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Abstract: Current and especially future software systems increasingly exhibit so-
called self* properties (e. g. , self healing or self optimization). In essence, this means
that software in such systems needs to be reconfigurable at runtime to remedy a de-
tected failure or to adjust to a changing environment. Reconfiguration includes adding
or deleting software components as well as adding or deleting component interaction.
As a consequence, the state space of self* systems becomes so complex, that current
verification approaches like model checking or theorem proving usually do not scale.
Our approach addresses this problem by first defining a so-called “regular” system
architecture with clearly defined interfaces and predefined patterns of communication
such that dependencies between concurrently running component interactions are min-
imized with respect to the system under construction. The construction of such archi-
tectures and especially its reconfiguration is controlled by using graph transformation
rules which define all possible reconfigurations. It is formally proven that such a rule
set cannot produce any “non-regular” architecture. Then, the verification of safety and
liveness properties has to be carried out for only an initially and precisely defined set
of so-called coordination patterns rather than on the whole system.

1 Introduction

Current and especially future software systems increasingly exhibit so-called self* proper-
ties (e. g. , self healing or self optimization). In essence, this means that software in such
systems needs to be reconfigurable at runtime to remedy a detected failure or to adjust to a
changing environment. Reconfiguration includes adding or deleting software components
as well as adding or deleting component interaction. This increases the complexity of
the software significantly because the reconfiguration process also has to be controlled by
software.

As many of these systems are used in a safety critical environment, high quality software
is absolutely necessary; in particular, it must satisfy safety and liveness constraints. A
common approach (at least in research and advanced industrial projects) to address these
challenges is to verify as many constraints as possible at the model-level, i. e. , the software
model is formally analyzed and code is automatically generated from the model.

∗This work was developed in the course of the Special Research Initiative 614 – Self-optimizing Concepts
and Structures in Mechanical Engineering – University of Paderborn, and was published on its behalf and funded
by the Deutsche Forschungsgemeinschaft.
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However, the state space of self* systems becomes so complex, that current verification
approaches like model checking or theorem proving usually do not scale [Alu08]. Even
when using a compositional approach to verification and applying symbolic techniques, it
is hardly possible to track all possible reachable system states because the possible depen-
dencies between different, usually highly concurrent component interactions in a complex
network of components are by far too many.

On a general level, our approach addresses this problem by first defining a regular sys-
tem architecture with clearly defined interfaces and predefined patterns of communication
such that dependencies between concurrently running component interactions are mini-
mized with respect to the system under construction. The construction of such architec-
tures and especially its reconfiguration is controlled by exploiting a formal definition of
the construction process and by proving based on that formal definition that an architec-
ture includes in fact only dependencies which are absolutely necessary. In most cases,
this means that reconfiguration can only add components and corresponding component
interactions, if that does not interfere with already existing interactions which have been
proven to be correct already. Then, the verification of safety and liveness properties has
to be carried out for only an initially and precisely defined set of so-called coordination
patterns rather than on the whole system.

We clearly distinguish between the internal behavior of a component and the interaction
behavior between components that is based on message passing. In this paper, we focus on
modeling and analyzing the communication structure among different components, i. e. ,
the specification of communication protocols.

Self*-systems are usually built as a network of components, possibly even mobile, and
exhibit a high degree of component interaction. Often, this interaction must satisfy strict
real-time constraints while of course still guaranteeing the mentioned safety properties
(e. g. , in the case of network failures). Because of this characteristic, the protocols
built are often complex. An approach to model and verify such protocols is described
in [GTB+03]. However, it is restricted to the specification of bilateral communication
based on (extended) timed automata and does not consider reconfiguration at runtime.

In this paper, we extend our so-called MECHATRONIC UML approach. (The name stems
from the fact that the approach has originally been developed in the domain of mechatronic
systems but it is, of course, not restricted to this class of applications. In fact, a significant
part of the software of advanced mechatronic systems deals with component interaction
and adjusting their behavior concerning e.g. self-healing or self-optimization. In that
sense, mechatronic systems are just a special case of self*-systems [SW07].) We add
graph transformation rules to the original approach, i.e. a generating system, to formally
define the construction of component architectures, as mentioned above. This approach
also supports the formal analysis of certain properties of the resulting (reconfigurable)
architectures which in turn minimizes the verification effort to check safety and liveness
properties of the communication protocols.
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The key contribution of this paper is thus a particular modeling and verification approach
based on a combination of graph transformation rules and timed automata. It addresses the
challenge of scalability of verification even in cases where a system does not only exhibit
an arbitraryly large finite number of states but an infinite number of states.

