Constructing Test Behavior Models Using Simulated
System Answers for the Analysis of Test Behavior Anomalies

Benjamin Zeiss', Andreas Ulrich?, and Jens Grabowski'

!Software Engineering for Distributed Systems Group, University of Gottingen
{zeiss, grabowski}@cs.uni-goettingen.de

2Siemens AG Corporate Technology
andreas.ulrich@siemens.com

Abstract: In the standardization of test specifications, it is common that no actual
systems exist against which the tests can be executed. Test specifications are devel-
oped abstractly in high level languages such as the Testing and Test Control Nota-
tion (TTCN-3), but they can only be executed when a separate adaptation layer is
implemented. Static syntactical and semantical analyses as provided by the compiler
and proper manual code reviews are the only means to find mistakes in such test spec-
ifications at early stages of design. In this paper, we demonstrate that it is possible
to execute abstract test specifications when the system does not exist yet. We use the
information provided within the test cases to simulate answers of the system by gener-
ating inverse messages to expected messages in the abstract test case. By following a
specific coverage-criterion strategy, we are able to execute a sufficient amount of test
paths to reverse-engineer behavioral models of test cases which can then again be used
for the analyses of potential problems.

1 Introduction

In the last few years, the complexity and size of test specifications developed by standard-
ization and industry have increased dramatically. While there has always been a strong
focus on the quality of such software and how to achieve high quality standards, little at-
tention has been paid on the quality of the software products that measure the quality of
the software: the software tests. In modern development processes and standardization,
there is no often useful means to execute tests. The System Under Test (SUT) is either not
finished yet or the test specifications are developed in an abstract manner. Mistakes are
often not found until an actual execution against the SUT can take place. In addition, the
analysis whether a fail scenario occurs due to a fault in the test specification or due to an
actual error in the SUT can be costly.

Obviously, it is sensible to find as many mistakes in test specifications as possible
early on. This can be accomplished by manual and automated code reviews. There
have been numerous approaches to automated quality assessment of software in gen-
eral. They include static analyses, dynamic analyses, or translations to input languages

177

of model checkers [CGP00]. Some interesting examples of such works are, for example,
[CDH*00] and [Hav99]. In addition, the release of Martin Fowler’s book on refactor-
ing [Fow99] raised the awareness of bad smells in code, i.e., code constructs that indicate
quality problems. In comparison, there is little work regarding the quality of test speci-
fications despite the fact that they are just as error-prone and have a direct influence on
the quality of the software that is tested. Among the published work on quality of test
specifications are the identification and adaption of software metrics, bad smells in test
code as well as test-specific refactorings in the context of TTCN-3 [Mes07, NZGT08].
Furthermore, a quality model for test specifications has been proposed [ZVST07]. Most
of the involved smell detections in test specifications so far, however, are based on static
analyses. One way to achieve a more dynamic type of analysis is to create behavioral
models of the tests. With the assumption in mind that the tests cannot be executed against
an existing SUT, the first intuitive reaction is that these models can only be generated by
static analysis techniques, i.e., analyses that do not execute the test. But this is only par-
tially true: test specifications using message-based communication, for example, contain
enough information about the SUT — in particular which messages they expect as stimuli
and which answers are supposed to be the correct ones — to actually allow test executions
without the SUT. We first outline a new method to reverse-engineer abstract test behavior
models from test executions against a simulated SUT that is using and tracking this im-
plicit and internal information by means of test specification instrumentation. Then, we
analyze these models regarding structural properties using model checking techniques.

2 Reverse-Engineering of the Test Behavior Model and Analysis

Our method is tailored for the application with TTCN-3 [Eur07] which is a test spec-
ification language standardized by the European Telecommunications Standards Insti-
tute (ETSI). We expect that the basic concepts are adaptable to different languages and
platforms though. The overall method is based on the following idea: a test should always
be deterministic and automated. Thus, the only ways the behavior of a test can be influ-
enced are: the answers from the SUT and test suite parameters (i.e. module parameters in
TTCN-3). Based on this observation, we notice that we are able to steer the execution of
the test case into any reachable behavior if we are able to control the SUT answers. To
achieve this kind of control, we instrument the test case specifications to log exactly the
information necessary to generate such artificial SUT answers that cover the test behavior
and reconstruct a model representing the interprocedural control-flow as well as structural
events that may happen during the test execution. Rather than just tracing observable
messages, we track all the data that we need to reverse-engineer the model.

