Static Analysis of Dynamic Properties -
Automatic Program Verification to Prove the Absence of
Dynamic Runtime Errors

Klaus Wissing

PolySpace Technologies GmbH
Argelsrieder Feld 22
82234 Wessling-Oberpfaffenhofen
Klaus.Wissing@PolySpace.com

Abstract: This paper introduces formal verification techniques applied by
PolySpace Verifier as a static approach to measure dynamic software quality
attributes. It is proving the correctness of atomic operations in the source code in
regards to run-time errors. PolySpace is unique in assessing dynamic properties
with a static analysis of the source code. The document outlines the use of the
results during maintenance, re-engineering and also development of software. It
also gives a short tool description and an overview about used methods and
techniques, supported programming languages and requirements.

1 Introduction

In V-Model style development processes, more then 50% of the development effort is
spent for verification and validation, primarily done by means of testing. During
structural/whitebox testing, coverage metrics (e.g. C0, C1, MCDC) are measured and
often used as quality attributes monitored by QA. With functional/blackbox testing
compliance with the expected functionality should be established.

However, Dijkstra already identified in the seventies that "Program testing can be used
to show the presence of bugs, but never to show their absence". He also stated “The only
effective way to raise the confidence level of a program significantly is to give a
convincing proof of its correctness.”

Such proof also helps development engineers during maintenance and development. We
thus propose to adopt a new approach to software verification: the use of Abstract
Interpretation done by PolySpace. PolySpace implements this method of applied
mathematics to prove the absence of semantic runtime errors (RTEs, runtime errors
according to the programming language’s rules for defining data [types, structures...]
and valid operations on the data; e.g. divide by zero, overflows, dereferencing a pointer
into out-of-bounds areas beyond arrays, etc.). Faults caused by RTEs may lead to failure
such as inconsistent data, non-determinism or system halt and might influence the

275



functionality of a program. According to a study on “Software defects and their impact
on system availability”, 26% of all observed software faults and more than 57% of all
critical failures are caused by RTEs [SUL91].

Getting a mathematical proof for absence of semantic RTEs along with data dictionaries
and call trees can help in source code reviews, software changes and re-engineering.

2 Static Formal Verification of Dynamic Program Property RTE

The tool PolySpace Verifier refers to an extension of static data-flow analysis aiming at
verifying dynamic properties of programs using the mathematical framework of formal
semantics [Deu(04]. Pioneered by Wegbreit and Kildall, those techniques were first
widely used by modern compilers to solve code optimization problems [Kil73],
[Weg75].

Formal semantics is a part of theoretical computer sciences that engages in proving
correctness of computer programs (verification) by the use of mathematic methods.
PolySpace Verifier applies such formal methods to express the semantics of a source
program (P) and to compute exhaustively, statically (without any specific input data) and
automatically an abstract model (P’) of the dynamic runtime behaviour of P.

Taken the model P’, PolySpace Verifier proves (verifies and falsifies) source code
properties against a formal specification (E), which is the runtime error behaviour as
defined in the programming language used.

P = set of states of a program
P’ = approximated superset of P
E = set of erroneous states defined by the programming language

Between P’ and E four predications can exist:

P’ N E is empty => operation verified (no run-time error)

P’ in E contained => operation falsified (run-time error)

Pis@ => unreachable, dead Code

P’ N E is not empty =>unproved operation (potential run-time error)

Thanks to increasing processor performance and new, very effective methods to
statically represent dynamic control structures (e.g.: for loop, switch, if-then-else),
elaborated data types (pointer aliasing, array and structures) and intricate control flows
(e.g.: function calls), static verification can now be used to automatically verify or falsify
the correctness of results of operations under all operating conditions at unit, module or
integration level of programs in a fast way.

276



PolySpace Verifier, as an exhaustive approach, issues checks to prove the result of each
and every operation in the source code considering the variation domain for the variables
involved in the respective operation. The computed variation domain of any program
variable is always equal to it’s real variation domain or a superset of it. The direct
consequence is that PolySpace Verifier never will report a wrong proof for any operation
checked in an analysis.

PolySpace Verifier currently supports the following programming languages:

C: ISO/IEC 9899:1990 C++: ISO/IEC 14882:1998
ADADO9S: ISO/IEC 8652:1995 ADAS83: ANSI/MIL-STD-1815A-1983

3 Applying PolySpace Verifier

PolySpace Verifier takes as input the source code of an application (at function-, unit- or
integration-level) and produces result as tabulated text as well as a color-coded source
where each operation is classified according to the RTE properties if it were executed.
There are four categories:

- Green : the operation will never trigger a run-time error for all possible
executions of the program (verified, proven free of runtime errors)

- Red : the operation will always (i.e. at each execution of the program) generate
a run-time error (falsified)

