
Jens Kolb et al. (Eds.): Enterprise Modelling and Information Systems Architectures,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2015 77

An Enhanced Communication Concept

for Business Processes1

Felix Kossak2, Verena Geist2

Abstract: Simple communication patterns often do not suffice for modelling the interplay between
different business processes. In this paper, we introduce and formally specify an event-based com-
munication concept for business process modelling, constituted by event trigger properties and event
pools. We claim that this concept provides a much bigger scope for modelling communication than
currently available concepts, particularly when actor and user interaction modelling are included.

1 Introduction

As long as business processes are modelled individually, simple communication patterns

typically suffice for communication with an abstractly modelled environment and within

the process. However, we often need to model the interplay between different processes

as well, often between very heterogeneous systems. Due to growing demand to integrate

different processes of different organisations – e.g. in the context of the European “Industry

4.0” initiative –, simple patterns like “Messages” or “Signals” do not always suffice.

Simple communication patterns, such as those provided by the BPMN 2.0 standard [Ob11],

have the advantage of being relatively simple and easy to depict in diagrams with relatively

intuitive symbols. But integration of automated processes, human actors (see e.g. [NG13,

NC12]), and user interaction (see e.g. [KG12, ADG10]) demands more flexibility and cus-

tomisation. In this paper, we propose a very general event concept for business process

modelling, based on a set of event properties as well as event pools.

In general, a communication concept is supposed to serve different purposes in the context

of business process modelling:

• The environment demands a new process instance to be started.

• A process instance notifies its environment that it has finished, that it needs to abort,

and/or that an error has occurred.

• The default workflow may be left as in case of an error or of special circumstances,

where e.g. compensation is required.

1 The research reported in this paper supported by the Austrian Ministry for Transport, Innovation and Technol-

ogy, the Federal Ministry of Science, Research and Economy, and the Province of Upper Austria in the frame

of the COMET center SCCH.
2 Software Competence Center Hagenberg GmbH (SCCH), Softwarepark 21, 4232 Hagenberg im Mühlkreis,

Austria, {felix.kossak,verena.geist}@scch.at

78 Felix Kossak, Verena Geist

• Different processes need to synchronise, or a process with its environment.

• Data need to be exchanged.

We claim that the proposed communication concept provides a much bigger scope for

serving all these purposes than currently available concepts, which we review in Section 5.

This review shows that what is obviously missing is a general concept for covering differ-

ent ways of communication in BPM which is concrete enough to be integrated in tools in

a straightforward way. This is what our paper aims to contribute.

The notion of an “event” has been used ambiguously in the literature, including the BPMN

2.0 standard, where it typically (though not always) denotes a flow node rather than some-

thing which happens at a certain point in time. Therefore we need to introduce a clear

notation. We try to stay close to the well-established BPMN 2.0 standard, whose basic

knowledge we assume. To summarise our notation:

An event node either throws or catches triggers at certain points in time.

Every trigger is of one particular trigger type (e.g. “Message” or “Error”), and

an event node can throw or catch triggers of one or several different trigger

types, which are defined in its event definitions.

In the following, we will use Abstract State Machine (ASM) notation [BS03] to formalise

our concepts. We expect that the notation provides an intuitive understanding without fa-

miliarity with the formal semantics of ASMs. The reader may look at it as pseudocode,

with special attention to understandability. Yet this notation makes the semantics of the

concepts unambiguous and the complete ASM-based specification, of which we show the

important parts, can be easily and provably correct refined towards software code.

The specification is embedded in a comprehensive business process modelling concept, the

Hagenberg Business Process Modelling Method (H-BPM), whose core is largely based on

BPMN 2.0. A formal specification of the core model has been published in [Ko14], which

also demonstrates the requirements for the communication concept. The whole method,

including actor, user interaction, and data modelling is presented in [Sc15].

