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Abstract: Within digital forensics investigations, the term Live Response refers to
all activities that collect evidence on live systems. Though Live Response in general
alters the state of the suspect system, it is becoming increasingly popular because
it can recover valuable information that is lost in normal investigations that power
down a suspect computer and perform analysis on its hard disk image. Current best
practices for Live Response however fail to take into account the possibility of false
information being gathered due to the presence of rootkits on the system. In this paper
we propose to establish rootkit detection as a standard part of Live Response. We
argue that the credibility of the recovered information can be substantially increased by
regular empirical experiments using known rootkits and rootkit detectors. We present
the results of such an experiment in this paper showing that a redundant combination
of three tools can discover all rootkits which were publicly available as of June 2006.

1 Introduction

1.1 Motivating Live Response

After detecting a computer misuse, the classical approach during a digital investigation

is to pull the plug of all computer systems involved and analyse an image of the hard

drives in the respective systems. This kind of analysis is commonly called “dead” analysis.

In recent years, this principle has been reconsidered, and methods of data collection on

systems that are still running have become popular. In contrast to dead analysis, this is

called “live” analysis, and all activities concerning data collection on live systems are

summarized under the term Live Response.

The reason why Live Response has become an important part of digital forensic investiga-

tions is that when powering down a computer system, a lot of volatile information is lost,

because the RAM is cleared. This information will not be available for further analysis,

although it may contain valuable clues regarding the incident, and there is sometimes no

other way to obtain it other than collecting it on the running system. The volatile informa-

tion that can be collected during Live Response includes the system date and time, a list

of current network connections and open TCP/UDP ports, a list of running processes, the
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names of the loaded kernel modules, and a list of open files. Especially the information re-

garding network connections and ports, and running processes can be crucial information

that allows to figure out what caused an incident or how a system was compromised.

In addition to the collection of volatile data, it has also become common to collect certain

non-volatile data too, i.e. data that could also be recovered in dead analysis. Sometimes

this is done out of convenience, e.g. because certain logfiles can easily be recovered from a

running system with special commands, but in a dead analysis the investigator would have

to parse the logfile format with large effort. In some cases file formats are even proprietary

so no publicly available parsers do exist, yet it is very easy to recover the files on a running

system with the right tools.

Another reason for collecting non-volatile data is that this information will already be

available in a very early stage of an analysis and can improve containment of the incident.

With the amount of data that can already be recovered during Live Response, performing

a forensic duplication can become redundant, because enough information to explain and

resolve the incident is already there. On the other hand, if Live Response yields unexplain-

able results or raises further suspicions, the decision to perform a forensic duplication and

thorough dead analysis is strengthened.

1.2 Live Response Considerations

A severe problem with Live Response techniques is that they will generally alter the run-

ning system’s state, which contradicts the general paradigm of computer forensics to never

modify potential evidence. Issuing commands on an evidence system will change that sys-

tem’s RAM contents, create processes, and even the hard drive may be modified, e.g. by

unnoticed creation of cache files by the operating system. However, if the changes that

the use of a Live Response tools will make to the target system are well understood and

documented, its use can be admitted even if it alters evidence slightly. This tradeoff is

justified by the fact, that the information gained by conducting Live Response is often so

valuable, that a small and controlled modification of the evidence is negligible.

It is well-known, that information offered by a compromised computer system cannot be

trusted. Especially rootkit software can alter status information in arbitrary ways. Before

performing Live Response, it is therefore important to aquire confidence that no rootkits

are installed on the computer system in question. However, standard operational proce-

dures for Live Response (see for example Jones et al. [14]) fail to acknowledge this fact.

One could argue that although a rootkit can hide certain information on a running system,

a dead analysis will always be able to recover all information that the rootkit hid, and it

will also reveal the presence of the rootkit. First of all, any volatile data that is manipu-

lated is not reconstructable during a dead analysis, so the otherwise valuable information

about running processes, open ports etc. is lost, unless special techniques to correct the

rootkit’s manipulations are used. Secondly, it is much more convenient to collect evidence

about rootkits on a live system than during dead analysis since the latter often necessitates

searching thousands of files for malicious traces. Thirdly, rootkits exist that leave no trace
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on the file system at all, running completely in main memory; these rootkits will be unde-

tectable on a file system image, and if their presence is not noticed during Live Response,

there is a severe danger that an investigation will be using false data collected during Live

Response without ever knowing.

Therefore, if a rootkit is detected, any information collected during Live Response must

be checked against other evidence, e.g., evidence collected during dead analysis. The ex-

istence of a rootkit can additionally be the cause for further actions. For example, rootkits

can initiate electronic booby traps for logical bombs, in case of which it may be advisable

to freeze the system immediately to prevent any loss of valuable evidence.

