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Abstract: Modern research in high energy physics depends on the ability to analyse massive volumes
of data in short time. In this article, we report on DeLorean, which is a new system architecture for
high-volume data processing in the domain of particle physics. DeLorean combines the simplicity and
performance of relational database technology with the massive scalability of modern cloud execution
platforms (Apache Drill for that matter). Experiments show a four-fold performance improvement
over state-of-the-art solutions.
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1 Introduction

As part of the “Big Data” revolution, the way how “data” is being used in applications has
seen a dramatic shift over the past years. Increasingly, relevant information is no longer
carried in single pieces of data (e.g., data points or records), but comes from the statistical
relevance within very large data volumes.

Particle physics is a prime example of this trend that by today has reached virtually any
application domain, from science to engineering to business. Analyses over massive sets of
experimental data take the role that the close inspection of a single experiment had just a
few years ago. To illustrate, the LHCb experiment at CERN’s Large Hadron Collider (LHC)
produces about 4 terabytes of raw data every second — year-round. Existing systems, even
the largest ones, are still overwhelmed by data volumes of this scale.

Large data volumes obviously cry for database technology. Unfortunately, the required
analyses are highly complex; scalable database technology lacks the expressiveness to
support real-world analyses. As a joint e�ort with physicist from the LHCb experiment, we
therefore developed techniques to bridge the large gap between complex analyses and query
capabilities that can provide the necessary e�ciency at scale.

In this work, we advocate the use of database technology to accelerate data processing
in particle physics. And we report on DeLorean, our new, intelligent storage back end to
accelerate data analyses at CERN.
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• DeLorean builds on Apache Drill [Ap16a], the open source counterpart to Google’s
Dremel system [Me10]. Drill enables relational-style data processing at massive
scale, leveraging technologies such as the Hadoop Distributed File System (HDFS)
or Apache ZooKeeper for coordination.

• We show how real-world analysis tasks can be broken up into a data-intensive part —
leveraging Drill’s potential to scan massive data volumes in parallel — and into a
compute-intensive part which covers most of the analysis’s complexity but needs to
run only on a fraction of the original data set.

• An important ingredient to DeLorean is an aggressive reduction of the data volumes
that must be scanned during the analysis. We achieve this by applying column-store
technology to a synopsis of the original data set, heavily optimized for scanning. In
addition, we leverage lightweight compression to save bandwidth at the storage layer.

• We illustrate the potential of DeLorean using a reference analysis, on which we
achieve performance improvements of up to a factor 4.6.

We will present DeLorean in the following order. Section 2 introduces into particle physics,
a prime example for a new class of data-intensive applications. We show physical analyses
can be made to scale by separating the data-intensive from the compute-intensive parts in
Section 3. In Section 4, we discuss how scans can be optimized through column-oriented
designs and compression. We evaluate our proposal on a prototype implementation in
Section 5, discuss related work in Section 6, and wrap up in Section 7.

2 The LHCb Experiment at CERN

Particle physics, the LHCb experiment at CERN in particular, is an illustrative example of
the data-centric nature of modern research in the natural sciences. The greater goal of the
LHCb experiment is to understand the matter-antimatter asymmetry: why is there more
matter in the Universe than antimatter?

2.1 Modern Particle Physics µ+
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Fig. 1: Example of a collision experiment and its
decay products. A B0 meson is formed during a
proton-proton collision, then decays into µ+/µ� and
⇡+/⇡� particles.

To find an answer, physicists use the Large
Hadron Collider (LHC) to accelerate and
then collide proton bunches. During such
collisions, new heavy particles are formed
and decay shortly after into lighter particles.
An example is shown here on the right (de-
cay channel B0 ! J/ K0

s ! µ+µ�K0
s !

µ+µ�⇡+⇡�).

Of particular interest to physicists are rare decay channels. And “rare” has to be taken
very literally: probabilities of certain decays range between 10�12 and 10�15. Therefore,
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physicists produce a massive count of collisions, in the hope to eventually find (some)
relevant events.