A concrete example for a complex self*-system with the need to coordinate a varying
number of components is the RailCab project1. The vision of the RailCab project is a
mechatronic rail system where autonomous vehicles called shuttles apply the linear drive
technology, as used by the Transrapid system, but travel on the existing passive track
system of a standard railway system. This system is currently under construction and a
first version of the controlling software of the physically existing system has been built
using the approach of [HTBS08].

One particular problem (previously presented in [GTB+03]) is the convoy coordination of
certain system components, e.g. the shuttles. Shuttles drive in a convoy in order to reduce
energy consumption caused by air resistance and to achieve a higher system throughput.
Such convoys are established on-demand and require small distances between the shuttles.
These required small distances cause the real-time coordination between the speed control
units of the shuttles to be safety critical which results in a number of constraints, that
have to be addressed when building the shuttles’ control software. In addition a complex
coordination is required when the convoy consists of more than two shuttles. Since shuttles
can join or leave a convoy during runtime a flexible structure for the specification of the
coordination is needed.

The structure of the paper is as follows: We first review the original MECHATRONIC UML
approach in Section 2. Section 3 covers the concepts for modeling parameterized coordi-
nation patterns with a flexible number of participants and multi-ports. Then, we describe
how compositional verification of our approach is achieved in Section 4. Finally, we will
discuss related work in Section 5. The last section summarizes the paper and gives an
outlook on future work.

2 Foundations

In our approach, the architecture is given by components, their ports and the connections
between ports (which are just identified by links). This model is formally described by
an adaptation of the UML 2.0 component model. Among other things, the adaptation
especially covers the definition of restrictions on how ports have to be connected such that
communication via different ports of the same component is guaranteed to be side-effect-
free.

Communication between autonomous components has been defined by so-called coordi-
nation patterns [GTB+03]. A coordination pattern, as depicted in Figure 1(a), describes
the communication between two components and consists of multiple communication
partners, called roles. Roles are linked by a connector. The communication behavior

1http://www-nbp.upb.de
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Figure 1: Real-Time Coordination Pattern for a Shuttle Convoy

of a role is specified by a real-time statechart.

Real-time statecharts are an extension of UML state machines which support more power-
ful concepts for the specification of real-time behavior. They are semantically based on the
timed automata formalism such that a formal analysis is possible using the model checker
UPPAAL2.

The behavior of the connector is described by another real-time statechart that, in addi-
tion to the transport of the messages, models the possible delay and the reliability of the
channel, which are of crucial importance for many systems.

Safety constraints which have to hold (and are model checked) for these patterns are either
a so-called pattern constraint or a role invariant which concerns a property of a single role
only. A role invariant specifies a property that has to be satisfied by the communication
partner. A pattern constraint specifies a property that has to be satisfied by all communi-
cation partners and connectors. Both types are defined in TCTL3.

The role behavior is refined by ports that build the interfaces of our components, i.e. the
ports implement the external behavior as specified by the role behavior. The refinement has
to respect the role behavior (do not add possible behavior or block guaranteed behavior)
and additionally has to respect the guaranteed behavior of the roles given by its invariants
[GTB+03].

An additional statechart for synchronization is used to describe required dependencies be-
tween role behavior (as the component behavior is not necessarily only a parallel composi-
tion of the different role behavior). This allows for the strict separation of communication

2www.uppaal.com
3TCTL: Timed Computation Tree Logic
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behavior and internal component behavior. We have described the specification and anal-
ysis of the synchronization behavior for bilateral communication in [GTB+03]. We have
presented an automatic synthesis of the synchronization behavior in [HGH+09].

In our application example, the coordination between two shuttles is modeled by the Dis-
tanceControl pattern. It consists of two roles, the front role and the rear role and one con-
nector that models the link between the two shuttles. The pattern specifies the protocols to
coordinate two successive shuttles.

Initially, both roles are in state noConvoy::default, which means that they are not in a
convoy. The rear role decides to propose building a convoy or not. After the decision to
propose a convoy, a message is sent to the other shuttle resp. its front role. The front role
decides to reject or to accept the proposal after max. 1000 msec. In the first case, both
statecharts revert to the noConvoy::default state. In the second case, both roles switch to
the convoy::default state.