1.3 Contributions

In this paper, we aim to improve the credibility of Live Response procedures for the Win32

family of operating systems. We contribute to the methodology of computer forensics by

exhibiting a method to detect rootkits on a compromised system with high confidence. The

method is based on the concept of diversity, i.e. redundantly using different rootkit detec-

tors on a set of publicly available rootkits. We performed experiments with 11 publicly

available rootkits and 12 available rootkit detection tools as of June 2006. By experiment-

ing with the rootkits and detection tools, it is shown that using a combination of 3 different

detection tools, 100% of all tested rootkit installations can be detected. Due to the diver-

sity in detection techniques it can be expected that a similarly high detection rate can be

achieved for unknown rootkits, allthough it is hard to precisely quantify this of course.

We therefore argue that rootkit detection should be a standard part of Live Response and

should follow an empirically evaluated strategy like the one presented in this paper to raise

confidence in the detected evidence.

1.4 Paper Outline

This paper is structured as follows: Sect. 2 gives some background on Windows rootkits

and techniques for their detection. The experimental setup is explained in Sect. 3 while

the results of the experiments are reported on in Sect. 4. We conclude in Sect. 5. For lack

of space we omit a discussion of standard practices for Live Response and refer the reader

to Schwittay [17] for more information.

2 Windows Rootkits

We now take a detailed look at rootkits for Windows operating systems and their basic

working principles and techniques. There are no novel insights in this section, but knowl-

edge of rootkit internals is necessary to understand the different ways to detect rootkits

despite their stealth capabilities. These differences are vital to the diversity of detection
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techniques used in our methodology later in this paper.

A rootkit can be defined as “a set of programs and code that allows a permanent and un-

detectable presence on a computer” [13]. Typically rootkits are used to hide certain files,

processes and other information on a running system, making them one of the most dan-

gerous classes of malware, because they can exist on a compromised system unnoticed for

years. Additional functionality like a backdoor or keyboard sniffers can often be added,

turning rootkits into the ultimate attacker’s tool. By examining current rootkits and de-

tection tools and putting them to the test, in Sect. 4 it will be shown how rootkits can

nevertheless be detected, resulting in a methodology to safely detect publicly available

rootkits.

2.1 Background: Windows Kernel and Rootkits

To understand how rootkits work it is first of all important to understand the basics of the

Microsoft Windows kernel architecture and the way the operating system works beyond

the normal graphical user interface. The techniques used by rootkits to subvert the oper-

ating system are fundamentally different from the way normal software operates. Often

they manipulate internal operating system tables that are used to control the execution

flow of other software on the system, causing the rootkit code to be executed instead of the

original code. In other cases rootkits will filter or forge the output of system calls to hide

themselves or other objects and yet another class of rootkits modifies memory contents

directly to fool the operating system.

Because of the complexity of the underlying technology, it will hardly be possible to ex-

plain all details of the operating system mechanism completely. Therefore this introduc-

tion will only focus on a few central concepts that allow presentation of the most common

rootkit techniques, namely Hooking and Direct Kernel Object Manipulation. For detailed

description of Windows operating system internals, refer to Solomon and Russinovich [18]

or Hoglund and Butler [13]; the latter can also be considered to be a reference work on

rootkits.

2.1.1 Windows Internals

The first important concept to understand is how access control is realized on the x86

processor family, which is the processor type used in most personal computers today. In

this context, access control means how the hardware controls which kind of instructions

may be used by a particular process, which areas of memory or files may be modified,

and how hardware components may be accessed and written to. Without access control

at the hardware level, any process would theoretically be allowed to access and modify

every file, alter the memory contents belonging to another process and issue every CPU

instruction, no matter whether that could disturb other processes or even crash the whole

system.

The x86 processor type has provided the capability for access control for a long time, in the
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form of four privilege levels called rings, where Ring 0 is the most privileged and Ring 3 is

the least privileged (see Fig. 1). Since Windows NT, Microsoft operating systems use the

two rings Ring 0 and Ring 3 for access control. All user-mode programs, i.e. most normal

applications, run in Ring 3 and have only limited access to memory, and cannot access

hardware directly; this will be prevented by the CPU itself. Ring 0 contains all software

that runs with full system priviliges, for example the Hardware Abstraction Layer (HAL),

device drivers, IO and memory management – essentially all components of the operating

system kernel. Code running in Ring 0 can access the whole memory space and is able to

execute privileged instructions, e.g. allowing access to hardware components like graphic

cards or the keyboard. Programs running in Ring 3 are often called userland programs and

those running at Ring 0 are called kernel programs.