This paper is structured as follows. In Section 2, we introduce a set of event trigger prop-

erties to generalise trigger types, opening a wide scope of customised communication. In

Section 3, an event pool concept is presented for flexible distribution of triggers, enhanc-

ing also flexibility and comfort for human participants. We evaluate the combination of

both concepts in Section 4, where we also look at standard trigger types again. Section 5

reviews related work and Section 6 gives a summary.

2 Trigger Properties

Trigger types, such as those provided by BPMN, can be distinguished by different pur-

poses, as their usual names (such as “Message”) suggest. However, more generally, most

An Enhanced Communication Concept for Business Processes 79

of them can also be distinguished by different properties, mostly properties concerning the

distribution of triggers, answering questions like the following (cf. [Al10]):

• Is the trigger intended for a particular process or (potentially) for different processes

(like a fire alert for employees of different companies in a single office building)?

• Is the trigger intended for a particular process instance, e.g. for a particular business

case, or may it be caught by any instance of a given process (like a call to a help

desk may be answered by any employee concerned)?

• If there is no particular recipient (no particular process instance) addressed, is it

sufficient that just one process and process instance deals with the trigger or should

more or even all of the potential recipients react (as in the case of a fire alert)?

• Is it obligatory that someone deals with the trigger (as in the case of a help desk

call), or is it optional (as in “There is a special offer today in the canteen”)?

• Can the trigger only be caught instantly, or is it valid for some time (or indefinitely)?

When we define respective properties for triggers, we can use them to identify e.g. a signal

as a trigger which should be broadcast to all processes (of a given set) and to all process

instances and which should be sustained even when some actor has already reacted to it.

However, all the possible combinations of possible values for different properties (reduced

by possible constraints) offer more scope than a small set of standard trigger types. We

now introduce a set of key properties for triggers and necessary constraints on them.

We need to consider a system in which several communicating processes are running con-

currently. Thus we need to identify, for any trigger, one or more recipient processes.

shared recipientProcesses : triggers → Set

recipientProcesses is a function from the set of triggers to the power set of processes. It is a

shared function, which means that both the process considered and its environment can set

the value of this function for a particular trigger. The given process needs to set the value

for triggers which it throws (sends), while the environment (including other processes)

need to set the value for triggers which the process in question shall receive.

We stipulate that if no recipient process is identified, all processes running on or visible

to the workflow engine shall receive the trigger, except if a particular public event pool is

specified (see below).

Next, we may want to identify a particular event node of the target process. For instance,

there may be alternative start nodes and the environment wants to determine where exactly

the new process instance shall start. If no recipientNode is specified, any suitable event

node within the target process may catch the trigger (if no further constraints apply).

shared recipientNode : triggers → flowNodes

80 Felix Kossak, Verena Geist

There are dependencies between recipientProcesses and recipientNode. For a start, if no

particular recipient process is identified, or more than one process is identified, then we

cannot specify a particular event node:

assert

forall trigger ∈ triggers holds

if recipientProcesses(trigger) = undef or

| recipientProcesses(trigger) | /= 1 then

recipientNode(trigger) = undef

Above, the keyword undef denotes “undefined” and the vertical bars around “recipient-

Processes(trigger)” denote the cardinality of this set of processes.

If a recipientNode is defined, then the only member of recipientProcesses must be the

parent of the recipientNode. Thereby we also make sure that only event nodes that are

direct children of a given process can be addressed (for propagation into sub-processes,

see further below).

assert

forall trigger ∈ triggers holds

if recipientNode(trigger) /= undef then

forall process in recipientProcesses(trigger) holds

process = parentNode(recipientNode(trigger))

Note that in combination with the previous assertion, we can derive that when recipi-

entNode is defined, then recipientProcesses must be defined as well and the cardinality of

recipientProcesses must be 1; thus forall, above, actually ranges over a single process.

