusion Detecion. Syngress, 2003.

[CERO3] CERT. W32/Blaster worm. http://www.cert.org/advisories/CA-2003-20.html, Au-
gust 2003.

[CER04] CERT. W32/Novarg.A / W32/Shimg / W32/Mydoom. http://www.cert.org/incident_
notes/IN-2004-01.html, January 2004.

[FHSZ02] T.Fuhrmann, T. Harbaum, M. Scholler, and M. Zitterbart. AMnet 2.0: An Improved Ar-
chitecture for Programmable Networks. In Proceedings of the 4th Annual International
Working Conference on Active Networks (IWAN), 2002.

[HJS03] A. Hess, M. Jung, and G. Schifer. FIDRAN: A flexible Intrusion Detection and Re-
sponse Framework for Active Networks. In 8th IEEE Symposium on Computers and
Communications (ISCC’2003), Kemer,Antalya, Turkey, July 2003.

[LSP] J. Laine, S. Saaristo, and R. Prior. RUDE & CRUDE. http://rude.sourceforge.net/.
[net] The netfilter/iptables project. http://www.netfilter.org.
[Pax99] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer

Networks (Amsterdam, Netherlands: 1999), 31(23-24):2435-2463, 1999.