Eventually, the rear shuttle decides to propose a break of the convoy and sends this pro-
posal to the front shuttle. The front shuttle decides to reject or accept that proposal. In
the first case, both shuttles remain in convoy-mode. In the second case, the front shut-
tle replies by an approval message, and both roles switch into their respective noCon-
voy::default states.

A safety requirement of the pattern is that no collision happens. The pattern constraint
enforces the shuttle role to be in state Convoy while the coordinator role is also in state
Convoy (shuttle.convoy implies coordinator.convoy).

3 Modeling Parameterized Coordination Patterns

So far, our approach allows constructing and verifying system structures with fixed bi-
lateral communication only, i.e. reconfiguration is not supported. As self*-systems can
be composed of thousands of components which might be replaced at runtime, it is not
possible to specify and verify the system as a whole.

We use graph transformation systems to define the construction and reconfiguration of
architectures consisting of components and corresponding component interactions. A so-
called start graph defines an initial configuration and a set of rules defines all allowed
configurations of components and component interactions (without specifying any behav-
ioral part). Based on the start graph, one can formally prove that such a generating system
does not produce any so-called forbidden graph structure. Such a graph structure would
include a sub graph (corresponding to an architecture as a result of a reconfiguration op-
eration) which incorporates component interactions where no predefined corresponding
coordination pattern exists.

This means that the behavior of component interactions is again specified by real-time
statecharts as explained in the previous section. However, in order to cover possible multi-
lateral component interactions, they have to be extended by introducing parameters in the
definition of statecharts as it will be explained in section 3.2.
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3.1 System Structure Specification

The reconfiguration of an embedded or mechatronic system architecture defined by graph
transformation rules, is often time critical. Especially the creation or deletion of a port
object or component might involve some complex operations. Verification of time con-
straints of reconfiguration operations should consequently be verifiable on the model level
as well. We enhance our specification approach by adding clock instances and invariants
over these clocks to a graph transformation rule to specify the time which is needed for
the corresponding reconfiguration operation.

Our formal definition of Timed Graph Transformation Systems [Hir08] enables the formal
verification, i. e. reachability analysis to prove the correctness of our system structure
concerning time constraints across several reconfiguration operations as well.

Figure 2(a) shows a graph transformation rule for joining an existing convoy. A graph
transformation rule consists of a left hand side and a right hand side. The left hand side
gives the system configuration in which the rule can be applied, the right hand side shows
the result of the application. Here, left and right hand side are depicted in one single graph
using the notation ++ or −− for edges (and nodes) which are created or deleted during
rule application. Since the reconfiguration happens within a certain time interval, we add
clocks to our graph transformation rules and invariants over these clocks.

In our example rule in Figure 2(a) we add the clock t. The invariant t < 5 specifies that
the creation of a link between two shuttles takes maximum 5 time units. By the attribute
<< last >> we specify that a new shuttle will join the convoy at the last position only.

As graph transformation systems have a formal basis and tool support for model checking,
a formal proof of properties is possible. In our case, properties which must not hold, would
mean the generation of communication structures with no corresponding coordination pat-
tern. We define such ”non-regular” structures by so-called forbidden graphs.

Figure 2(b) depicts such a forbidden graph structure. It basically means that shuttles in a
convoy or rather their member roles are not allowed to communicate with anything else
than the next role instance in an ordering of role instances (i, i−1, ... reflects the ordering
of the role instances).

3.2 Specification of Component Communication

To model the communication of more than two components we extend our coordination
patterns to parameterized coordination patterns by introducing multi-roles. A multi-role
consists of one or more sub-roles. The behavior of a multi-role is specified by a param-
eterized real-time statechart which defines the behavior of all sub-roles. Parameterized
real-time statecharts are semantically based on a parameterized timed automaton, a timed
automaton extended by parameterized signals.

Each sub-role of a multi-role is initialized by a coordination statechart (e. g. cf. Figure 5).
A sub-role is created and initialized by a specific call, e. g. createPort, of a timed graph
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Figure 2: Extension Rule and Forbidden Graph Structure

transformation rule. The formal specification of the sub-roles of a multi-role can be found
in [Hir08].

If an additional synchronization statechart is required to describe dependencies between
role behavior (see Section 2), we can apply our approach for bilateral communication
[HHG08]. Here, we exploit the fact that the coordination statechart of a multi role en-
capsulates the set of role instances, while the internal synchronization uses the uniform
interface.