2.1 Test Behavior Model

To check behavioral properties of tests, an appropriate test behavior model must first be
defined that contains the necessary information about these properties and that is suitable

178

for the representation of the test behavior. A model often used for the representation of
reactive systems is the Labeled Transition System (LTS). We adapt the LTS to include vari-
ables and guards. It is influenced heavily by the Extended Finite State Machine (EFSM).
Essentially, a transition is only enabled when a guard predicate evaluates as true and a
transition may change the value of a variable. The number of variables and what exactly
they represent depends on the property that we want to analyze on the model.

The adapted LTS is a more compact representation of a transition system where data does
not form a part of the state space and operations on data are modeled through the variables
and the transitions. The actual semantical state space by means of the conventional LTS
representation could be much bigger or even infinite depending on the value range of the
variables as the overall set of states would be represented by the cartesian product between
states and the sets of the possible values of each variable. With this in mind, a finite
and compact representation is more convenient while it may still be unfolded to a normal
LTS. We assume that multiple of those models can be interleaved with a synchronous
composition operator. For the asynchronous communication paradigm, we model queues
as recursively defined models of the same type with limited recursion depth for bounded
queues and infinite recursion depth for unbounded queues. Most of these definitions and
semantics are adapted from what can be found in common literature on formal methods
and concurrency (e.g., [MKO06]).

In our model, each state only represents a distinct control flow position where the data
values may have an arbitrary configuration. We do not attempt to model the entire type
system of TTCN-3 within our model. In that case, we would be replicating large parts of
the TTCN-3 semantics. Thus, we restrict the variables to be of the boolean type that model
structural events. The motivation for this abstraction is the purpose of this model: to check
properties on the model, we use boolean atomic propositions that we insert on instrumen-
tation already. The drawback of this approach is that we are abstracting from variables
and data of the original behavior and thus we will get false positives in the analysis results.
So a manual inspection and evaluation of the analysis results is always necessary. Not
all language concepts of TTCN-3 have a direct counterpart in this model and have to be
partially accounted for by the method that is doing the reverse-engineering of the model.
The model semantics merely represent a sufficient subset.

2.2 Reverse-Engineering the Model from Log Data

The first step in the reverse-engineering approach is a determination of what must be
logged during simulation. This is essential as it must contain all the information that is
necessary to reconstruct our behavioral models. The most significant parts that need to be
logged are the process id, an event identifier, scope start and scope end as well as the mes-
sages. The process id enables the creation of separate models for each process. Tracking
the history of each scope start and scope end allows us to put each event identifier into
its unique behavioral context. Figure 1 depicts the reverse-engineering methodology. It is
a fully automatic and iterative process that terminates if a given coverage criterion is met
(here: branch coverage of the test code). To generate the log tuples, we need to instrument

179

Instrumented | — _Simulated SUT drives the tssth Simulated
Tester (branch coverage strategy) Tre SuT
A)
]
\
1 (‘3 \
! /
\ /?\ v
\ o< O _ -
S~ oo \ ‘ SUT output message
Event g O generation
logging O\o
(©]
Reconstructed

test code model

Figure 1: Reverse-Engineering Methodology

the test code to dump the events. In the simplest case, we would log those events after each
statement. The log of each simulated execution is processed to construct an increment of
the reconstructed test code model which is successively completed in subsequent itera-
tions. To complete a partial model of the test code, SUT output messages are generated
such that other execution branches are entered in the model. Visited branches are marked
to guide the simulation of the test run.

A challenge in this approach is the generation of the right messages. The problem can
be regarded as a test data generation problem. For our first practical experiments, we
create the messages by using a rule-based generation of random data based on the available
message descriptions and the involved type information. We believe that this approach
works reasonably well for most practical cases since branching in typical TTCN-3 test
cases due to the receipt of different SUT output messages do not exceed about five or six
cases typically.

2.3 Analysis of the Test Behavior Model

So far we have collected about ten problems that can be analyzed on the reconstructed
models. Since we are abstracting from data and variables of the test behavior, we ana-
lyze only structural properties at the moment, for example, if certain events happen after
another event took place, certain event orders, or similar. A consequence is that a model
M’ which is created by removing all variables from a model M inherits more behaviors
than M and thus safety properties satisfied by M’ are also satisfied by M. The reason
for this effect is that variables effectively are used to forbid the execution of transitions by
the use of guards that are not fulfilled. Removing those guards thus directly leads to more
behaviors.

