
19 
 

LAIF: A Logging and Interaction Framework for Gaze-
Based Interfaces in Virtual Entertainment Environments 

 

Lennart Nacke 
University of Saskatchewan, 

Canada 
lennart.nacke@acm.org 

 

Sophie Stellmach 
Otto-von-Guericke University 

Magdeburg, Germany 
stellmach@acm.org 

 

Dennis Sasse 
Microsoft Deutschland GmbH, 

Germany 
dennis.sasse@microsoft.com

Jörg Niesenhaus 
University of Duisburg-Essen,  

Germany 
joerg.niesenhaus@uni-due.de 

Raimund Dachselt 
Otto-von-Guericke University Magdeburg, 

Germany 
dachselt@acm.org 

 
ABSTRACT 
Eye tracking is a fascinating technology that is starting to 
be used for evaluation of and for interacting in virtual 
environments. Especially digital games can benefit from an 
integrated (i.e., evaluation and interaction) approach, 
harnessing eye tracking technology for analysis and 
interaction. Such benefits include faster development of 
innovative games which can be automatically evaluated in 
an iterative fashion. For this purpose, we present a 
framework that enables rapid game development and 
gameplay analysis within an experimental research 
environment. The framework presented here is extensible 
for different kinds of logging (e.g., psychophysiological 
and in-game behavioral data) and facilitates studies using 
eye-tracking technology in digital entertainment 
environments. An experimental study using gaze-only 
interaction in a digital game is also presented and 
highlights the framework’s capacity to create and evaluate 
novel entertainment interfaces. 
Keywords 
digital games, eye tracking, interactive techniques, 
gameplay logging, software tool, XNA 
INTRODUCTION 
Eye tracking is a valuable technology to provide analytical 
insights for studying human behavior and visual attention 
[6]. Besides that it is an intuitive human-computer interface 
that especially enables users with disabilities to interact 
with a computer. The most common applications for eye 
tracking today are either in marketing (e.g., [18]) or in 
usability research (e.g., [23]). Yet, using eye trackers as 
devices for human computer interaction (HCI) has started 
to become a focus of research in recent years and the field 
is slowly starting to come of age [13] [2]. However, the use 

of eye tracking in digital games is still new [10], in the 
same way it is new for gaze interaction in virtual worlds 
[12] and for gaze visualizations in three-dimensional (3D) 
environments [30]. 
Gaze interaction through eye tracking is an interface 
technology that has great potential. While it is essentially a 
human-computer interface that can support7 traditional 
input devices to improve efficiency, it can also be used to 
gather interaction data for post-usage evaluation. 
Interesting psychological data are for example the position 
and movement of gaze along the screen and pupil dilation. 
All eye tracking hardware allows to record patterns and 
distribution of fixations and saccadic eye motion with 
different levels of precision. 
A problem of using eye tracking technology in game 
development is the lack of common frameworks that would 
simplify producing gaze games (e.g., as stimuli for 
psychological experiments). Usually, researchers have to 
fall back to developing custom software for each game and 
experiment. When eye tracking research was done for input 
and analysis of experiments, this was essentially the same 
problem. In general, there exist only few frameworks for 
developing small-scale games in an academic setting [19], 
let alone analysis tools within game engines that are able to 
support eye tracking technology (for a discussion see [29] 
and [24]). Our approach aims at filling this gap and 
addressing the above-mentioned problems. We contribute a 
framework, which was especially designed with the goal of 
encouraging rapid development and allowing easy access to 
a database with eye tracking data. 
For rapid software development it is also essential to 
provide the possibility to reuse already existing code, 
which can be established by a modular approach using 
object-oriented paradigms. This way it is also possible to 

                                                             
7 Eye trackers are limited in completely replacing mouse 

input. For example, if the mouse click is substituted with 
an eye blink, it may result in inaccuracies or – if done via 
dwell time measurement – in longer task times. 