In the following, we extend our example by the ConvoyCoordination pattern (see Figure
3), which enables the coordinator (role) to control the convoy (member role).

shuttle3

member.StatorFailure implies coordinator.StatorFailure

coordinator member member

shuttle2shuttle1

DistanceControlDistanceControl

ConvoyCoordination

Figure 3: Extended convoy example

The parameterized role coordinator is depicted in Figure 4. Initially, the coordinator role is
in state WaitForTrigger. If it receives a nextk trigger, the role switches to state Idle. Initially,
nextk is sent by the adaption statechart as depicted in Figure 5 while in all following
operations nextk is sent by the ancestor role with index k − 1. Now, the communication
with the shuttle role is started. First, an update message including current profile data,
the reference velocity as well as the reference position of the shuttle, is sent. Thereafter,
the role waits in state SentAcknowledge for the confirmation acknowledge by the shuttle
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role. If this message is received the role switches to state WaitForTrigger and sends the
nextk+1 signal to activate the next sub-role. If the acknowledge message is not received,
the role switches to state NextFailed and sends a signal to the internal component behavior
in order to initiate appropriate routines. Further, the role switches to state StatorFailure, if
a publishStatorFailure is received when being in state Idle.

StopStatorFailure Idle SentAcknowledge

WaitForTrigger NextFailed

shuttle.acknowledge(s_act,v_act)

/ shuttle.update(profile,s_ref,v_ref)
shuttle.publishStatorFailure

? nextFailedk

? nextFailedk
! nextk+1

? nextk

Figure 4: The behavior of a coordination role rolek

AddPort

Wait

IdleFailure

!restoreConvoy

?createPort
/createPort(shuttle)

/createPort(shuttle)
? coordinateShuttle

k++

/createPort(shuttle)

k:=1

! nextn+1

n==k?n=1:n++

? coordinateShuttle
! next1

k:=1

! nextFailedn+1

Figure 5: The coordination statechart for all coordinator roles

The real-time statechart of the member role consists of three states (cf. Figure 6). Initially,
the role is in state Normal. Every 150 time units the role has to receive an update message
from the coordinator role. This message includes the current profile, reference position
and reference velocity. The role confirms the receipt of the message with an acknowledge
message including the current position and current velocity. In case no update message is
received (e.g. network failure) the role switches to the network failure state after 150 time
units. The state StatorFailure will be reached if another shuttle propagates a StatorFailure.

The pattern constraint enforces the member role to be in state StatorFailure while the coor-
dinator role is also in state StatorFailure (shuttle.StatorFailure implies coordinator.StatorFailure).

4 Verification

Figure 3 shows the communication structure of one coordinator and two shuttles. If we had
created an arbitrary communication structure (by reconfiguration operations), we would
have to verify the constraints for the whole state space which is computed by taking the
concrete maximal instance number into account (which could be a very large number;
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Figure 6: The behavior of a shuttle role member

maybe even infinite). By taking advantage of our regular system structure we only need
to verify the constraints for an arbitrarily chosen coordination pattern and an arbitrarily
selected pair of sub-roles.

The key idea to tackle these problems and to define a scalable verification approach is to
exploit the underlying modeling formalism (cf. Section 3) and still use the compositional
reasoning approach for bilateral communication [GTB+03].

The system achitecture is built such that component interactions do not interfere. This is
achieved by the definition of forbidden graph structures as shown in Figure 2(b). Conse-
quently, it is enough to verify an arbitrarily chosen pair of sub-roles concerning safety and
liveness constraints4. Each sub-role corresponds to one port of a communication channel.
If such a regular structure is correctly defined by a graph transformation system, it can
be formally proven by induction over the number of sub-roles that the behavior of other
sub-roles does not interfere with arbitrarily chosen pairs of sub-roles.

The induction is based on reachability analysis by the tool GROOVE [Ren04]. We have
extended GROOVE by time to examine our timed graph transformation rules. In detail,
all time constraints specified in the rules are considered and it is automatically checked if
a specified invalid communication structure can be created (verification step 2).

To check the safety constraint shuttle.convoy implies coordinator.convoy as introduced
in Section 2 for a pair of parametrized sub-roles we use the model checker UPPAAL5

which we have successfully used in all our previous modeling and verification approaches,
e. g. [BGHS04] (verification step 3). For completeness reasons we also have to check lo-
cal invariant properties to ensure correct behavior of a single sub-role (verification step
1).