Ring 2

Ring 3

user programs

Ring 0

kernel programs

Ring 1

Figure 1: Ring architecture of the Intel x86 processor family.

Since even userland applications may have to access hardware from time to time – e.g. when

using a system administration programm to install new device drivers for a graphics card

– special mechanism exist that allow a userland program to cross the barrier to Ring 0

and use the otherwise unavailable functions in a controlled way. Some rootkits exploit

this capability to plant their own device driver (a *.sys file) containing their malicious

code in Ring 0, allowing them to run at full privilege level; these rootkits are also called

kernel rootkits. It is important to notice that any Ring 3 detection tool will have a large

disadvantage against a kernel rootkit, because the two are basically not competing with

each other on equal terms. Because a Ring 0 rootkit can control the environment in which

other software runs, it can achieve stealth and avoid detection in a very effective way.

The System Service Dispatch Table. Whenever a userland program wants to use a func-

tion that is only available to Ring 0 programs, it issues a so-called system call. A system

call interrupts execution of the user program and transfers execution control to the ker-

nel, which will then process the requested service as indicated by the system call number

stored in the CPU register EAX, possibly using a set of input parameters received from the

userland application. After the system call has been processed, execution of the userland
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program is resumed, which can now use the system call’s results for further operation.

On Windows, there is a large number of these service functions provided by the kernel,

and each function is identified by a unique system call number. Whenever a system call is

made, a special kernel routine called KiSystemService is executed in Ring 0, which

reads the system call number from the EAX register and looks up the matching function

in a table, the System Service Dispatch Table (SSDT). The SSDT contains the memory

addresses of all functions that correspond system calls, making it one of the central points

of execution flow control in the kernel. Thus the SSDT naturally represents an opportunity

for malicious modifications by a kernel rootkit; the technique for SSDT manipulation will

be described in more detail later.

2.1.2 Hooking Techniques

Altering the execution flow of programs is one of the most prominent techniques of rootk-

its to subvert the Windows operating system. By having code that belongs to the rootkit

execute instead of the original, a rootkit can manipulate the operating system and the

programs that are run on it to achieve stealth, i.e. operate completely unnoticed and hid-

den from the user. The various techniques of rerouting the execution of programs are

commonly referred to as Hooking. It should be noted that often legitimate software uses

Hooking techniques too, so the presence of a hook on a system does not automatically

mean that a rootkit is installed.

IAT Hooking. The easiest form of hooks manipulate the way in which individual ap-

plications are executed, in particular how they import library functions, that are typically

provided on Windows operating systems in the form of DLL files. Whenever an applica-

tion is run, a list of required library files included in the application executable file is used

to load the matching library files into the application’s memory space completely. Apart

from the list of required DLL files, the executable also contains a structure that stores

the specific functions inside the respective library files that the application needs. These

functions’ locations in memory are determined and a special table called Import Address

Table (IAT) is loaded with the library functions’ names and the corresponding address of

the function in the application’s memory space.

A rootkit that has access to an application’s address space can manipulate the IAT in order

to make its own code execute instead of the original library function. It will do this by

overwriting the address of the IAT functions with the address of the rootkit function’s

location in memory space, allowing the rootkit to manipulate the parameters or output of

the original function. There are a number of userland rootkits that will use IAT hooking to

manipulate the IAT of every application running on a system, which enables them to hide

their presence globally across the whole operating system. Fig. 2 shows how IAT Hooking

alters the execution path of a program.

Inline Function Hooking. A slightly more elegant hooking technique does not over-

write the IAT address of the library function to be hooked, but instead modifies the func-
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Rootkit Code

Application Code

push x

push y

mov ebp, esp

...

....

call(library_function_a)

Import Address Table

library_function_a 0xABCD1111

library_function_b 0xABCD2222

...

0xABCD1111

library_function_a()

push ebp

mov edi, edi

...

Rootkit Code

Figure 2: IAT Hooking – The solid line represents the normal execution path, the dotted line shows
the hooked path.

tion’s code directly in memory. Such an inline function hook will usually patch the first

few instructions of the hooked function with a special jump instruction to the rootkit code,

which will then be executed before the original code. Usually the rootkit code will then

call the original function, because when execution of the original function has completed,

control will return to the rootkit code, allowing to modify the results of the library func-

tion. Inline hooks have several advantages over standard IAT hooks, mainly because the

technique avoids problems when the function is not called using the IAT, because no matter

how a process calls the respective function, the inline hook is always effective.

SSDT Hooking. Whereas IAT and Inline Function Hooking all take place in the user-

land realm, there are also techniques to hook execution in the kernel. As previously ex-

plained, one of the central tables that control execution of kernel functions is the Sys-

tem Service Dispatch Table. Whenever a system call is performed, the kernel function

KiSystemService takes control over the execution and looks up the memory address

of the kernel function corresponding to the system call number in the SSDT.