 
Mensch & Computer 2010 

Entertainment Interfaces Track 
 
 



20 
 

apply several modules for the integration of different input 
and output devices, such as eye trackers and other 
psychophysiological equipment. 
We begin this paper with a review of related work in gaze 
interaction for games and gaze evaluation using game 
technologies. In addition, we discuss a few existing 
commercial logging solutions that can also be used to 
evaluate virtual environments. Next, we discuss the 
development and features of a logging and interaction 
framework (i.e., LAIF) implemented with the .NET-based 
XNA framework and the Torque X engine. Some main 
components of the framework are discussed in detail. The 
framework is then put to use in developing a gaze-only 
digital game that demonstrates its capabilities. For a better 
understanding of the evaluative questionnaire employed in 
the following user study, we also briefly touch on the 
concept of presence in games. The user study evaluated a 
digital game created for gaze-only input in terms of general 
spatial presence and gameplay experience and also 
compared it to mouse input. The study demonstrates the 
flexibility and extensibility of the framework. Finally, we 
close with a concluding discussion and possible future 
applications, suggesting that more studies can benefit from 
game creation using LAIF. 
RELATED WORK 
Our review of related work will focus on approaches that 
have successfully used eye tracking in combination with 
digital games, especially as an input mechanism. We will 
then also briefly review instrumentation tools that allow 
logging and evaluating data in digital games. 
Gaze Interaction and Eye Tracking for Games 
Jönsson [14] evaluated eye tracking for digital games and 
tested gaze input (vs. mouse input) for two commercial 3D 
games. For the first game, aiming at enemies was done 
using the eyes and firing of a bullet via clicking the mouse. 
In addition, gaze steering was evaluated with a second 
game, one time just for aiming, one time for changing the 
view and one time for doing both together. The following 
gaze interaction characteristics for games were created 
following qualitative observations in that study: (1) control 
was subjectively better, (2) game experience was more fun 
and committing, and (3) eye control felt natural, easy, and 
fast (see also [1][13]). 
Sennersten et al. [24] conducted a verification study for the 
integration of an eye tracker with a 3D game engine. The 
implementation was done in proprietary software (i.e., HiFi 
engine from Swedish Defence Research Agency FOI), but 
the game engine used the Battlefield 1942 file format, so 
that experimental stimuli could be developed using the 
level editor Battlecraft. Therefore, her work primarily 
demonstrates using game design tools for prototyping of 
digital games that can be used in psychological 
experiments. However, this approach falls short of 
implementing a gaze interaction modality for the evaluated 

game engine and provides no empirical support for the 
efficiency of the implemented system. 
Istance et al. [12] investigated the use of eye tracking input 
for special use cases within the Massively Multiplayer 
Online Game World of Warcraft and the virtual 
environment Second Life. By using both bottom-up and 
top-down approaches specific tasks within the role-playing 
game were selected and implemented. It was then evaluated 
how well they can be carried out using eye tracking as the 
only input device to solve locomotion, fighting, equipment 
exchange and communication tasks. Compared to the 
standard keyboard and mouse controls the task completion 
times of the gaze input are very similar. However, a 
potential in optimizing gaze input is discussed by solving 
some distraction errors during the locomotion tasks which 
lead to path deviations.  
Smith et al. [26] presented a study using eye-based input 
for game modifications of Quake 2, Neverwinter Nights, 
and Lunar Command. For the first game, eye tracking was 
used to control player orientation, but movement and firing 
was still done using keyboard and mouse input. In 
Neverwinter Nights, gaze replaced mouse movement for 
locomotion, however, with confirmatory clicks to control 
pointing. In Lunar Command, the only 2D game, players 
similarly replaced mouse movement with gaze and mouse 
clicks. In this game, players performed significantly better 
with the mouse, whereas no significant difference was 
found for the first two 3D games. The subjective results of 
Smith's study showed participants felt more immersed 
when using the eye tracker for input. 
In another study, Kenny et al. [15] created a first-person 
shooter (FPS) game and used a 3D engine to log eye 
tracking data, video data and game internal data that was 
correlated with each other. The gaze data were used for 
fixation analysis of their game and a result was that players 
fixate the center of the screen for a majority of the time. 
Wilcox et al. [33] created a third-person adventure puzzle 
game with gaze input and voice recognition for disabled 
kids who are not able to control the game with the standard 
combination of mouse and keyboard inputs. The gaze input 
works by focusing a game object and selecting or activating 
it via voice command or blinking. In order to solve the 
problem of users looking at new targets while giving the 
voice commands a time lag for selecting items was 
implemented. 
In one of the studies of Nacke et al. [22] a game 
modification level of Half-Life 2 was used to test the 
navigation of users in a 3D environment. The mouse input 
for the camera view control was substituted with a gaze 
input and combined with the common keyboard controls 
for character movement. The navigational challenges 
consisted of a labyrinthine structure of a catwalk with 
obstacles placed in between. The results of a questionnaire 
indicated a very positive gaming experience, where the 
challenge of controlling the game by gaze (supported by 



