
Evaluation of an UML Software Engineering Tool by
Means of a Distributed Real Time Application in Process

Automation

Katja Fischer, Gregor Hordys, Birgit Vogel-Heuser

University of Wuppertal
Chair of automation and process control engineering

department of electrical, information and media engineering
Rainer-Gruenter-Str. 21

D-42119 Wuppertal
kfischer@uni-wuppertal.de, hordys@uni-wuppertal.de, bvogel@uni-wuppertal.de

Abstract: Today the development of software in process automation is a step by
step strategy along the life cycle with different notations and different tools. The
requirement analysis and the basic engineering could be described and structured
with project management software using natural language. The software design is
mostly function oriented and component based with IEC 61131-3 development
environments and implemented on different targets. There is a high demand for
modeling software using the UML has been evaluated for process automation
regarding a typical real time application using one of the leading UML tools
(Rhapsody from iLogix).

1 Introduction

Process control engineers need to discuss the functionality of a plant in an early phase
of a project. A “language” to communicate between different skilled engineers is
necessary, which is based on the requirements of the process itself. The quality of the
notation is strongly depending on an appropriate modeling concept for the process
characteristics.

Besides typically different engineers or technicians with different qualification levels
and subjects are involved along the project life. For that reason, the notation has to be
easy to use for process control and software engineers as well as for technicians and
needs to support the entire engineering life cycle.

Software engineering in process control engineering and automation in addition has
many deficiencies in method, notion and tool support. As a result, the use of software
engineering methods, e.g. UML or object oriented approaches, is not wide spread in
process control engineering or product automation. Nevertheless the effects regarding
start-up times, additional costs and low software quality are immense.

In machine and plant automation huge application software and hardware has to be
developed often with much more than 3000 input/output points (process variables),

which represent sensors and actuators. A plant is unique and therefore systematic
approaches and modeling were neglected until now. Software and hardware were mainly
tested and approved on site due to the lack of simulators and the fact that technology and
mechanics are assembled for the first time on site.
Reduced time schedules and re-engineering on site with high costs and time pressure,
lead to change also in this specific industry. Therefore an appropriate support for
engineering has to be developed.
Based on a detailed requirement analysis for distributed systems in process automation
including the specification of distributed systems, this research will derive a draft for an
object oriented approach for this domain.
To achieve this target, several work packages have to be solved. Besides the analysis of
UML itself and the enlargement with appropriate stereotypes, existing UML standards
and UML tools need to be analyzed regarding the requirements of process automation.
Because of applications size in plant automation modeling without an appropriate tool is
not acceptable and economically suitable. As a pragmatic approach the tool analysis
should show, whether one of the existing UML tools could be modified and adapted to
the requirements of process automation and introduced in plant automation with slight
changes. Or otherwise UML needs to be enlarged and on this enlargement tool
development could start. This second approach is certainly the systematic approach on
the other hand the time need for it is huge and in between the situation in process
automation remains unsatisfying.
The first alternative will be discussed in this paper: the evaluation of an UML tool
modeling a real time application.
The targets were the evaluation of an object oriented approach with UML and, as a result
of the requirements, the evaluation of an UML tool along the entire life cycle. This
should be done with modeling the prototypical application for the redesign of one
component of a part out of a complex manufacturing plant. The result of the analysis
should be directly applicable for design and implementation.
The characteristic requirements of process automation will be discussed at first and the
application example will be introduced. After that it is described why UML should be
used in process automation and why it is necessary to evaluate a tool. Before the tool is
evaluated UML and the used tool are introduced.

2 Process Automation

2.1 Requirements

The requirements of process automation especially plant automation can be structured
regarding requirements of the process, the system architecture of automation system and
the project (table 1).
A plant consists of several parts of smaller plants, which may represent a type of
process, e.g. batch, continuous, or discrete. The entire process is called hybrid, due to the
fact, that it consists of different process types. These process types require different
control strategies (closed and open loop control) and by that it requires different
modeling notation features, e.g. block diagram or state machine.