In the following we give a sketch of the necessary verification steps based on the definitions
introduced in Section 3 to check if a parameterized coordination pattern is correct w. r. t. to
the specified constraints, e. g. shuttle.convoy implies coordinator.convoy.

4This is correct for local constraints like safety constraints. For some global constraints the complete behavior
of the system still has to be checked. For these constraints we refer to simulation. However, we did not find
constraints of this type in our applications.

5www.uppaal.com

161



Verification steps:

1. For the parameterized coordination pattern verify that an arbitrary sub-role fulfills
the local constraints of the multi-role, i.e. the roles are compatible, and there exists
no deadlock.

2. Verify that the structural constraints of the timed graph transformation rules are
satisfied, i.e. apply reachability analysis for timed graph transformation systems to
verify that

a) the timing constraints of the timed graph transformation rules are satisfied (see
Figure 2(a)) and

b) the situations specified by the forbidden graph structure do not occur (see Fig-
ure 2(b)).

3. Verify that pairs of subsequent sub-roles do not contain a deadlock.

5 Related Work

The state explosion problem limits the applicability of model checking for complex soft-
ware systems. A number of modular and compositional verification approaches have
therefore been proposed. One particular compositional approach is the assume/guarantee
paradigm [MC81]. Model checking techniques that permit compositional verification fol-
lowing the assume/guarantee paradigm have been developed [CGP00, p. 185ff]. Our ap-
proach also employs the assume/guarantee paradigm, but supports dynamic structures and
takes advantage of information available in form of communication structures and pattern
role protocols to derive the required additional assumed and guaranteed properties auto-
matically rather than manually as in [CGP00]. None of the current approaches for the
specification and verification of dynamic systems considers a well-defined combination
of the specification of a dynamic structure and its behavior to facilitate a compositional
verification approach [BCDW04].

6 Conclusion and Future Work

Model-driven development of self*, mobile systems should support a formal verification
approach, as many of these systems are used in a safety-critical environment. To a large
extent, the behavior of such systems is given by the communication between the system
components. We extend the existing model-driven MECHATRONIC UML approach to
deal especially with the possibly infinite state space of self*, mobile systems. The infi-
nite state space makes it basically impossible to apply existing ”‘classical”’ approaches
to system verification. The extensions of MECHATRONIC UML include the definition
and verification of regular communication structures based on timed graph transformation
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systems. As a consequence, only predefined communication protocols (coordination pat-
terns) specifying bilateral as well as multilateral communication, need to be individually
verified which is much less time consuming (and in fact possible for real applications)
than checking a complete system specification. Component internal behavior in turn can
be verified independently from the communication behavior but this is not the subject of
this paper. Basically, the approach suggests a particular system decomposition enabling
compositional verification.

Admittedly there is still one significant limit of the approach. Broadcasting based com-
munication architectures where communication between components basically does not
follow any rules (and does not exhibit corresponding hierarchies), cannot be covered by
our approach. However, we found many examples of systems where this type of generality
does not exist and thus our approach is applicable to a wide range of system like e. g. pub-
lic transport, production or telecommunication systems. In fact, one could even argue that
building “really” safe systems requires to avoid broadcasting like communication struc-
tures. Even the automobile industrie (where production costs are a major issue) works on
approaches which refrain from broadcasting based communication architectures [NS08].
A first step to apply a structured modeling and analysis approach is realized by integrating
the FlexRay6 communication system. FlexRay requires a structured specification of the
communication properties to enable deterministic communication.

A first evaluation of our approach was given in [HTBS08]. It describes the software de-
velopment of the RailCab project (cf. section 1). As said, RailCab is not just a lab exper-
iment. A real running prototype has been physically built on campus in the the scale of
1:2.5. The complete communication software of the shuttles has been implemented using
the approach as presented in this paper.

We also work on a project which integrates the approach into an existing commercial tool
called CAMeL-View. This tool is used in control engineering to specify single controllers.
State-based communication between controllers is supposed to be modelled and verified
by the MECHATRONIC UML approach [GBSO04].

Acknowledgements We thank Tobias Eckardt and Markus von Detten for their com-
ments and proof-reading of this paper.
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Tobias Eckardt, Christian Heinzemann, Renate Löffler, Andreas Seibel, and Holger
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Volker Gruhn, editors, 30th International Conference on Software Engineering (ICSE
2008), Leipzig, Germany, May 10-18, 2008, pages 561–570. ACM, 2008.

[Ren04] Arend Rensink. The GROOVE Simulator: A Tool for State Space Generation. In
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