21 
 

keyboard) input results in positive affection and feelings of 
flow and immersion. 
Isokoski et al. describe the advantage of gaze pointing in 
FPS games as making alignment of the player camera to the 
target become obsolete, when aiming is decoupled from 
player view [9]. Their results show gaze input for FPS 
games can compete with “killing efficiency” of gamepad 
input, but leads to problems with targeting accuracy. 
A preliminary, short investigation was also conducted by 
Isokoski and Martin [11], where they examined efficiency 
of eye trackers compared to game controllers. They also 
designed a game with focus on moving and aiming, where 
gaze was used for aiming at moving targets. Again, 
shooting was performed here with mouse button clicks. 
Other gaze-only interaction games include the development 
of a gaze-only 2D eye chess game [27] and a game that 
used dwell times and pupil dilation to create an innovative 
digital game mechanic [7]. Moreover, Isokoski et al. [10] 
give an extensive overview of research focused on games 
supported by eye tracking input devices and discuss the 
implications and possible future developments of gaze 
input for different game genres. They present a taxonomy 
based on user input requirements, technical limitations and 
gaming contexts to classify computer games into groups 
offering different opportunities for eye tracking technology. 
For example, they argue that the current generation of eye 
tracking hardware is not capable of competing with the 
high accuracy of the state-of-the-art gaming mice needed 
for fast-paced FPS games that have high demands on 
precise aiming. 
The literature on gaze interaction games shows that there 
are a few approaches using eye tracking technology to 
support and extend the interaction possibilities with digital 
games. However, no previous approach has integrated 
logging (using eye tracking hardware) and interaction 
functionality, because the application of logging 
instrumentation to gameplay evaluation is a rather new 
approach [28][20]. Next, we will discuss existing logging 
instrumentations that could be used for evaluation of game 
interaction data. 
Analysis Tools 
The automatic logging of events to better understand user 
behavior within an interactive system is tied to the history 
of research in psychology and usability. Traditional 
automated logging solutions first kept track of animal 
interactions to analyze the behavior of for example rats in a 
maze [25]. By analyzing the response rate logs, the theory 
of reinforcement schedules was incepted. Automated 
logging of human behavior is still common today. Game 
metrics (e.g., time to complete a task, accuracy of input, 
user satisfaction) along with survey and observation 
measurements are common approaches to the analysis of 
gameplay behavior [3][20][16]. 
For example, the TRUE system presented by Kim et al. 
[16] combines the advantages from different research 

approaches, such as the collection of behavioral evaluation 
data, qualitative survey data, and other tracking data. Such 
event-related data sets can also be compared to video 
recordings to provide contextual information. 
Commonly, game instrumentation or metrics data [4] are 
collected into spreadsheets or databases, which can contain 
various amounts of interesting behavioral player data. 
Spreadsheet applications such as Excel, Spotfire, and 
Tableau allow the fast visualization of massive data sets to 
quickly explore meaning and relations in the data. Here, 
users can choose from visualizations, including pie or bar 
charts, and scattergrams. Spotfire and Tableau impress with 
well-designed user interfaces and graphics, for example, 
simple data integration via drag-and-drop. In addition, 
displayed data elements can be selected and filtered 
dynamically. 
Noldus and Mangold provide software suites for the 
acquisition, analysis, and presentation of video, audio, and 
sensor data (including gaze and psychophysiological data) 
from behavioral studies. Multiple video views and the 
functionality to assign event markers (linking back to the 
video) are implemented. Behavioral and physiological data 
can be visualized in (static) plots. What these data analysis 
suites are lacking is an integrated functionality that allows 
the design of a behavioral stimulus, such as a game so that 
during the design of a game, the events of interest can 
already be defined in the tool, so that subsequent analysis is 
almost completely automated. One such solution was 
discussed in [21] and it is a common approach in the game 
industry to automate user testing with behavioral data [5]. 
However, not much emphasis is currently given to 
automated collection of sensor data, such as eye tracking or 
psychophysiological data. Out framework attempts to fill 
this gap by providing a flexible solution for sensor data 
analysis, especially gaze data. 
Various special tools for the analysis of gaze data exist. 
Such tools are often custom-designed for particular 
hardware devices (e.g., Tobii Studio). In general, these 
tools support texts, still images, animations, software, 
videos, and web content as psychological stimuli. The tools 
typically handle gaze data synchronization with video 
recordings. This is especially important for the visual 
analysis of dynamic stimuli [29]. One example for an open 
source freeware deploying slide shows as stimuli is the 
Open Gaze And Mouse Analyzer (OGAMA) [32]. None of 
the gaze analysis tools are explicitly focused on the 
integration with digital games or virtual environments. 
Nevertheless, as our review of related literature has shown, 
there is a huge research interest in developing gaze 
interaction games and the development of a framework 
combining gaze interaction with evaluative logging 
functionality is worthy research effort. We will proceed to 
discuss how we created this integrated logging and 
interaction framework: LAIF. 
 