- Grey : the operation cannot be executed — it is a piece of dead code

- Orange : unproved operation — there may be an error depending on the specific
calling context of the function that contains the operation

static veid Pointer Arithmetic ()
{

int tab[100];

int i, *p = tab;

el = Oy A ) A0p ik, o)
.

if(random int() == 0)
*p = 5; /* out of bounds */
t+i; /* Unreachable (runtime error on previous line) */

}

i = random int{);

if (rondom int{}) f(p-i) = 10;

if (0<i §& i<=100)
lpEpads
apl=tol: /* dafe pointer access */

Figure 1: example of a color-coded source code provided by PolySpace Verifier
Run-time errors checked by PolySpace Verifier include:

- Dereferencing through null
- Out-of-bounds pointers

277



- Out-of-bounds array accesses

- Read access to a non-initialized data

- Access conflicts on shared data (multithreaded apps and/or interrupt routines)

- Invalid arithmetic operations: division by zero, square root of a negative
number,...

- Overflow and underflow on integers and floating-point numbers

- Unreachable (dead) code

Regarding control and data flow documentation and understanding, PolySpace Verifier
builds the global data dictionary, a concurrent access graph for each shared variable of
the program and a call tree for the program. All these results of a verification can be
interactively browsed and help understanding the semantics of sources.

4. Using Verification Results to Assess Status and Improvement
Requirements

That said, proving the correctness of an atomic operation, taking into account all
possible operand values in any combination (incl. worst-case) represents the robustness
of this operation. In theoretical computer science, correctness of an algorithm is asserted
when it is said that the algorithm is correct with respect to a specification. PolySpace
Verifier proves the correct implementation of a program according to the formalized
programming language specification. The PolySpace metric for robustness of a program
is the amount of verified operations within a program (at function-, unit-, or integration-
level) compared to all evaluated operations:

Z verified (correct) operations

Robustness = -
Z evaluated operations

Knowing the robustness of a source under development or maintenance helps to
schedule further analysis and/or development by development engineers and QA.
Focussed functional testing in case of low robustness measures also can be planned and
scheduled so that the risk in re-using existing modules is understood.

Robustness also can be automatically and objectively measured during initial exploration
of unknown sources. If the development has been outsourced, the basic quality of the
results easily can be assessed during acceptance tests. Quality thresholds can be set and
monitored to establish the extend of improvements accomplished.

Other measures like semantic code-density can be derived from the verification results.
They may help - along with other source attributes like time to understand a function - to
decide which parts of the software might be re-used or if a redesign should be
considered.

278



Furthermore developers or QA can detect resource wasting anomalies, such as
dynamically dead code or unused variables. In case of slim resources commonly found
in embedded applications, appropriate types of variables can be determined by observing
the values of variables for the complete program-flow.

A PolySpace verification also can be used to experiment and understand different
execution scenarios for the software without the need to actually execute it in a
respective context. Running applications in different scenarios sometimes can get very
expensive (e.g. if significant amount of external input needs to be simulated or generated
by special hardware) or may not even be feasible (e.g. if the software is to control
security functions). In such cases verification also is a good means to prepare an actual
test: if there is a proof that no runtime error will happen, testers do not need to worry
about detection of robustness issues during the test. If unexpected dead code, potential
robustness issues or even certain errors are identified by the verification, the test
campaign will not be started prior to fixing the issues.

This approach also applies for design flaws in a model-based design environment with
automatic code-generation.

For example, after the verification of the generated sources a model developer will
exactly know where a saturation block is needed and where useless blocks may be put.
This can gain a high level of robustness and execution efficiency at the same time.

5 Conclusion

Static analysis to prove the absence of run-time errors, once the domain of theoretical
researchers, now is commercially available with PolySpace verifier. Verification is a
repeatable technique that may be used at any time, without any prior knowledge of the
code to be analyzed. PolySpace’s semantic, interactive browsing of sources is well suited
for use in maintenance and re-engineering projects as well as in all stages of ongoing
development prior to functional testing and validation.

PolySpace also provides a strong improvement in reliability and robustness as it is
exhaustive by design and provides objective robustness measures.

References

[Deu04] Deutsch, Dr. A. Next generation testing tools for Embedded Applications. White paper,
PolySpace Technologies, www.polyspace.com, 2004.

[Kil73] Kildall, G. A unified approach to global program optimization. Proceedings of the ACM
Symposium on principles of programming languages, 194-206. 1973

[Sul91] Sullivan, M. and Chillarege, R. Software defects and their impact on system availability.
Proc. 21th International Symposium on Fault-Tolerant Computing (FTCS- 21),
Montreal, 1991, 2-9, IEEE Press.

[Weg75] Wegbreit, B. Property extraction in well-founded property sets. IEEE Transactions on
software engineering, 1(3), 270-285. 1975

279