A rootkit can subvert this mechanism by exchanging the original function’s address with

the address of the rootkit’s hook function. The hook function can then imitate the original

function but choose to filter out certain information, e.g. a function that reports a list of

open ports could be replaced by a similar function that does the same but does not display

a certain range of ports, which is used by a built-in backdoor of the rootkit. Overwriting

the addresses in the SSDT is generally a lot harder than IAT Hooking, but the details have

intentionally been left out in this context to be able to just explain the rough concepts. A

detailed description of the method can be found in Hoglund and Butler [13]. Fig. 3 is a

simplified representation of the technique.
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System Service

Dispatch Table

system_call_x 0x10002000

system_call_y 0x10003000

system_call_z 0x10004000

function_x()

function_y()

function_z()

Hooked System

Service Dispatch Table

system_call_x 0x10002000

system_call_z 0x10004000

system_call_y 0xdeadbeef

function_x()

function_y()

function_z()

rkfunction_y()

Figure 3: SSDT Hooking – left: before hooking, right: after hooking.

2.1.3 Direct Kernel Object Manipulation

Hooking techniques are a solid technique of subverting an operating system, but their

main drawback is, that a hook can usually be detected and there are several tools for

hook detection, some of which will also be introduced in later sections. An advanced

technique for subversion, that e.g. allows to hide processes, directly manipulates the very

data structures in kernel memory that keep track of the state of the operating system,

therefore it is called Direct Kernel Object Manipulation (DKOM).

Windows keeps a number of undocumented data structures in kernel memory which for

example contain a list of running processes, of threads scheduled for execution etc. Part of

DKOM techniques is therefore trying to understand the structure of these kernel objects to

be able to manipulate them without making the operating system unstable or even crashing

it completely. The technique then consists of careful modifications to the in-memory data

structures to hide certain objects from the user. For example, processes are recorded in a

doubly-linked list, so that if the offset of the forward and backward pointers to the next or

previous process in the list is known, it is possible to exclude a process from the list with

simple pointer reorganization. Because the scheduling of execution of processes does not

depend on a process being present in that list, this technique hides the process successfully

(e.g. from the Task Manager), but the process is still executed unnoticed (see figure 4 for

a simplified model of the process hiding technique).

DKOM has certain benefits over Hooking, especially because it is very hard to detect,

since directly modifying the raw main memory contents with a Ring 0 rootkit cannot be

controlled by any built-in security mechanism in Windows. The disadvantage of DKOM is

its extreme instability, since there is no documentation about the actual structure and usage

of the kernel objects by the operating system, and often even minor operating system

upgrades change the way they look like and how the operating system uses the kernel

objects. Nevertheless DKOM has become a concept that has to be considered one of the

most sophisticated and dangerous rootkit technologies that exists.
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EPROCESS

...

LIST_ENTRY{

FLINK

BLINK }

EPROCESS

...

LIST_ENTRY{

FLINK

BLINK }

EPROCESS

...

LIST_ENTRY{

FLINK

BLINK }

EPROCESS

...

LIST_ENTRY{

BLINK }

FLINK_modified

EPROCESS

...

HIDDEN

LIST_ENTRY{

FLINK

BLINK }

EPROCESS

...

LIST_ENTRY{

FLINK

}BLINK_modified

Figure 4: Process Hiding with DKOM [13]– The upper figure shows a part of the original linked list
of processes, the lower figure shows how the middle process is hidden by pointer manipulation.

2.2 Overview of Rootkits and Detectors

2.2.1 Rootkits used

For the experiments on rootkit detection, a number of publicly available rootkits were

used, all of which can be obtained via the rootkit.com website [8]. This includes userland

rootkits as well as kernel rootkits, and rootkits which use Hooking techniques as well as

some that use DKOM to hide their presence. The userland rootkits included in the experi-

ments were AFX Rookit, Hacker Defender (also called HxDef), He4Hook, NtIllusion and

Vanquish. All of these rootkits offer about the same capabilities of hiding processes and

files, sometimes drivers or services; the details will be described in the next section.

Kernel rootkits included in the experiments were FU, FUTo, phide and HideProcessHook-

MDL (HPHM), where the latter is more of a proof-of-concept device driver that allows

to hide processes by using SSDT Hooking. It was chosen nevertheless because no other

rootkit could be included that uses this technique. FU, FUTo and phide all use DKOM

techniques to hide processes, FU and FUTo even offer functions to elevate a process’s

privileges and also alter other kernel objects than the linked list of processes.