In practice, collisions are produced at CERN at a rate of up to 40 million collisions per
second, year-round. Counting in down times of the accelerator, about 4 ⇥ 1014 collision
experiments are performed per year, each of which weighs in about 100 kB of data. To
handle the resulting massive data volume, data is processed in multiple stages as illustrated

collision

raw
data

40 MHz

Trig-
ger

12.5 kHz

stor-
age

PBs

anal-
ysis

kBs⇠MBs

Fig. 2: Processing pipeline at CERN.

in Figure 2. A real-time trig-
ger system filters the raw data
stream right after data acqui-
sition. Only a small percent-
age of all data survives this
stage and is persisted to a
large storage cluster.3

The daily task of a physicist is to run analyses on the stored data set. In practice, this means
to write a (Python or C++) program that scans over the full data set to extract those collision
events that are of interest to the particular question of the physicist. To illustrate, as few as
ten B0 ! µ+µ� decays were extracted from the entire data set of the first LHC run from
2010 to 2013 [Th15].

2.2 Characteristics of Physical Analyses

for all evt in events do
for all particle in evt.particles do

if conditions on tracks and states then . first cut
calculate information e.g. charge
if charge < 0 then

neg  neg [ {particle}
else if charge > 0 then

pos pos [ {particle}
end if

end if
end for
for all pp in pos, for all np in neg do

calculate combined mass np.mom. + pp.mom.
if mass in A0 mass window then . second cut

emit (np, pp)
end if

end for
end for

Fig. 3: Simplified A0 ! b+b� analysis task (stripping line
cut).

Analysis programs typically filter
the full, petabyte-scale data set ac-
cording to complex criteria, strongly
dependent on the particular physical
question being asked. Thereby, (par-
tial) criteria can be as simple as “re-
turn all events that produced a muon
particle with an energy of at least
. . . ,” but also as complex as graph
conditions on the 3d tracks that can
be inferred — through compute-
intensive algorithms — from the
data points recorded. Figure 3 here
on the right illustrates a strongly
simplified example of an analy-
sis that searches for A0 ! b+b�
events. As can be seen in the pseudo
code, simple predicates (e.g. on
charge and mass) are interspersed
with compute-intensive calculations.

3 Collision experiments filtered out during this stage are lost forever. About 20 PB–30 PB of data are stored to disk
every year.
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This type of complexity and diversity essentially rules out access structures like (multi-
dimensional) indexes, leaving scans as the only viable search mechanism.

Analysis performance is, therefore, heavily influenced by the volume of the data that is being
scanned. To reduce this volume, the existing platform at CERN uses a mechanism that
physicists refer to as stripping: a preprocessing stage segregates all events into stripping
lines on the storage cluster; each stripping line corresponds to pre-defined search criteria.4 At
this point, few hundred stripping lines are registered in the LHCb system, which was found
to be a compromise between selectivity and the cost of pre-processing. In fact, stripping
lines need to have a selectivity below 0.5 % to go easy on resources.

The stripping concept is both, a blessing and a curse. While it reduces the scan cost for
common analysis (types), stripping (a) occupies scarce disk resources and (b) is limited
to classes of analyses that have been pre-declared to the stripping process. In fact, most
physicists would like to get rid of stripping rather sooner than later.

3 Making Analyses Scale

The software frameworks at CERN heavily rely on ROOT [RO16], which — for the context
of this work — provides a persistence mechanism for C++ objects. That is, the existing
storage layer at CERN consists of serialized C++ objects. For analysis (cf. Figure 2), these
objects are de-serialized, then handed over to C++/Python code for processing. To save disk
space, ROOT files are aggressively compressed.

The beauty of ROOT is its seamless interplay with the existing analysis code. Over time,
a very large library of analysis routines has evolved that is mostly written in C++. It is,
however, very di�cult to make the approach run e�ciently at very large scales, most
importantly for two reasons:

(a) C++ object (de)serialization results in relatively complex data structures, on disk as
well as in memory. The strategy can, therefore, poorly benefit from modern hardware
advances and deep memory hierarchies. As a contrast, relational database engines
intentionally stick to a very rigid and well-defined data model — one of the key
ingredients to their excellent scalability.