If a recipient process is specified but no particular recipient node, then we shall be able to

specify whether the trigger may be propagated into sub-processes (recursively). This cor-

responds to the distinction between the two concepts of direct resolution and propagation

in BPMN ([Ob11, p. 234f]).

shared mayBePropagated : triggers → Boolean

If recipientNode is specified, then propagation is obviously not desired:

assert

forall trigger ∈ triggers holds

if recipientNode(trigger) /= undef then

mayBePropagated(trigger) = false

We may also want to address a particular process instance. E.g. when a customer has

placed an order and subsequently asks when they can expect delivery, then this request

must be linked with the proper process instance associated with the respective order num-

ber. An order number is an example of correlation information. In general, this can be

any piece of information through which a particular process instance can be identified.

To make correlation possible, the same correlationInfo must be shared by the respective

properties of both process instance and trigger. (The term “correlation information” is also

used in BPMN. Also compare with the correlation sets of WS-BPEL [OA07, Sect. 9].)

An Enhanced Communication Concept for Business Processes 81

As we do not want to restrict the form of correlation information, we define an own uni-

verse (data type), “correlationInfo”, whose implementation is left open. We re-use the

name for the respective properties of both triggers and process instances. Note that corre-

lationInfo of instances is controlled, which means that this property can only be set within

the process in question, i.e. by the process engine.

shared correlationInfo : triggers → correlationInfo

controlled correlationInfo : instances → correlationInfo

In the next section, we will introduce event pools (represented by the universe eventPools),

some of which may be directly addressed by a trigger.

shared recipientPool : triggers → eventPools

Another important trigger property shall indicate whether it suffices that one actor reacts

to it or not. In other words, shall the trigger be deleted once it has been caught by some

event node or shall it be sustained so others can catch it as well?

shared deleteUponCatch : triggers → Boolean

Next, we want to specify whether a trigger is supposed to be caught instantaneously or if it

shall be sustained for some time, and if so, for how long. There are at least three possible

ways to define a timeout:

• in terms of an absolute point in time (“until 1 Feb 2015, 15:00”);

• in terms of a time span from the creation of the trigger; or

• in terms of a particular hour, day of the week, week, etc. after the creation of the

trigger (“until the following Friday, 14:00”).

More exotic variants are imaginable, but we think that at least those should be supported,

requiring the following properties:

• The first variant requires a simple time property, timeout.

• The second variant requires a duration, lifetime, in combination with a timestamp of

the time of creation of the trigger.

• The third variant also requires a timestamp, along with a “semi-relative” time prop-

erty, allowing for values like “the 5th of the following month”, “November of the

same year”, etc., for which we use an abstract universe, RelativeTime; we call the

respective trigger property relativeTimeout.

shared timestamp : triggers → Time

shared timeout : triggers → Time

82 Felix Kossak, Verena Geist

shared lifetime : triggers → Time

shared relativeTimeout : triggers → RelativeTime

lifetime and relativeTimeout require a timestamp.

assert

forall trigger ∈ triggers holds

if lifetime(trigger) /= undef or

relativeTimeout(trigger) /= undef then

timestamp(trigger) /= undef

Furthermore, at most one of the functions timeout, lifetime, and relativeTimeout may be

defined for a particular trigger.

If neither timeout nor lifetime nor relativeTimeout are defined, then either the process en-

gine has defined a default lifetime which will come into effect or the trigger does not expire

as long as any potential recipient process is running.

Finally, in many cases, the process that sent a given trigger is of interest. For instance,

we would like to know which process sent an “Error” or “Escalation” trigger. Even the

throwing event node may be of interest, and as the process can be derived from that, we

define the senderNode as a trigger property. (Note that the sender instance can be derived

from the sender process in combination with correlationInfo.)

shared senderNode : triggers → flowNodes

Additionally, we retain the property triggerType (as in BPMN, with values like “Message”,

“Signal”, “Error”, etc.) for the following reasons:

• The BPMN trigger types “Signal”, “Error”, and “Escalation” cannot be distinguished

by the other properties, yet “Error” and “Escalation” have algorithmic significance

for the workflow.