 



22 
 

FROM CONCEPT TO DEVELOPMENT 
The idea behind LAIF was to create a tool equally usable 
for researchers from psychology and computer science 
(who commonly work together in human-computer 
interaction). This system should support rapid prototyping 
of game levels that could be used as digital game stimuli in 
psychological experiments or as demonstrators of new 
game interaction technology, ideally combining the best of 
both worlds. 
During the conception phase of the framework many game 
development technologies were evaluated. We broke down 
game development into two distinct parts: (1) developing 
core gameplay mechanics with programming code and (2) 
creating game content usually with an editing tool (and 
saved as map or level files). 
For users without technical knowledge functionality should 
be accessible through an editor, while coders should also 
have the possibility of using a high-level programming 
language. After interviewing game designers and 
psychologists with only little experience in game 
development, we formed the following criteria for usability 
of a level editing and scripting tool: 
• Browse, preview, and place existing content in a game 
• Make adding game logic easy (e.g. using triggers) 
• Graphic integration and access to gaze logging 
• Code completion with extensive suggestions 
• Several code samples and templates 
We looked at graphical game editors and development tools 
used commonly in research settings as well as reviews of 
these different tools regarding their suitability for game 
development (e.g., [19]). Tools such as GameMaker, Flash 
and Torque X were all evaluated with the computer science 
and psychology researchers of an HCI laboratory. Torque 
X was chosen in the end, because it was judged to have the 
highest future potential in terms of code support and 
continuing development. The establishment of the XNA8 
Creator’s Club and other Microsoft initiatives were all 
factors contributing to the success of Torque X and 
influenced our initial choice. The improved continuous 
support of XNA and Torque X to the day of this writing 
supports and validates our initial choice.  
The Torque X game engine is largely component based, 
using an aggregation model. Instead of putting common 
functionality in a base class from which it is then inherited, 
game objects share common components. This component 
system is also tightly integrated in the Torque X Builder 
application, which can dynamically create editors for all 
properties of custom engine components. 
 
 

                                                             
8 A high-level programming environment specifically 
targeted at the hobby and academic development market. 

Requirement Analysis 
We decided to create LAIF as a set of modular Torque X 
components. These components are objects derived from 
the TorqueComponent class adding functionality to a 
game object. The target users of the tool were researchers 
with little game design and programming experience. Thus, 
they need to be able to configure logging settings for an 
experimental game stimulus through a graphical user 
interface (in the Torque X Builder). Our design objectives 
here were in detail: 
• Creating new or existing log files in text format and 

direct export of logged gaze data into a database 
• Saving configurations and settings in an XML file 
• Integration of logging in a graphical editor tool, which 

also provides drag-and-drop functionality 
Preliminary Target Hardware 
The hardware the framework was developed for and tested 
with consisted of a Tobii 1750 eye tracker. It features an 
integrated camera in a 17'' TFT monitor and tracks the eyes 
with two infrared diodes, which produce reflection patterns 
on the eyes' corneas. These patterns make it possible to 
extract the pupil locations and dilations through digital real-
time image processing. It has to be kept in mind that this 
hardware was only chosen due to its availability, but while 
our framework makes use of this hardware it can also be 
extended to include other types of eye tracking (or general 
sensor recording) hardware. 
FRAMEWORK IMPLEMENTATION 
The above-mentioned eye tracker ships with the Tobii Eye 
Tracker Components API, which is a type library 
implemented as a set of COM objects, allowing access to 
the software abstraction layer provided by Tobii. It can be 
accessed by some high-level programming languages for 
Microsoft platforms, such as C#. The API unit itself is 
dependent on a few driver libraries and the .NET 
framework. The eye tracker may remain on any host as 
long as the API component is installed on that host. There 
must be TCP/IP and UDP/IP connectivity between an 
application and the host running eye tracker server. 
Since we had extensive experience in using and writing 
queries for MySQL databases, we chose MySQL over the 
Microsoft solution SQL Server 2005 Express. In addition, 
the SQL Server Express is limited to 4 GB in database size, 
whereas MySQL is only limited by the capabilities of 
hardware. Since gaze logging can quickly amass huge 
amounts of data over longer periods of time, we were 
convinced that MySQL was the best solution for our 
purposes. To complete data connectivity to MySQL 
databases, the MySQL Connector/NET ADO.NET driver 
was used.  
 