There were also some related pieces of software, namely cfsd and Klog, which were in-

cluded in the trials although they are not rootkits, because they use very similar techniques.

Cfsd is a file system driver, which can be used to misrepresent the contents of a file system,

for example allowing to hide certain files. Klog is a device driver that acts as a keyboard

sniffer, i.e. it logs everything typed into the keyboard into a file without being noticed.
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2.2.2 Detection tools used

After selecting the rootkits for the experiments an assortment of rootkit detection tools was

assembled to be able to test the various technologies used by rootkits against the different

kind of detection tools. Among them were two tools that explicitly look for hooks, VICE

[8] and Respendence Software Rootkit Hook Analyzer (RKHA) [10]. VICE detects both

userland and kernel hooks, and can discover normal IAT hooks, inline function hooks,

SSDT hooks and also more advanced hooks, while Rootkit Hook Analyzer only detects

kernel hooks.

Another class of detection tools directly looks for hidden objects on the running operating

system, the ones used in this paper are F-Secure Blacklight [1], RKDetector [9], Rootkit

Revealer [11], and UnhackMe [12]. They are generally run once and the output is a list of

all hidden objects found. Blacklight can detect hidden processes and files, RKDetector and

UnhackMe detect hidden processes and will sometimes also alert because of suspicious

services and corresponding registry keys. Rootkit Revealer can detect hidden files and

registry keys, including those belonging to a system service, making it possible to also

detect hidden services indirectly.

It is known that Blacklight and Rootkit Revealer use a cross-view detection approach,

which identifies hidden objects by comparing the output of high-level API reporting func-

tions with results gained from parsing the appropriate structures on a very low level. For

example, to find hidden files, a cross-view detection tool would first use the Windows API

to request information about the contents of the file system. It would then use low-level

methods of parsing the file system itself, and compare the output with the API output,

uncovering any files that were hidden at API level. A cross-view approach only works if

the subversion of the rootkit does not manipulate the operating system at the same or even

lower level than the detection tool uses for its baseline data collection. Apart from this

limitation, cross-view detection is one of the most effective ways to find rootkits, because

it is “generic” in the sense that is does not scan for specific rootkit signatures or for signs

of a data hiding technique like hooking.

The tools IceSword [5] and DarkSpy [2] are both freeware tools that offer the possibility

to look for rootkits in an interactive fashion. For example both offer a function to view

a list of currently running processes, like the Windows Task Manager, or an Explorer-

like application to browse the file system or the Windows registry. The difference to the

ordinary reporting and browsing tools is that they use very advanced techniques to gather

the data about the respective objects, often exploiting the way in which rootkits typically

hide processes or files. Although IceSword and DarkSpy may sometimes highlight hidden

processes using similar techniques as the cross-view detection tools, generally they have

to be used in an interactive fashion by an investigator who systematically looks for signs

of a rootkit.

To complete the set of detection tools there are also a number of command line tools that

cannot be classified like the tools above, these are modgreper, flister and System Virginity

Verifier [6]. Flister is a tool that can be used to detect hidden files, exploiting some com-

mon bugs in rootkits when using file hiding techniques. Modgreper scans kernel memory

for hidden modules, which can sometimes reveal the presence of a rootkit that uses a hid-
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den module in the kernel to do its work. The System Virginity Verifier (SVV) written by

Rutkowska is a unique tool, which is related to the concept of Explicit Compromise Detec-

tion [16], which means that the integrity of critical operating system elements is checked

to detect a possible compromise. SVV compares the code sections of kernel modules in

memory, i.e. drivers and DLLs, with their representation on the file system, where the files

are stored. If discrepancies are detected between the stored file and its image in mem-

ory, SVV evaluates the type of the change and outputs an infection level that denotes the

severity of the modification, and whether it is likely to be a malicious modification.

3 Experimental Setup

3.1 Test Platforms and Compatibility Issues

To get an idea of how rootkits work on different version of the Windows operating system,

all experiments were executed on four different operating systems, namely on Windows

2000 Service Pack 4 with all official update as of June 1, 2006, Windows XP without

any updates, Windows XP Service Pack 2 with all updates and Windows 2003 Server

Service Pack 1 with all updates. All systems were standard installations, with a minimum

of required device drivers installed to be able to run properly. After the setup, all systems

were kept offline and all software was copied from a CD to the test platform, to avoid

accidental compromise by a real attack.

There were significant compatibility problems with the rootkits, in particular, the only

rootkits that could be installed on Windows 2003 were Hacker Defender, Klog and Van-

quish. Other notable problems occured with cfsd and He4Hook, none of which could be

successfully installed on any of the test platforms; it is not clear whether this was a known

issue or caused by incorrect use of the supplied files, because these rootkits come with no

documentation at all. On top of that, NtIllusion did not work properly on any operating

system but Windows XP Service Pack 2, HideProcessHookMdl did not work on Windows

2000 and the AFX Rootkit could not be executed on Windows XP Service Pack 2.