• The relatively small number of trigger types defined by BPMN, reflecting the most

common communication needs, can be represented by symbols which are relatively

easy to identify and to remember and render a diagram much easier to understand.

• We want to remain compatible with the BPMN standard as far as possible.

shared triggerType : triggers → eventTriggerTypes

However, there is a certain redundancy of information shared between the triggerType and

other properties, and we must assure consistency. We will discuss the respective relations

further below.

For the following considerations, we further stipulate that triggers must be uniquely iden-

tifiable and that duplication always leads to different triggers.

An Enhanced Communication Concept for Business Processes 83

3 Event Pools

If we want to enable users to choose in which order to process messages (and possibly

other event triggers), we have to give them a kind of “pool” into which event triggers are

delivered and from which users can pick. This concept is already well established in the

form of the “inbox” of an email client. The pool concept we are going to introduce is also

influenced by that proposed for S-BPM (see [Fl12]); S-BPM lays a special focus on the

viewpoint of actors (or “subjects”).

We not only want users to be able to choose the order in which to process triggers but

also to be able to opt-in for additional, non-obligatory trigger sources, like certain kinds

of news (like RSS feeds). This can be enabled by giving users access to certain additional

event trigger pools, i.e. pools not directly associated with a particular process.

Furthermore, there are certain kinds of event triggers, like signal, error, or compensation

triggers, which may be supposed to be caught by more than one process or sub-process.

One way to handle this is to duplicate such events for every potential recipient. Another

possibility, at least for the conceptual level, is to deposit such a trigger in a pool which is

not associated with a particular process but which is “public”.

So a process might have access to different event pools, some private, some public. How-

ever, a user might want to have a single view on all the relevant pools. To this end, we

can define a view on all the triggers from all the pools relevant for a particular process

by means of a virtual pool which we call the process’s inbox. For the abstraction of the

throwing of triggers, we further define an outbox for each process.

In summary, the event pool concept we are proposing comprises the following pool types:

• a private event pool for each process or sub-process for triggers which are only

visible for event nodes that are directly within this (sub-)process (this corresponds

to “direct resolution” in BPMN);

• a group event pool for each (sub-)process for triggers which are visible also within

sub-processes of this (sub-)process, recursively, to enable propagation;

• public event pools to which processes can subscribe or to which several processes

can be mandatorily subscribed (by the process designer);

• a virtual inbox for each (sub-)process to provide a single view on all relevant pools;

and

• an abstract outbox for each (sub-)process to hide the details of delivering triggers

thrown within this (sub-)process in accordance with the triggers’ properties.

Within private and group event pools, triggers for a particular process instance can be

identified by correlation information.

84 Felix Kossak, Verena Geist

We now introduce event pools in more detail. We assume a universe (data type) eventPools,

on which the rules (algorithmic functions) AddTrigger and RemoveTrigger as well as a

derived function (derived property) containsTrigger are defined.

An event pool may or may not be associated with a particular (sub-)process, i.e. an owner-

Process. A public event pool is associated with the environment instead. We also assume

that the environment has a pool for receiving triggers.

For the sake of simplicity, we assume that there is a fixed number of event pools with

fixed associations in a given run of a process engine. Consequently, we model the function

ownerProcess as static (i.e. it cannot change during runtime).

static ownerProcess : eventPools → processes ∪ { environment }

A derived function can identify all event pools owned by a particular (sub-)process or by

the environment:

derived eventPools : processes ∪ { environment } → Set

eventPools(process) =

{ pool | pool ∈ eventPools and ownerProcess(pool) = process }

An event pool associated with a particular (sub-)process may be private; else, it is a group

event pool. If an event pool associated with the environment is private, it is supposed to

receive triggers addressed to the environment. If an event pool associated with the envi-

ronment is not private, it is a public event pool.

static private : eventPools → Boolean

We can then define:

• a private event pool as a pool with ownerProcess(pool) ∈ processes and

private(pool) = true;

• a group event pool as a pool with ownerProcess(pool) ∈ processes and

private(pool) = false;

• a public event pool as a pool with ownerProcess(pool) = environment and

private(pool) = false; and

• the environment’s event pool (for triggers addressed to the environment) as a pool

with ownerProcess(pool) = environment and private(pool) = true.