Table 1 Summary of requirements [FV02]

Category / Criteria Functionality / Notation
Aspects

batch state transitions

continuous (sequential functions)

closed/ open loop

Hybrid
Processes

discrete

Interlocking

distribution, communication,
network
different platforms

heterogeneous

HMI and diagnosis

time hard and soft real time

Automation
System

implementation IEC 61131-3 for PLC, proprietary
for DCS

qualification level easy to handle for engineers and
technicians

system lifecycle specification top – down

 Modularity

 Reuse

Project

tool support entire life cycle

Today plant manufacturing industry requires standardized automation devices for
automation systems, e.g. PLCs (Programmable Logic Controller), which are
programmed in IEC 61131-3 [BMS97]. Therefore the used tool should allow transferring
of its modeling results into IEC 61131-3, because start-up, operation and maintenance
need to support this standard PLC-programming language. For special tasks such as
safety related tasks or hard real time requirements additional automation devices may be
used e.g. process control computers with a real time operating system (RTOS). For hard
real time systems specific requirements need to be realized. A list of implementation
oriented real time requirements is shown in table 2. A modeling tool should also provide
methods to deal with aspects of real time development like reactivity, multi-threading,
time-based behaviour and real time environments. The constructs, which are listed in
table 2, are based on notation constructs of the real time programming language PEARL
[Sp04]. One main lack in modeling of real time application is the implementation aspect,
which will decide, whether the hard real-time requirements will be met.
Interrupts and task dispatching are necessary for programming real time applications.
Interrupts and task dispatching are essential already during the design of real time
software. Therefor they are also needed to model real time systems, especially if source
code should be generated automatically. An interesting question is whether those
programming constructs are needed in a tool-supported development process directly, or
whether they can be used hidden away under a certain abstraction level. But regarding
the evaluation this aspect is necessary.

The communication is realized via different bus-systems:. In the field level field buses
like PROFIbus DP and Interbus are deployed. Whereas the communication between and
inside of process control level, plant management, and enterprise administration level
normally is based on Ethernet (TCP/IP). For operation and maintenance a PC-based
human machine interface is used. By that fact the architecture of the automation system
is heterogeneous.

Table 2 Real time requirements

Useful and Necessary
Language Constructs for Real

Time Programming

Useful and Necessary
Description of Hardware

Constructs

Task dispatch
Transition control between
different states of a task

Connection between peripheral
device and technical process

Scheduling Modelling of input/ output
Synchronisation of tasks
(Semaphores)
Task activation (time/ event)

Description of different
process computer units

Communication between tasks

Interrupts
Connection between different
computers

Regarding an automation project there are typically different engineers or technicians
involved with different qualification levels and subjects. As a result the notation has to
be easy to use for process, mechanical and electrical engineers as well as for technicians
to a certain level. A more visionary requirement is to support the entire life cycle with
one consistent model, but appropriate notation for each phase of the project.
In plant automation one criteria for a successful project is to develop the automation
system precisely to customer requirements even if this functionality is mechanically
under development. During design re-use of developed modules needs to be enabled.
The test of this functionality prior to the start-up on plant site is the next challenge.
Therefore the specification, which should include testing requirements for soft- and
hardware is most important for the project.

2.2 Application Example

The target was to apply UML prototypically for the redesign of one component of a part
of a manufacturing plant for timber industry. The whole plant mass-produces
fibreboards. The so-called continuous thermo hydraulic press, which was the component
with the most restrictive requirements, was viewed and should be modelled. Time
critical closed loop control has to be combined with open loop control and switching to
other control loops. For a better understanding one feature should be explained
(simplified). The material, which is already mixed with glue, has to be pressed with a
specific pressure to a certain distance due to the set value of the finished board’s
thickness.

In figure 1 this part of the press is shown. Such a press could be composed of almost 80
frames. Every frame has two distance sensors and from two to five hydraulic systems,
which consist of a valve for pressure increase and pressure decrease as well as a sensor.
The distance control is realized by these hydraulic systems.