There were also minor compatibility issues with some of the detection tools, although they

appeared to be far more robust than the rootkits themselves. In particular, VICE does not

execute properly on Windows XP Service Pack 2; the problem seems to be a patch to the

.NET framework, which is used by VICE. In addition to these incompatibilities, SVV does

not work properly on Windows XP Service Pack 2 with all patches installed as of June 1,

2006. Although it does execute normally and outputs a result, it also outputs an error mes-

sage and it can be clearly seen from the resuts that it did not operate at full effectiveness.

The last incompatibility was with DarkSpy and Windows 2000 SP4: when starting Dark-

Spy, the operating system would simply crash immediately with a Blue Screen, making it

impossible to test DarkSpy on this platform.
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3.2 Configuration of the rootkits

To start the experiments the rootkits were, if necessary, configured using the included

documentation to use all the capabilities for stealth that they provide. Specifically, this

means:

• If the rootkit offers a file hiding capability, a sample folder and files that should be

hidden were created.

• If the rootkit offers a process hiding capability, an appropriate process that should

be hidden was started.

• If the rootkit offers hiding of network ports, an open port was created using a listen-

ing netcat session.

• If the rootkit offers a registry key hiding feature, sample registry keys and values to

hide were created.

• If the rootkit allows hiding of services and drivers, sample objects of the respective

type to be hidden were configured.

Some rootkits hide files or processes by using a magic string, i.e. if a file or process name

contains a specific string, it will be hidden; AFX, NtIllusion, Vanquish, and HidePro-

cessHookMdl use this technique. Hacker Defender has a real configuration file which

allows definition of different magic strings for different classes of objects to be hidden,

and it allows to define network port ranges to hide. FU, FUTo and phide can hide pro-

cesses by referring the process’s identification number, or PID. The keyboard sniffer Klog

did not have to be configured. Tab. 1 gives an overview over the hiding capabilities of the

different rootkits.

Files Processes Registry Keys Ports Services Drivers

AFX Rootkit X X X X X –

FU – X – – – X

FUTo – X – – – X

Hacker Defender X X X X X X

Klog – – – – – –

NtIllusion X X X X – –

Vanquish X X X – X –

phide – X – – – –

HideProcessHookMdl – X – – – –

Table 1: Hiding capabilities of rootkits: an X denotes that the rootkit can hide objects of the respec-
tive type
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3.3 Rootkit installation

After configuration the rootkits were installed using the included loader programs, which

is mostly a simple EXE file that will load the rootkit into memory and start it, which

results in immediate hiding of the desired objects. In this case, hidden means that files are

no longer visible in the Windows Explorer, processes are invisible in the Task Manager,

registry keys are invisible in the Registry Editor, and open network ports are not detectable

with netstat. Drivers and services were checked using the System Information tool

included in Windows.

Generally, the rootkits succeeded in hiding the respective objects they were designed to

hide very well, all rootkits that have the capability the hide processes, files, registry keys or

network ports worked exactly as expected, hiding the target elements from the applications

mentioned above. The only exception is AFX Rootkit, which did not hide network ports

as it was supposed to do. Vanquish and Hacker Defender use a special service to operate,

and they both succeeded in hiding “their own” service. Driver hiding, which is offered by

FU, FUTo and Hacker Defender, did not work at all; all loaded rootkit drivers were still

visible with the System Information program.

3.4 Application of Detection Tools

After having installed a single rootkit and having documented its stealth properties, the

rootkit detection tools were run using a small batch script to see if they would detect the

hidden objects and the rootkits themselves respectively. The output was then recorded and

it was checked whether all hidden objects that the detection tool can detect have actually

been detected; of course it makes no sense to blame a tool for not detecting a hidden

process, if it is not designed to do so. Having documented the results for the detection

tool, it was then uninstalled if necessary, and any drivers it used were unloaded. After a

system reboot, the state prior to testing the previous detection tool was reestablished, if

necessary by restarting the rootkit and reconfiguring the sample processes and network

ports. Then the next detection tool was tested in the exact same way as described above.

4 Experimental Results

4.1 Differences between operating system versions

As a first result, there were absolutely no significant differences in the detection perfor-

mance between the different operating system versions used during the experiments. In

particular, there was no instance, in which a detection tool detected any rootkit modifica-

tion successfully on one operating system, but failed on another one. The only differences

were the compatibility issues of some rootkits and detection tools that were also described

in detail in the Setup section. For this reason the results will be mainly be evaluated for
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the Windows XP SP2 system, which was compatible to most rootkits and detection tools

and can thus be regarded as the reference operating system concerning the results of the

rootkit detection experiments. For the AFX Rootkit and VICE, which were incompatible

with Windows XP SP 2, the results on Windows XP without any Service Packs were used.