We define a default public event pool which is visible for all processes and to which e.g.

signals can be distributed if their destination is not further specified:

static defaultPublicEventPool : → eventPools

assert

ownerProcess(defaultPublicEventPool) = environment and

private(defaultPublicEventPool) = false

An Enhanced Communication Concept for Business Processes 85

Additional public event pools may be defined by the business process designer.

We may want event pools to have further properties such as access rights, but we do not

consider more properties in this place.

We assert that every process has exactly one private event pool and one group event pool.

The environment has one unique private event pool.

We can now identify the unique event pools of a given process by derived functions:

derived privateEventPool : processes → eventPools

privateEventPool(process) =

choose pool in eventPools(process) with private(pool) = true do

return pool

derived groupEventPool : processes → eventPools

choose pool in eventPools(process) with private(pool) = false do

return pool

The visiblePublicEventPools of a process are all the public event pools to which the pro-

cess in question has, or has been, subscribed:

monitored visiblePublicEventPools : processes → Set

The defaultPublicEventPool must be visible for all processes:

assert

forall process ∈ processes holds

defaultPublicEventPool ∈ visiblePublicEventPools(process)

The visibleEventPools of a process are then the visiblePublicEventPools plus the private

and group event pools.

derived visibleEventPools : processes → Set

visibleEventPools(process) =

eventPools(process) ∪ visiblePublicEventPools(process)

We can now define the inbox of a process as a view showing all triggers available in any

of the visibleEventPools.

derived inbox : processes → Set

inbox(process) =

{ trigger | forsome pool ∈ visibleEventPools(process) holds

containsTrigger(pool, trigger) }

From a process’s viewpoint, for throwing a trigger it shall suffice to put it into an outbox.

shared outbox : processes → eventPools

We assume that some delivery service will pick triggers up from the outbox and distribute

them according to their properties. For any trigger:

86 Felix Kossak, Verena Geist

• If recipientProcess(trigger) is undef or empty, then the trigger shall be delivered to

a public event pool; if additionally recipientPool(trigger) = undef, then the trigger

shall be delivered to the defaultPublicEventPool.

• If there is some process in recipientProcesses(trigger) and mayBePropagated(trig-

ger) = true, then the trigger shall be delivered to the group event pool of each

specified process.

• If there is some process in recipientProcesses(trigger) and mayBePropagated(trig-

ger) = false, then the trigger shall be delivered to the private event pool of each

specified process.

• If environment ∈ recipientProcesses(trigger), then the trigger shall (also) be deliv-

ered to the environment’s (private) event pool.

When a particular process instance has reacted to a trigger in a public event pool, we set

a controlled function hasBeenCaughtByInstance to true so that the instance will not react

twice. The function value is false by default and set to true once the instance in question

has reacted. Note that the process in question can always be identified via the instance.

controlled hasBeenCaughtByInstance : triggers × instances → Boolean

This concludes an outline of the major features of the proposed enhanced communication

concept for business processes.

4 The Scope of Possible Communication and Standard Trigger Types

We now evaluate the scope of communication which the proposed concept enables. We

start with a comparison with the BPMN standard, which describes “different strategies to

forward the trigger to catching Events: publication, direct resolution, propagation, can-

cellations, and compensations” [Ob11, p. 234]. Cancellation and compensation do not

actually constitute different ways of delivering triggers, but the actual delivery strategies

can be handled by our proposal:

• Publication within a process can be achieved by specifying a recipient process of

the trigger and leaving the recipient node undefined; publication across processes

can be achieved by specifying a public event pool as the recipient pool.