+

controlled
system

-

distance control

GiLs

GiL

Kp TN PICyiL

S-set value

Figure 1 Application example with block diagram

(block diagram for frame i, i= 1- 80, L – left system)

During the process the pressure has to be kept in a certain limit, but the thickness of the
material (i.e. distance of the press gap, GiLs) should be reached. A maximum pressure is
set because of technological reasons. The real hydraulic pressure (PICyiL) and the real
distance (GiL) is measured additionally.
The pressure has to be controlled in two modes: the distance control and the pressure
control mode. Usually the hydraulic press runs in the distance control mode. The
distance control mode is the mode in which the set value of the distance is reached with
the pressure between the upper and the lower limit. If the distance could not be reached
within these limits, the mode is switched to pressure control. The difficulty is that all
frames have to switch synchronously into the other mode and only in this case, that all
frames could change it. Otherwise the press would stop. The closed loop control of each
frame has to be accomplished in 30 ms. Only several frames are controlled by one
processor. The specific frames are connected to the processors and the specific
processors among themselves via field bus.

3 Selection of the Modelling notation and application of UML

Thus far, in process automation, systems were developed function oriented e.g. with IEC
61131-3 [BMS97].
The question, which modelling approach and notation should be used, will be discussed
next.

Schnieder et al. [Iv04] analyzed several modelling techniques and their suitability for
different process characteristics. Fischer et al. evaluated UML/RT [FV02, SR98] and
Friedrich et al. [FV03] worked on a comparison of modelling techniques for process
control engineering. Biermann et al. [BV02] analyzed UML and Idiomatic Control
Language (ICL) regarding decentralized systems.
The results of these approaches show the lack in an appropriate accepted modelling
technique for the design of plant automation integrating hardware and software as well
as architectural aspects with appropriate tool support.
However aspects as for example reusability and modularity are aimed but not achieved
up to now in plant automation industry. Nested structures and encapsulation are not
considered at all in industry until now. These aspects are well known and adapted in
computer science. Indeed computer scientists deal with the same kind of computers and
profit by the homogeneous structure of these systems. For uniform systems general
structures can be designed easier. But in process automation industry – especially in
machine and plant manufacturing – the developer deals with heterogeneous systems.
Nevertheless the solution appears to exist with an object oriented approach and UML
and it seems, it only has to be mapped. Therefore an object oriented approach will be
evaluated. In process automation UML is already accepted for documentation of use
cases and as a common language between engineers for specification.
, which should support reusability. In industry a modelling notation comes only into
operation, when there is a tool which supports such modelling. Therefore it is also
necessary to evaluate tools.
The constraints and limitations of using UML in plant manufacturing industry to gain
industrial acceptance in this domain needs to be analysed. For higher transparency the
different diagrams of UML need to be proven due to necessity and applicability for
automation projects. These constraints depend strongly on the applied tool.

3.1 Unified Modeling Language

The Unified Modeling Language (UML) [RJB99] was developed as an application
independent formalism with the target to create a universal language for analysis and
design of systems. It is based on different object oriented methods and notations of
modelling like Object Modelling Technique (OMT) [Ru91], Object Oriented Software
Engineering (OOSE), and Fusion [Pa98]. UML itself is a notation.
1997 UML Version 1.1 was declared as an international standard by the Object
Management Group (OMG) [OMG03] and is further developed by them.
UML provides different diagrams with specific notations for specific views on a system.
An overview is shown in table 3. The structure could be described in use case, class,
component, and deployment diagrams. The dynamic behaviour could be modelled with
state charts, activity, sequence, and collaboration diagrams. In addition, for management
purposes UML offers a model management view. It describes the model itself and is
visualised in class diagrams. It is composed of a set of packages, which could consist of
classes, use cases, and state charts.
UML version 2.0 is adopted in 2003 [UML03] This version includes special constructs
for performance, time, and scheduling. Today the specification is being worked out.