(b) The ROOT de-serialization mechanism will read in C++ objects always as a whole.
In practice, many kilobytes have to be read from storage, even when a very simple
characteristic (e.g. a charge value) would be enough to decide that the object can be
skipped for a particular analysis.

3.1 DeLorean: ROOT + Relational Storage

To avoid — or at least mitigate — the above two problems, DeLorean pairs the ROOT
framework with a relational storage. On the relational side of DeLorean, we store a synopsis

4 A stripping line compares best to a materialized view in a relational database engine.
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Fig. 4: Data model for the relational part of DeLorean.

of the full data set. The synopsis includes those fields of the data set which are queried
frequently (using simple, “sargable” predicates) and with high selectivity. With a scan on
the relational side, we select candidate matches, then de-serialize from the ROOT part only
those C++ objects that are still promising.5 If the relational scan is selective enough, this
separation can result in significant savings in the overall scan volume.

Figure 4 visualizes the data model of the relational part of DeLorean. In the actual data
set, for each collision event about 100 “proto particles” (particles whose kind might not
yet be actually certain) and an equal number of particle tracks are being recorded. Over a
year, about 1011 events are being persisted to the cluster storage. ProtoParticle, Track, and
TrackState are factored out from Event as weak entities.

Queries over the data set are, again, essentially scans; the joins involved can be answered
with e�cient merge joins provided that the back-end knows about the physical storage order
(by event_id). Scans of this type can be parallelized almost straightforwardly. Through
(derived) horizontal partitioning, the data set can be distributed e�ciently even over very
large cloud installations.

In DeLorean, we use Apache Drill to realize the relational part. Based on a Hadoop
Distributed File System (HDFS), Drill provides a natural way to parallelize typical analysis
queries at very large scales. As we shall see in section 4, Drill’s column-oriented Parquet
storage format can assist in optimizing the type of scans typical for DeLorean. A big bonus
of using a Hadoop-based approach is its fault tolerance which allows to employ cost-e�cient
consumer hardware.

At this stage of the project, we perform the separation of user analyses into data-intensive
and a compute-intensive part (to be ran on the relational and the ROOT side of DeLorean,
respectively) manually. DaVinci, the analysis software framework at CERN, however, already
provides a domain-specific language component to express simple predicates over events.
As one of our next project steps, we plan to use this language as a basis to automatically
extract relational queries in DeLorean.

5 ROOT supports e�cient, tree-based seeking to selected events.
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4 Optimizing Scans

cut candidates survivors selectivity

first 7,325,531 170,858 2.33 %
second 170,858 2,542 1.49 %

total 7,325,531 2,542 0.03 %

Tab. 1: Filter selectivity for the JPsi2MuMu stripping line
cuts.

The stripping line JPsi2MuMu in the
original system is a good representa-
tive for a realistic event selection task.
It matches the pattern shown in Fig-
ure 3 to select particle combinations
where two muons are decay products
of a J/ meson. For the stripping line,
the two cuts result in selectivities as
listed in Table 1. Clearly, the two cuts
reflect simple predicates with a very
high selectivity (together around 1 : 3,000). As such, they are well-suited to pre-filter events
using the relational store of DeLorean.

4.1 Column-Wise Storage

The characteristics in Table 1 make selection queries in DeLorean an excellent candidate
to apply column-store technology. Storing data in a columnar fashion has two important
advantages:

(a) Queries must read from disk only those columns that are actually relevant for the
particular filter task (such as charge and the position-vector).

(b) When a query consists of multiple selection predicates (cuts), data for later attributes
must only be fetched from disk for rows where earlier predicates were satisfied. The
query optimizer may optimize the order of predicate evaluation accordingly.