• Direct resolution can be achieved by specifying a recipient node.

• Propagation can be achieved by setting mayBePropagated to true.

Aldred defines “process integration patterns” [Al10], many of which are relevant for our

concept. Aldred distinguishes the following “dimensions” of communication:

• Participants: 1–1, 1–many, or many–many; the first two can be covered by setting

deleteUponCatch to true for 1–1 and false for 1–many, and also by choosing a

An Enhanced Communication Concept for Business Processes 87

suitable event pool, e.g. a public event pool for 1–many. The case of many–many

can be handled by allowing different senders to send triggers to a particular public

event pool (with deleteUponCatch set to false).

• Uni-directional / bi-directional: this is a matter of process design (though a public

event pool could aid in bi-directional communication).

• Synchronous / asynchronous: this can be supported via the timeout / lifetime prop-

erties of triggers.

• Thread-coupling: this is a matter of process design.

• Time (whether two participants need to both be participating in an interaction at the

exact same moment): this can be supported via the lifetime property, which is set to

zero (or a minimum) for immediate communication.

• Direct / indirect contact: indirect contact between communication partners that

need not know each other can be supported by public event pools.

• Duplication: in our concept, duplication can (but need not) be replaced by setting

the trigger property deleteUponCatch to false and possibly using a public event pool.

Patterns of process instantiation, however, as e.g. discussed in [DM09], are a matter of

process design and not of trigger design.

So it turns out that our concept covers a wide range of communication patterns.

“Standard” event trigger types as defined by the BPMN standard can be matched to par-

ticular settings of trigger properties as proposed here:

• A Message trigger has a single recipient process, deleteUponCatch is true, and there

is no timeout.

• A Signal trigger has deleteUponCatch set to false and mayBePropagated is true.

• An Error trigger is in effect a special-purpose Signal trigger. The same holds for an

Escalation trigger.

• A Cancel trigger has defined recipientProcesses, mayBePropagated is true, delete-

UponCatch is false, and timeout is minimal.

• A Compensation trigger and a Terminate trigger have the same properties as a

Cancel trigger (except the triggerType).

(Note that we do not consider Link triggers as they do not actually serve communication.)

5 Related Work

We have already commented on BPMN [Ob11] and on the “process integration patterns”

of Aldred [Al10] in the context of YAWL in the previous section. Some of the “dimen-

88 Felix Kossak, Verena Geist

sions” of communication discussed by Aldred concern process design rather than pure

communication mechanisms. Moreover, Aldred’s patterns are not translated into formal

mechanisms which can be straightforward integrated in tools.

More generally, the Workflow Patterns of van der Aalst, ter Hofstede, et al. [vdAtH] (on

which YAWL is based) address various perspectives relevant for event handling. Regarding

the control-flow patterns, events are in particular involved in implicit termination, deferred

choice, and in several cancellation patterns. There are also two patterns that explicitly

describe the notion of triggers. However, support for external data interaction patterns and

for triggering work execution (see auto-start patterns) is limited.

By adopting the concept of YAWL, Mendling et al. [MNN05] define an extension to EPC

to enhance support for workflow patterns. They introduce e.g. cancellation areas to support

cancellation patterns. However, the focus of EPC is on semi-formal process documentation

rather than formal process specification.

The event pools of S-BPM [Fl12] provided inspiration for the pool concept introduced

here. The pools of S-BPM are tailored for actor comfort, but are not embedded in a wider

delivery concept. S-BPM provides some extra “configuration parameters” for input pools,

whose most important application appears to be the enforcement of synchronous commu-

nication, which is handled differently in our more general concept.

WS-BPEL [OA07] supports correlation, propagation, and definition of timeouts (by mes-

sage and alarm events); however, it shows deficiencies regarding the generality of speci-

fying event handlers and event consumption.