Table 3 UML Overview [FV02]

View Diagram Type Task
• to describe user's view

• to define the view of a system
concerning the environment

Structure Use Case Diagram

• to give a review of the functionality
of a system

 Class Diagram • to describe the structure of a system

 Component Diagram

 Deployment Diagram
• to define the physical architecture

of a target

State Charts • to describe the Dynamic of a
system

Activity Diagram • to define relations between objects,
activities

Sequence Diagram • to define transitions between states
of an object

Dynamic

Collaboration Diagram

3.2 UML Tool

For representative results different UML tools have been evaluated. At first Rose RT
from Rational was discussed in [FV02]. Rhapsody, which is discussed in this paper is the
second evaluated UML tool. The evaluation of Real Time Studio (ARTISAN, [AR03]) is
in process.
Rhapsody 3.0.1 from iLogix is a visual design environment that enables engineers to use
UML during the entire life cycle. For this purpose it provides all common types of
constructive views except the deployment diagram. All diagrams use UML notation and
most symbols have semantically precise meanings in the underlying model This is
necessary for unambiguous implementation. Rhapsody also supports code generation as
well as diagram animation. The diagram animation is offered at an early design level for
state chart and sequence diagrams. This gives the ability to analyse and specify the
intended behaviour of an application stepwise in the development cycle. The diagram
animation, is a useful part of the design environment and helps to debug the system in
the design phase rather than the executing model based on the generated source code.
Sequence diagram comparison at runtime is also supported. It allows comparisons
between hypothetical and real message sequences. Rhapsody provides methods to deal
with aspects of real time development like reactivity, multi-threading, time-based
behaviour and real time environments. The tool supports modelling active and reactive
objects. Active objects are application objects with active concurrency (environment
with several threads) that run on their own thread of control. They also own an event
queue through which they process their incoming events. The reactive objects are
application objects with sequential concurrency that run on the system thread. State
charts define the reactive (discrete) behaviour of objects by specifying how they react to
messages. A message can be either an event (asynchronous) or a triggered operation
(synchronous) or a timeout trigger (time-based behaviour). Modelling of continuous

behaviour e.g. a PID controller is not directly supported by the Rhapsody graphical user
interface (GUI). Rhapsody offers direct support for several real time operating systems
(real time environments). Therefore it provides sets of pre-defined primitives for
defining primitive concurrency and synchronisation objects like mutexes, semaphores or
timers. These reactive object types are defined outside the system and cannot be
modified.

3.3 Application Example

According to the requirements a simplified model of the hydraulic press using the tool
Rhapsody C++ (3.0.1 Windows-based environment) is modelled. The model of the
hydraulic press (figure 2) consists of several distributed controllers which run on
different automation devices (resources). Therefore active objects with active
concurrency are used for the design. Communication is realized by asynchronous and
synchronous messages. Messages and triggered operations were used in the control state
charts. The aggregations show the relationship between objects and map their
communication channels. The operation control of the hydraulic press processes operator
inputs (set values) and displays continuously its real values. The real process
communication between the operation control and each individual frame is realized via
field bus. At an early design phase the field bus is represented as a simple aggregation in
the model.

Figure 2 Class diagram of hydraulic press control

PressureControl DistanceControl

DistanceSensor

<<Actor>>

Valve

<<Actor>>

OperationControl

<<Singleton>>

FrameControl

PressureSensor

<<Actor>>

*

2..5

12..5

1 21

Field bus

Local bus Local bus

Wire Wire Wire Wire

If a control mode change is necessary the operation control needs to synchronise all
frames so that they switch at the same time to the same mode. The synchronisation
process need to be synchronised in a specific time slot (hard real time) due to
technological reasons .
Time requirements are modelled as software timeout triggers, which are provided by the
tool. In case of failure all frames are switched off by the operation control. Every frame
has got one frame control with several subordinated PI-controllers. The frame control is
primarily responsible for state monitoring and mode switching. If, because of
technological reasons, a change of control mode in one frame occurs, it must be
synchronised within the frame by the frame control.
Usually the hydraulic press runs in the distance control mode. Dependent the hydraulic
configuration one frame consists of two up to five hydraulic systems. Each hydraulic
systems is controlled by one pressure controller. The frame is controlled by one distance
controller. Standard multiplicity notation was used to consider the specific configuration
of each frame. All PI-algorithms are directly implemented in C. For technological
reasons there is a strongly defined time slot of 30 ms for the closed loop controller
output (hard real time requirement). In the model this requirement is solved by the
software timeout triggers. A PI-controller state chart is shown in figure 3. The pressure
controller gets the input value from the pressure sensor of the hydraulic system, calculate
new values and send them to the valve. The closed loop distance controller gets its input
from the correspondent distance sensors (one or two) and sends up to five calculated
output values, dependent on the current frame configuration, to the correspondent valves.