4.2 Detailed Results

It turned out that rootkit detection was not a “black-and-white” issue, but that in some

cases detection tools would only partially detect the rootkits modifications. In this context,

complete detection would mean, that the detector detected all changes that it is designed

to detect. Tab. 2 gives an overview over detection tools and the kind of objects they were

designed to detect.

Files Processes R’stry Keys Ports Services Drivers Hooks

Darkspy X X – X – X –

Flister X – – – – – –

F-Sec. Blacklight X X – – – – –

IceSword X X X X X X X

modgreper – – – X X – –

RKDetector – X – – X X X

RKHA – – – – – – X

RK Revealer X – X – – – –

SVV – – – – – X X

UnhackMe – X X – X – –

VICE – – – – – – X

Table 2: Rootkit Detectors: an X denotes that the detector can detect hidden objects of the respective
type

A scale with three values was used to rate the amount of success that was achieved. A

success variable s was used to account for the effectiveness of the detection tool as follows:

• s = 0: The detection tool did not detect anything.

• s = 1: The detection tool detected some rootkit modification or hidden objects, but

not everything.

• s = 2: The detection tool detected all possible rootkit modifications and hidden

objects.

The results can be seen in Tab. 3. A “–” means that the tool in question was not applicable,

because it was not designed to detect the objects the particular rootkit hid. It is obvious,

that the Klog keyboard sniffer does not really fit into this selection, because it does not
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actually hide anything. This issue will be discussed after the analysis of the experimental

results.

Rootkits

Detectors AFX FU FUTo HxDef Klog NtIll. Vanq. phide HPHM

Darkspy 2 2 2 2 – 2 2 2 2

Flister 2 – – 0 – 2 2 – –

Blacklight 2 2 0 2 – 2 2 2 2

IceSword 2 2 2 2 – 2 2 2 2

modgreper – – – 1 – – – – –

RKDetector 2 2 0 0 – 2 0 2 2

RKHA – – – – – – – – 2

RKRevealer 2 – – 2 – 0 2 – –

SVV 2 – – 2 – 1 2 – 1

UnhackMe 2 0 0 2 – 1 2 0 2

VICE 2 – – 2 – – 2 – 2

Table 3: Experimental Results for s

4.3 Tests with Live Response tools

The results of the Live Response tools netstat, fport [3], pslist [7], psservice

[7], find, and regdmp, included in the experiments can be summarized quickly: none

of them reported any of the objects that were hidden by the rootkits. The only way that

these tools could be used to indicated a potential rootkit installation, was when a hidden

process had a non-hidden port open; in this case, the tools would detect the open port, but

not the process, a discrepancy that could alert an investigator if he carefully analyzed the

output of the tools.

4.4 Discussion

The experimental results show that there were several excellent tools that were able to

detect all rootkit modifications, but there were also some that did not perform well. The

two interactive tools DarkSpy and IceSword performed excellent, both reaching a mean

score of 2, the maximum possible. F-Secure’s cross-view detection tool Blacklight also

detected all modifications except processes hidden by FUTo, which is an expected result,

because FUTo is a modified version of the FU rootkit, specifically designed to be able

to evade detection by Blacklight [4] .VICE also perfectly detected the hooks installed by

the hooking rootkits, although it has previously been mentioned that identifying malicious

hooks can sometimes be diffcult, because a lot of software, especially Antivirus software,
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uses benign hooking.

Other tools that performed quite well were SVV with an average score of 1.6 and Rootkit

Revealer (1.5), along with the file lister flister (average score of 1.5). The tools Rootkit

Detector and UnhackMe did not perform satisfactorily, with scores of 1.25 and 1.125 re-

spectively; in addition to the lower average results, these tools did not detect a number of

rootkits at all, making their use questionable and the results not very reliable. The very

specialized tools modgreper and Rootkit Hook Analyzer (RKHA) could not be evaluated

properly based on the experiments that were conducted, because they were each only appli-

cable in one case, which is certainly not representative of the tools’ reliability. During the

experiments it also became obvious that the keyboard sniffer Klog would not be detected,

simply because it does not attempt to hide anything; this result was therefore expected.