The analysis itself takes place by converting the sequential models of each process to
Promela, the input language of the Spin model checker, and by mapping the queue and
composition semantics to Promela. The description of the properties that are subject of the
analysis is realized using Linear Temporal Logic (LTL) which is also the standard descrip-
tion of temporal properties using Spin. The applied LTL formulas are often similar and

180

have an underlying specification pattern as presented by Dwyer et al. [DAC98]. By ap-
plying model-checking to our parallel interprocedural models, we are able to analyze also
those behavioral paths that are not executed through the branch coverage criterion and we
are able to analyze event orders across different processes, i.e., we account for all possible
interleavings. Among those problems that we analyze are issues like inconsistencies with
the test verdict, for example, a negative verdict is set prior to any communication with the
SUT, connection violations according to the TTCN-3 standard, test components that are
created, but not started, altsteps that are activated, but not deactivated, or send/receive on
stopped/halted ports.

2.4 Discussion

The central points of discussing the approach are the following: First, we suspect that the
actual test data generation for the inverse messages may not always be easy. There have
been plenty of test data generation methodologies presented in the past [Edv99], but in
general, it is not a problem that can be solved cheaply. We suspect though that the genera-
tion of the inverse message might not be as troublesome in some cases. There are typically
only a handful of alternative messages provided when a message is expected. So the scope
of the data generation is somehow limited. Second, we currently abstract from data and
variables within the test that also may have influence on the behavior. By applying data
abstraction, we effectively introduce more behavior in our reconstructed models than we
actually have in our original test behavior. With this choice, we accept that our analysis
will probably report false positives though. To model the behavior more completely with-
out such restrictions, we would need to map a bigger part of the TTCN-3 semantics to our
model and symbolically log variable manipulations, variable guards, etc. as well. This
would drastically increase the complexity of the whole approach. In general, we prefer to
keep the complexity of the theoretical model low. Finally, by using branch coverage as
target coverage criterion, we attempt to keep the number of necessary executions for the
model reconstruction low. We strongly believe that the coverage criterion can be reduced
even further with some adaptions to the method and model.

3 Conclusion

We outlined a method to reverse-engineer a test behavior model on which we analyze
structural properties of the test behavior. The approach is based on logging events from in-
strumented test code and using these logs to reconstruct partial model increments that can
be directly reused to generate artificial SUT answers based on generated inverse messages
to the expected ones. The novelty of the approach lies in the reconstruction of a behavioral
model by actually executing the test without an existing SUT. Afterwards, we use model
checking to analyze potential faults in the model.

We are currently implementing the approach and plan to apply it to test cases of industrial
size test suites. As the instrumentation is different for each property to be analyzed, we

181

consider to use aspect-oriented techniques to apply the instrumentation. We expect that the
approach can be automated to a comprehensive extent where only the LTL formulas and a
declarative description of the instrumentation need to be specified manually. However, we
expect that the actual generation of the inverse messages may present a problem on some
occasions and that the described approach may need to be refined. Finally, we plan to
incrementally revise the approach to reduce the abstraction degree and compare the results
with the complexity and effectiveness of an approach that constructs the same model by
using only static analysis without real test executions.

Acknowledgements

The work is financially supported by Siemens AG Corporate Technology and we like to
thank Testing Technologies for continuing tool support.

References

[CDHT00] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and
H. Zheng. Bandera: Extracting Finite-State Models From Java Source Code. In In-
ternational Conference on Software Engineering, 2000.

[CGP00] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2000.

[DAC98] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property Specification Patterns for
Finite-State Verification. In Proceeding of the 2nd Workshop on Formal Methods in
Software Practice (FMSP). ACM, 1998.

[Edv99] J. Edvardsson. A Survey on Automatic Test Data Generation. In Proceedings of the
Second Conference on Computer Science and Engineering in Linkdoping, 1999.

[Eur07] European Telecommunications Standards Institute. ETSI ES 201 873-1 V3.2.1: The
Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language, 2007.

[Fow99] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999.

[Hav99] K. Havelund. Java PathFinder, A Translator from Java to Promela. In Theoretical
and Practical Aspects of SPIN Model Checking, Lecture Notes in Computer Science
(LNCS), page 1680, 1999.

[Mes07] G. Meszaros. xUnit Test Patterns: Refactoring Test Code. Addison-Wesley, 2007.

[MKO06] J. Magee and J. Kramer. Concurrency - State Models and Java Programs. Wiley &
Sons, 2nd edition, 2006.

[NZGT08] H. Neukirchen, B. Zeiss, J. Grabowski, P. Baker, and D. Evans. Quality Assurance
for TTCN-3 Test Specifications. Software Testing, Verification and Reliability (STVR),
18(2), 2008.

[ZVST07] B. Zeiss, D. Vega, 1. Schieferdecker, H. Neukirchen, and J. Grabowski. Applying the
ISO 9126 Quality Model to Test Specifications. In Proceedings of SE 2007, volume 105
of Lecture Notes in Informatics (LNI). Kollen Verlag, 2007.

182