Figure 3 State chart of PI closed loop controller

Idle>

Active>

ValveSettingCalculation>

SyncSync

TimerOn

FrameRequest>

PressureDown>
ValveSetting>

DistanceRequest>DistanceRequest>

TimerOn Request>

C

C

C

C

C

[else]

tm(2000)

[CDistance <= LDistance]/DistanceStatus = -1

[else]

[CDistance >= HDistance]/DistanceStatus = 1;

[params->IsEnabled]

tm(DeadLine)

tm(MaxRequestTime)/SensorFailure = 1;

[else]

[UnBalance == 1]

[else]/DistanceStatus = 0;

evFrameReady/CPressure = params->CurrentPressure;
if (SensorFailure == 1)
 CDistance = params->CurrentDistance;

[else]

[params->IsController == 1]

evDControllerOn

Both controllers always run either in control mode or in observer mode. Either the
pressure controller is in control mode or the distance controller. In the control mode a
controller keeps a set value within a tolerance, in observer mode it only observes the
appropriate measured value and informs the frame control in case of mode switch. Note
that only one controller can access one valve at the same time, this can be mainly critical
during the mode switching. The communication between controller and process
periphery is released with synchronous messages (triggered operations). The using of
mutex constructs within triggered operations allows the exclusive access required for
valves in the model. Generally only the interfaces of the process periphery (sensors and
actuators) are used in the model. Because of simulation reasons the sensors and actuators
are built as reactive objects, which run on the system thread. The connections between
the frame resource and the process periphery are mapped according to associations in the
model. The complete communication between controllers is released with asynchronous
messages. Rhapsody supports asynchronous messaging as events.

3.4 Evaluation

Rhapsody offers the so called browser view that manages all available UML diagrams
and project resources. It allows already after a short training period an efficient and well-
structured working with the graphical user interface (GUI). The variety of property
settings seams to be confusing at first. The comparison of user defined sequence
diagrams and generated sequence diagrams makes debugging easier. Further advantages
are the modelling of concurrency within one state chart and that more than one
component can run simultaneously in an animated session.
The usage of software time trigger is not recommended if an accurate timeout is needed.
Time can be distorted if one task receiving the timer event is prevented from running by
another task. Also the time until timeout events are consumed, depends on the number of
events in the appropriate event queue. If an accurate timer is needed a timer class based
on a hardware timer can be created. Rhapsody also supports the timer stereotype and
some others as the so-called wrapper classes. These predefined reactive classes for
defining simple concurrency and synchronisation objects only encapsulate the
functionality of the underlying operating systems. The association class construct is a
simple way to set the properties and functionality of the aggregation between the
operation control and the frame controls, which corresponds to the physical field bus. In
this case a field bus failure could also be modelled. But the tool does not support the
association class construct. In this case the more complicated way to define a new
additional field bus class can be used. The synchronisation and exclusive access are only
supported by the wrapper classes, with all their expansion and flexibility problems. In
this case the more efficient modelling way would be the usage of active classes with
specific functionality. Rhapsody supports model debugging at run time by an animation
tool that uses generated and compiled source code for object creation . The dynamic
behaviour of the runtime objects could be observed in animated sequence diagrams and
state charts. The runtime interpretation of associations between objects depends on the
creation sequence of associations between their classes at design time. Therefore more
than one runtime interpretation of the same model is possible. In this case the animation
results are not repeatable and wrong interpretations may result. A system crash may

occur, if concurrency of several object instances occurs during the animation. The tool
allows to run only one task at runtime. Thereby the created components run as threads
within this task. This reduces the simulation opportunities.