The fact that the Live Response tools tested failed completely in trying to report the hidden

objects does not surprise either: rootkits are specifically designed to subvert these tools’

mechanisms, which generally means that they subvert at least the high level-API reporting

functions used by the Live Response tools. This results shows that rootkit detection has

indeed become very important in forensic analysis because the standard tools used in Live

Response procedures do not work properly. Adressing this need for rootkit detection, a

methodology for rootkit detection has been developed, which will be described in the next

section.

5 Rootkit Detection Methodology

Based on the results of the experiments, a methodology for rootkit detection has been de-

veloped, which consists of using a combination of different detection tools to add redun-

dancy to the detection procedures. The proposed methodology uses three tools: F-Secure

Blacklight, IceSword and SVV. This combination was chosen for several reasons; first

of all, all three tools achieved good average results in the experiments, reliably detecting

rootkit modifications.

Secondly, these three tools represent three different approaches to rootkit detection. Black-

light uses a cross-view based detection approach, it offers a simple user interface, which

allows to scan for hidden objects with a single mouse click. After checking the system,

Blacklight outputs a list of hidden objects found. Usage of IceSword differs in the way

that it offers information about certain operating system elements in an interactive way; it

offers a function that resembles the Task Manager to review running processes, a browser

for the Windows registry and the file system, which resembles the Windows Explorer,

and it also includes function to view loaded device drivers, services, the SSDT and even

more. IceSword does not offer a convenient scanning option such as Blacklight, but if an

investigator knows what to look out for, it is a very flexible and powerful tool. SVV was

chosen to be included in the methodology because it represents yet another technique to

detect rootkits, by checking important operating system elements for their integrity. This

technique requires the most technical knowledge about the concepts and techniques used

by rootkits, but for an experienced investigator it is one of the most powerful and advanced
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tools to analyze a rootkit infection.

This comparison of the three tools has also shown that the methodology is applicable

for forensic examiners with different levels of understanding; Blacklight does not require

any special background to be used, IceSword becomes more effective in the hand of an

experienced investigator, and SVV offers detailed information which will be most helpful

to a very skilled analyst. By correlating the output of all three tools, the reliability of

rootkit detection is increased, because even if a rootkit manages to evade one of the tools,

it can still be detected by another one that uses different methods for detection. None of

the rootkits tested can evade the combination of Blacklight, IceSword and SVV, and only

an extremely sophisticated rootkit could hope to avoid detection by all of the three tools

together. Although it is difficult to quantify the success rate of detection when using this

methodology for an arbitrary rootkit infection, it is reasonable to assume that when facing

a rootkit that uses techniques similar to the ones tested in this paper, the rate of detection

is close to 100%. Asssuming that the majority of rootkits used today fall into this category

– which appears reasonable – the likelihood to detect an actual rootkit detection is equally

high.

The results of these experiments were based on software which was available as of June

2006. Experiments like the ones performed in this paper should be repeated in regular

intervals so that tools can be combined such that the detection rate can be kept high in

practice.

6 Conclusions and Future Work

All experiments were planned and the test platform carefully prepared to allow objective

and accurate testing of the tools, and to gain a representative view of their performance

on the Windows operating system platform, multiple different operating systems were

included in the tests. A selection of detection tools that use different methods for detection

was chosen, among which were cross-view based detection tools and tools that use Explicit

Compromise Detection (ECD) to detect rootkits.

It could be shown that there exist a number of very good rootkit detection tools, but also

that some are not reliable enough to be used in a forensic investigation. By choosing

a combination of three detection tools which achieved good results in the experiments

and which each represent a different approach to rootkit detection, redundancy has been

added to the process of rootkit detection, resulting in a reliable and accurate methodology.

Using F-Secure Blacklight, IceSword and System Virginity Verifier, all publicly available

rootkits can be detected safely, and depending on the skill of the investigator, this toolkit,

especially IceSword and Blacklight, can also be used to analyze the rootkits in more detail.

There is one thing to keep in mind when using IceSword and several other rootkit detection

tools: a special device driver, for IceSword it is called IsPubDrv.sys, is often copied to

the systems hard drive to allow the detector to function properly. This of course contradicts

the principle of not creating files on an evidence system, because this is a severe modifi-

cation of the evidence. The principle problem here is, that in order to be able to detect a

141



rootkit’s subversion, the detection software has to be able to deal with the problem on the

same level, i.e. using a Ring 0 kernel component. Device drivers are the standard way to

gain access to Ring 0, and that is why the creation of a single file can be tolerated in this

context; otherwise the rootkit would have an implicit advantage, because it can manipulate

the operating system at a lower level than the detection tool can reach.

As an avenue of future research, we wish to repeat the experiments performed in this paper

in regular intervals. For example, in the time which elapsed since our study new rootkits

based on virtualization have been widely discussed (see for example Rutkowska [15]) and

these should be included as soon as possible.
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