Lucchi and Mazzara [LM07] propose a framework for generic event and error handling in

business processes by reducing the amount of different mechanisms for exception, event,

and compensation handling in WS-BPEL to a single mechanism based on the idea of event

notification. The resulting specification helps simplify BPEL models and implementations

in the area of Web services orchestration similar to our improvements for BPM.

Common event-driven patterns are presented by Etzion and Niblett in [EN11]. The au-

thors regard BPM as a related technology to event processing and reflect current trends,

e.g. event-driven architecture and asynchronous BPM, and future directions. They propose

basic and dimensional patterns including common temporal patterns as we do. There are

also certain parallels concerning pattern policies, e.g. consumption or cardinality policies.

A set of service interaction patterns is proposed by Weske in [We12]. The patterns pri-

marily apply to the service composition layer; however, an issue common to our proposed

concept is the classification according to the number of involved participants.

Herzberg et al. [HMW13] introduce so-called process events that enrich events that oc-

cur during process execution with context data to create events correlated to the proper

process descriptions. They address correlation as a main issue of their event processing

platform. However, they concentrate on business process monitoring and analysis rather

than modelling.

An Enhanced Communication Concept for Business Processes 89

The WED-flow approach of Ferreira et al. [Fe10] proposes data states to integrate event

processing into workflow management systems. Data states store required information for

event-handling, thereby increasing backward and forward recovery options. In contrast to

our work, the WED-flow approach does not define control flow but triggers over attribute

values (wed-states), yielding the flow as a consequence of satisfied conditions.

The Complex Event Processing (CEP) discipline [Lu02], an emerging technology deal-

ing with event-driven behaviour, and its combination with BPM is a main topic of inter-

est [BDG07] and used e.g. for Event-Driven Business Process Management [Am09] to

detect and react to possible errors within processes and also to support dynamic business

process adaptation [HSD10] or business process exception management [Li14].

6 Summary

We introduced a communication concept for advanced business process modelling which

enables modelling of a wide range of different communication styles. We showed how dif-

ferent communication patterns can be modelled by a combination of a set of event trigger

properties and a few different types of event pools. Event pools make it also possible to

model flexibility for human actors, such as the ability to process messages in a custom

order or to subscribe to optional communication sources (such as news).

We have compared our communication concept in particular with BPMN as well as with

the patterns introduced by Aldred [Al10]. We think it is obvious that our concept is much

more general as that of BPMN-style modelling languages and is able to meet all relevant

communication needs identified by Aldred.

The communication concept we have proposed is part of an overall BPM method devel-

oped at the Software Competence Center Hagenberg, Austria, which we call the Hagen-

berg Business Process Modelling Method (H-BPM); it is outlined in [Sc15].

Acknowledgement: This publication was supported by the AdaBPM project, which is

funded by the FFG under the project number 842437.

References

[ADG10] Atkinson, C.; Draheim, D.; Geist, V.: Typed business process specification. In:
EDOC’10. IEEE Computer Society, pp. 69–78, 2010.

[Al10] Aldred, L.: Process integration. In (ter Hofstede, A. M.; van der Aalst, W. M. P.; Adams,
M.; Russell, N., eds): Modern Business Process Automation: YAWL and its Support
Environment, pp. 489–511. Springer, Heidelberg, 2010.

[Am09] von Ammon, R.; Emmersberger, C.; Ertlmaier, T.; Etzion, O.; Paulus, T.; Springer, F.:
Existing and future standards for event-driven business process management. In: Proc.
of the 3rd ACM Int. Conf. on Distributed Event-Based Systems. ACM, pp. 24:1–24:5,
2009.

90 Felix Kossak, Verena Geist

[BDG07] Barros, A.; Decker, G.; Grosskopf, A.: Complex events in business processes. In: Busi-
ness Information Systems. Springer, pp. 29–40, 2007.

[BS03] Börger, E.; Stärk, R.: Abstract State Machines: A Method for High-Level System Design
and Analysis. Springer, Berlin, Heidelberg, 2003.