Both properties result in a reduction of the data volume that has to be scanned (read from
disk) for filtering. For simple queries like the ones we discuss here, a reduction of I/O
volume may directly translate into an improved overall performance.

4.2 Lightweight Compression

Column-oriented storage goes well together with lightweight compression. With a reduced
overall disk memory footprint, the system may be able to read the relevant data from
disk with fewer I/O requests and faster. —Such an improvement will, of course, only be
beneficial as long as the implied overhead — CPU cost for decompression in particular
— does not outweigh the reduction in I/O cost. To this end, earlier work has developed
compression schemes that are particularly lightweight and can provide high throughput.
The most notable example is the PFOR family of compression schemes of Øukowski et
al. [Øu06]. In DeLorean, we opted for Google’s Snappy library [Gi16] and gzip, because
they integrate particularly well with our base platform Apache Drill.

Traditionally, physicists at CERN have used LZMA for its significantly better compression
rates. The high compression rates come at a significant CPU cost for decompression, making
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LZMA an inferior choice from a runtime performance perspective. In Section 5, we will
report on experimental results to support this claim.

5 Experiments

To test whether Apache Drill is a viable back end option for DeLorean, preliminary
experiments were conducted to be able to compare DaVinci and DeLorean. In this
experiment both approaches solely execute the “indexing part” (cf. Figure 3) to show the
scalability of DeLorean. All experiments have been conducted on a Intel Xeon E5-2609v2
dual socket workstation (8 physical cores, no Hyper-threading) with 64 GB of RAM and a
7200 rpm SATA HDD running Scientific Linux 6.7.

The test data has been provided by the Experimental Physics V group at TU Dortmund
University. To be able to run arbitrary indexing tasks, the whole data set is converted to
Parquet. Parquet’s columnar nature then allows Drill to only process needed columns and
only work on a synopsis of the data. Cutting out the stripping process easily outweighs the
two-fold data redundancy created by this proceed.

5.1 Compression Algorithms
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Fig. 5: Comparison of throughput vs. compression ratio
for di�erent algorithms on our data set.

Measurements using Intel VTune
show that DaVinci spends 50 % of
its runtime decompressing data using
LZMA. Searching for a more CPU
e�cient compression algorithm, a
small survey brought up three promis-
ing candidates: snappy, LZO and
gzip. In an experiment we applied
four di�erent algorithms to uncom-
pressed Parquet files containing ac-
tual LHCb data. Figure 5 com-
pares the compression ratios for our
data and shows the decompression
throughput achieved on our test sys-
tem (single threaded). LZO looks like
a very promising candidate, compro-

mising fairly good on decompression throughput and compression ratio. Unfortunately,
Drill does not support LZO compressed Parquet files by now. Further experiments will stick
to snappy and gzip for now.

6 snappy-java 1.0.5.4 (https://github.com/xerial/snappy-java)
7 lzop 1.03 (library version: 2.06) (http://www.oberhumer.com/opensource/lzo/)
8 Oracle GZIPInputStream (https://docs.oracle.com/javase/7/docs/api/java/util/zip/
GZIPInputStream.html)

9 LZMA SDK 9.22 (http://www.7-zip.de/sdk.html)

https://github.com/xerial/snappy-java
http://www.oberhumer.com/opensource/lzo/
https://docs.oracle.com/javase/7/docs/api/java/util/zip/GZIPInputStream.html
https://docs.oracle.com/javase/7/docs/api/java/util/zip/GZIPInputStream.html
http://www.7-zip.de/sdk.html
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Fig. 6: Single node scalability of DeLorean compared to DaVinci.

Snappy exceeds the common
HDD bandwidth by far, but has
the lowest compression ratio
in the test field and is therefore
not a very good compromise for
our test system. In section 5.2
we will see that DeLorean is in
fact IO bound, therefore inves-
tigating algorithms with higher
compression rates or special-
ized algorithms may be worth-
while.