Table 4 Real time requirements - valuation of Rhapsody

Useful and Necessary
Language Constructs

for Real Time
Programming

Rhapsody
(C++)

Useful and Necessary
Description of

Hardware Constructs

Rhapsody
(C++)

Task dispatch +

Transition control
between different states
of a task

-

Connection between
peripheral device and
technical process

-

Scheduling - Modelling of input/
output 0

Synchronization of
tasks (semaphores) -

Task activation (time/
event) -

Description of different
process computer units -

Communication
between tasks -

Interrupts -

Connection between
different computers -

+ special language constructs

 0 no special language constructs

 - not possible

Useful and necessary language constructs for real time programming are task set,
transition control between different states of a task, scheduling, synchronization of tasks,
task activation, communication between tasks and setting of interrupts. In the following
these aspects are described (table 4). A component definition corresponds to a task
definition (task dispatch), because a modelled component runs as a task at runtime. More
than one components are linked to one executable task (.exe or .dll on windows system).
Rhapsody offers stereotypes for scheduling and synchronization on thread level only.
Rhapsody allows changing states of threads, the activation of threads as well as setting
of priorities on thread level. This is only possible using predefined operations during
implementation. There are no special modelling constructs for manipulation of threads.
In addition the tool does not provide constructs for task activation or other task
manipulations. The C++ version does not offer any support during description of
hardware constructs (table 4). In addition Rhapsody supports automatic code generation
from model in: C, C++ or Java. The required source code IEC 61131-3 implementation
is not available, which was not a prerequisite for the tool selection. Because Structured
Text (ST) one of the IEC 61131-3 is very close to PASCAL it might be possible to
convert the generated code.

4 Conclusion

In the forefront of this evaluation we analysed the tool Rational Rose Real Time, which
is based on UML/RT developed by Selic and Rumbaugh [SR98]. They introduced new
constructs to make the modeling of real time systems easier, based on the UML
extensibility constructs. The idea was, that these constructs, general UML concepts and
diagrams would provide a toolset to design embedded real time systems. The result of
this evaluation is, that this UML/ RT tool is not yet applicable in the application
development of automation not only because of missing aspects of the UML
specification, but also because usability lacks[FV02]. The differences of Rose RT
(UML/RT) and Rhapsody (UML) will be discussed next. Rose RT based on UML/RT
should offer special constructs for modelling real time systems. Overall Rhapsody gives
adequate possibilities for modelling of real tine systems.
Rhapsody shows some of the same shortcomings as Rational Rose RT, e.g. the lack of
usability for engineers. (chapter 3.4). The necessary improvement of UML as concept
and notation is mostly realized in the UML 2.0 specification, which includes e.g. timing
and communication diagrams and mutex and model driven architecture [JRH04].
Nevertheless the usual tools do not provide all possibilities of the UML specification.
Another reason against adaptation in industry is the universal applicability of UML.
UML allows modelling complex systems in different fields of application. For that it is a
wide open standard, which is in general an advantage. But for training of mechanical and
electrical engineers the capability of UML and the number of diagrams is a
disadvantage. .
For this reasons an adaptation is necessary. Different possibilities are the development of
design patterns, ‘best practice’ or the definition of new elements for process automation
based on the extensibility constructs of UML similar to the development of UML/RT.
Closing it could be assumed that UML with iLogix Rhapsody allows the modelling of a
specific process automation application, but it is not adequate for the software
engineering workflow and the engineering personal in industry. Additionally the
required IEC 61131-3 code generation is not supported neither yet by any UML tool.

5 Prospects

The necessary adaptation of UML is the field of further work within the Project DisPA
[Dis04], DFG SPP 1064 [DFG03]. In this project we try to integrate techniques of
software specification with aspects of engineering. Therefore the most important
diagrams (class, structure, state and sequence) should be selected for an automation-
specific derivation of UML. As another result the requirements of an UML based
engineering tool should be listed and discussed. Therefore UML tools need to be
evaluated.
Presently we evaluate the UML tool RealTime Studio from Artisan [Ar03]. Another
interesting tool is Tau G2 from Telelogic, which will be evaluated next.
As described in chapter 3.1 a further version of UML with special constructs for
performance, time, and scheduling is adapted [OMG03]. Nevertheless after the final
draft, it is necessary to test a tool which supports modeling with UML 2.0.