[DM09] Decker, G.; Mendling, J.: Process instatiation. Data & Knowledge Engineering,
68(9):777–792, 2009.

[EN11] Etzion, O.; Niblett, P.: Event Processing in Action. Manning Publications, 2011.

[Fe10] Ferreira, J.; Wu, Q.; Malkowski, S.; Pu, C.: Towards flexible event-handling in work-
flows through data states. In: SERVICES-1. IEEE, pp. 344–351, 2010.

[Fl12] Fleischmann, A.; Schmidt, W.; Stary, C.; Obermeier, S.; Börger, E.: Subject-Oriented
Business Process Management. Springer, Berlin, Heidelberg, 2012.

[HMW13] Herzberg, N.; Meyer, A.; Weske, M.: An event processing platform for business pro-
cess management. In: Proc. of the 2013 17th IEEE Int. Enterprise Distributed Object
Computing Conf. IEEE, pp. 107–116, 2013.

[HSD10] Hermosillo, G.; Seinturier, L.; Duchien, L.: Using complex event processing for dy-
namic business process adaptation. In: Proc. of the 2010 IEEE Int. Conf. on Services
Computing. IEEE, pp. 466–473, 2010.

[KG12] Kopetzky, T.; Geist, V.: Workflow charts and their precise semantics using abstract state
machines. In: EMISA. LNI. Gesellschaft für Informatik e.V., pp. 11–24, 2012.

[Ko14] Kossak, F.; Illibauer, C.; Geist, V.; Kubovy, J.; Natschläger, C.; Ziebermayr, T.; Kopet-
zky, T.; Freudenthaler, B.; Schewe, K.-D.: A Rigorous Semantics for BPMN 2.0 Process
Diagrams. Springer, 2014.

[Li14] Linden, I.; Derbali, M.; Schwanen, G.; Jacquet, J.-M.; Ramdoyal, R.; Ponsard, C.: Sup-
porting business process exception management by dynamically building processes us-
ing the BEM framework. In: Decision Support Systems III, volume 184 of LNBIP, pp.
67–78. Springer International Publishing, 2014.

[LM07] Lucchi, R.; Mazzara, M.: A pi-calculus based semantics for WS-BPEL. The Journal of
Logic and Algebraic Programming, 70(1):96 – 118, 2007.

[Lu02] Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Professional, 2002.

[MNN05] Mendling, J.; Neumann, G.; Nüttgens, M.: Yet another event-driven process chain. In:
Business Process Management, pp. 428–433. Springer, 2005.

[NC12] Natschläger-Carpella, C.: Extending BPMN with Deontic Logic. Logos Verlag Berlin,
2012.

[NG13] Natschläger, C.; Geist, V.: A layered approach for actor modelling in business processes.
Business Process Management Journal, 19:917–932, 2013.

[OA07] OASIS: , WS-BPEL 2.0. http://docs.oasis-open.org/wsbpel/2.0/

wsbpel-v2.0.html. Accessed 2014-11-03., 2007.

[Ob11] Object Management Group: , Business Process Model and Notation (BPMN) 2.0.
http://www.omg.org/spec/BPMN/2.0. Accessed 2014-11-03., 2011.

An Enhanced Communication Concept for Business Processes 91

[Sc15] Schewe, K.-D.; Geist, V.; Illibauer, C.; Kossak, F.; Natschläger-Carpella, C.; Kopetzky,
T.; Kubovy, J.; Freudenthaler, B.; Ziebermayr, T.: Horizontal Business Process Model
Integration. In: Transactions on Large-Scale Data-and Knowledge-Centered Systems
XVIII, pp. 30–52. Springer, 2015.

[vdAtH] van der Aalst, W.M.P.; ter Hofstede, A.H.M.: , Workflow Patterns Homepage. http:
//www.workflowpatterns.com. Accessed 2015-07-20.

[We12] Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer Science & Business Media, 2012.