5.2 Benchmarking DeLorean

Using an out-of-the-box em-
bedded Drill instance we were able to achieve an event throughput increase of up to
factor 4.6 (single-threaded). Unfortunately, a multi-threaded configuration of DaVinci is
currently not available in our laboratory setting. For the sake of fairness we assume a linear
scalability for DaVinci (best case). Figure 6 shows the scalability for di�erent compression
algorithms compared to the DaVinci projection. One notable result of the experiment is that
DeLorean even outperforms the linear projection of DaVinci.
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Fig. 7: Comparison of HDD tra�c.

Figure 6 clearly shows that the HDD
bound experiments hit the IO bar-
rier.10 Here we can see that com-
pression can leverage the IO bottle-
neck significantly. Gzip, the “heav-
iest” of the compression algorithms,
performs best in this scenario, so
it might be worthwhile to invest
in higher compression ratios using
domain specific compression algo-
rithms (like run-length encoding or
delta encoding).

Talking about IO bottlenecks one
should also look at the IO behaviour.
Figure 7 shows the total amount of
data read by the di�erent approaches

and the corresponding throughput at the IO barrier. Although DaVinci uses a very heavy
weight compression algorithm, total reading IO is higher than for DeLorean using lighter
weight algorithms. Due to the columnar storage design, DeLorean avoids reading irrelevant

10 The RAM drive experiment is there to verify the IO bottleneck: Regarding the massive amount of data, it is
unrealistic to process the whole data set in memory.
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data from disk. Additionally, DaVinci spends about 50 % of its total runtime decompressing
data that will never be touched later. Assuming the compression ratio of LZMA from
Figure 5, DaVinci processes about three times more uncompressed data than DeLorean.
Looking at the IO throughput in Figure 7, it becomes clear that the limiting factor cannot be
the bandwidth but must be a bad access pattern.11 We are currently working on strategies
to enhance the access pattern by using intelligent caches and exploiting data inherent
sortedness (our extracted tables are inherently sorted by ID). Additionally, we expect a
lesser impact of access patterns when further scaling DeLorean, allowing for much bigger
block sizes per thread.

6 Related Work

Notable related work has been done by Duggan et al. (BigDAWG [Du15]) in optimizing
query execution over di�erent storage systems with various data models. DeLorean is an
example of what Duggan et al. call a polystore system: A polystore system uses multiple data
sources with di�erent data models (in our case relational Parquet files and object-oriented
ROOT files) and takes into account all sources when optimizing queries.

There exist a number of competing Big Data platforms such as Apache Pig [Ap16b] and
Impala [Ko15]. Both these platforms could serve as a back end for DeLorean. Notably,
Apache Pig features LZO compression for Parquet files.

Nieke et al. [Ni15] analysed the CERN infrastructure with focus on the ATLAS project.
They suggest using Apache Hive [Th09] in conjunction with Parquet to speed up data
processing in CERN’s datacentres.

The complexity of physical analyses rules out the use of common tree-based indexing
mechanisms for acceleration, an observation that bears many similarities with the conclusions
of Weber et al. [WSB98]. As a remedy for ine�cient indices in high-dimensional spaces,
they propose VA-files. As a compact data synopsis, VA-files allow for very fast scans. They
are used to pre-filter data much like the column store of DeLorean.

Ekanayake et al. [EPF08] applied MapReduce-style processing (using Hadoop, among other
implementations) to high energy physics data. Their experiments suggest good scalability
for said analyses.

7 Summary

With our experiments we showed some weak spots of the current software setup at LHCb:
Highly selective scans in conjunction with heavy weight compression. We showed that
using (CPU-)balanced compression is essential for achieving high processing throughput.

Introducing DeLorean, a polystore system that uses modern database techniques in con-
junction with columnar storage we were able to speed up data intensive processing steps in

11 Common HDDs exceed 150 MB/s reading throughput for sequential reads.
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DaVinci. DeLorean will bridge the gap between “flat” ROOT files and the relational database
world, exploiting the advantages of both worlds, allowing for higher scan throughput and
less data redundancy.
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Center SFB 876, project C5 (http://sfb876.tu-dortmund.de/).
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