Another field of work is the mapping between IEC61131-3 and UML widely discussed
[BF03].

References

[Ar03] Artisan Software Tools, Inc., http://www.Artisan.de, 2003.
[BF03] Bonfe M., Fantuzzi C. , Design and Verification of Industrial Logic Controllers with

UML and Statecharts. In: IEEE Conference on Control Application in Istanbul,
Turkey, June 2003

[BMS97] Bonfatti, F., Monari, P. D., and Sampietri, U.: IEC 1131-3 Programming
Methodology. CJ International, Seyssins, 1997.

[BV02] Biermann, C., Vogel-Heuser, B.: Requirements of a process control description
language for distributed control systems (DCS) in process industry. In: Proceedings of
IECON’02, 28th Annual Conference of the IEEE Industrial Electronics Society,
Sevilla, November 2002.

[DFG03] DFG SPP 1064, http://tfs.cs.tu-berlin.de/SPP/, 2003.
[Dis04] http://www.lfa.uni-wuppertal.de/DisPA
[FV02] Fischer, K., Vogel-Heuser, B., UML for real-time applications in automation. In:

Automatisierungs-technische Praxis (atp) 44 (2002); Heft 10,Oldenbourg, S. 63-69.
[FV03] Friedrich, David; Vogel-Heuser, Birgit; Bristol, Edgar: Evaluation of Modeling

Notations for Basic Software Engineering in Process Control. In: 29 th Annual
Conference of the IEEE Industrial Electronics Society (IECON 03) in Roanoke,
Virginia, USA, November 2003.

[Gr00] Große-Rhode, M., Using a formal reference model for consistency checking and
integration of UML diagrams. In: Tanik, M.M., Ertas, A. (eds), Proc. 5th World
conference on Integrated Design and Process Technology. Society for Design and
Process Science, Dallas, 2000.

[HP87] Hatley, D. J., Pirbhai, I. A., Strategies for Real-Time System Specification. Dorset
House, New York, NY, 1987.

[Iv04] iVA, http://www.iva.ing.tu-bs.de

[JRH04] Jeckle, M.; Rupp, C.; Hahn, J.; Zengler, B.; Queins, S.: UML 2 – glasklar. Hanser

Verlag, München, Wien, 2004.
[KFV03] Katzke, U.; Fischer, K.; Vogel-Heuser, B.: PEARL 2003
[OMG03] OMG: Object Management Group, http://www.omg.org, 2003.
[Pa98] Partsch, H., Requirements-Engineering systematisch, Springer-Verlag, Berlin,

Heidelberg, 1998.
[RJB99] Rumbaugh, J., Jacobson, I., and Booch, G., The Unified Modeling Language

Reference Manual, Addison-Wesley Longman, 1999.
[Ru91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W.,

Objektorientiertes Modellieren und Entwerfen, Hanser, München, 1991.
[Sp04] Sprachreport PEARL 90, http://www.real-time.de
[SR98] Selic, B., Rumbaugh, J., Using UML for Modeling Complex Real-Time Systems,

http://www.rational.com\ whitepapers,1998.

http://www.Artisan.de
http://tfs.cs.tu-berlin.de/SPP/
http://www.lfa.uni-wuppertal.de/DisPA
http://www.iva.ing.tu-bs.de
http://www.omg.org
http://www.real-time.de
http://www.rational.com\

[Te03] Telelogic, http://www.taug2.com/whytelelogic/presskit/ TauG2_Press_Release.pdf,
2003.

[UML03] UML 2.0, communityUML, http://www.community-ml.org/UML2.htm, 2003.
[VB01] Vogel, B., Bartels, J., Systementwicklung für die Automatisierungstechnik im

Anlagenbau, at-Automatisierungstechnik Vol 5, Oldenbourg, München, 2001, pp. 214-
224.

http://www.taug2.com/whytelelogic/presskit/
http://www.community-ml.org/UML2.htm