 
 



23 
 

The logging framework 
The logging framework is designed as a set of Torque X 
components, derived from the default Torque Component 
class9.  

 
Figure 1. Component Schema of the Logging 
Framework 
Each component provides individual key functionality, 
such as writing to a log file, performing queries to a 
MySQL database, or accessing a piece of data acquisition 
hardware. We did this to keep the logging framework 
extensible and reusable for other applications and apparel 
that we might use in the future on top of gaze logging (for 
example psychophysiological data logging). 
The key components of the framework are: 
• The Basic Logging Component (BLC) handles all 

access to the log files, as well as to the MySQL database. 
• The Eye Tracking Component (ETC) is responsible for 

all access to the eye tracker and the functions provided by 
the TET Components API. 

• The Default Logging Component (DLC) is a basic 
template component that provides a unified interface to 
the BLC and to the ETC. Following the concept of 
aggregated functionality suggested by the Torque X 
Engine, a game using the logging framework should 
never need to access the other components directly. 

One of the requirements for the logging framework was to 
allow easy reconfiguration and automated management of 
many experiments. Therefore, all settings and 
configurations of the logging components are stored in 
XML configuration files. The only property that has to be 
set in the editor is the name of the XML configuration file 
in which all other properties are stored. 
Basic Logging Component (BLC) 
The BLC is responsible for creating and writing to a 
predefined log file in .txt or .csv format. It also loads all 
necessary settings are from an XML file. Properties for 
XML file and log file need to be set. The log file defined 
serves as fallback log and is initialized together with the 
component. Therefore, it also stores basic error and 
exception messages, even if loading the configuration 
settings from the XML file failed. 

                                                             
9 The framework code can be requested from 

dennis.sasse@gmail.com 

Once initialized, BLC provides a method to write new lines 
of data to the log file. It also provides methods for read and 
write access to a MySQL database, whose database 
address, name, access identification and password are read 
from the XML configuration file. If the connection to the 
MySQL database defined in the configuration file cannot 
be established, data will be written to a log file instead. The 
BLC is required by all other components and will 
automatically be added by the Torque X Builder to any 
object to which other logging components are added. 
Eye Tracking Component (ETC) 
The ETC provides access to the eye tracker. It reads the IP 
address of the required server from an  XML defined in an 
editor property. The XML configuration file has a flag that 
can switch whether eye tracking is enabled, in which case 
the ETC tries to connect automatically to the eye tracking 
server on initialization. 
Once the connection is established, an event listener is 
registered that handles all data coming from the eye tracker 
automatically. The ETC provides methods to access gaze 
positions of the left and right eye separately, as well as the 
median position of both eyes. 

 
Figure 2. Distance-based detection of objects in gaze 
focus 
A method returning all objects in a set radius around the 
player's point of gaze focus is also provided (objects in 
gaze focus are detected based on their distance to the point 
of gaze focus; see Figure 2). The radius of gaze focus is 
defined by a property in the XML configuration file. The 
Torque X Engine allows organizing game objects on 
different layers, therefore detecting objects in the player's 
gaze focus can be limited to certain layers, if required. 
Since all coordinates returned are given in screen positions, 
more methods are provided to transform screen coordinates 
into world coordinates and to transform world coordinates 
back into screen coordinates. 
The logging framework was developed for a version of 
Torque X, which could only display and handle 2D 
graphics and game worlds. Therefore, the trivial distance-
based detection of objects in the player's gaze focus was 
sufficient for development (cf. Figure 2). During the 
writing of this article, the most recent Torque X version 
also features a 3D world editor and full 3D rendering 
functionality, so that extending the logging framework for 
3D games and integrating it into a graphical 3D game 



24 
 

editor is a promising future development. How the 
integrated components look in the Torque X Builder (i.e., 
the level editor) is shown in Figure 3. 

 
Figure 3. Screenshot from the Torque X Builder 
application, depicting the integrated logging 
components and their properties. 
Default Logging Component (DLC) 
DLC is a basic template component, using BLC and ETC. 
It shows how components should be aggregated and 
accessed: Instead of accessing every component from the 
game, it is advised to use a custom component based on 
DLC as a wrapper for the functionality of the other 
components. This also simplifies access to the required 
logging functionality, because only the specialized 
implementation of DLC must be included into the game, 
which then automatically loads and initializes all following 
required components. 
The logging framework only provides methods to track a 
player's gaze positions and to write data to a MySQL 
database or to a local file. It does not dictate what data 
should be logged or how the log files or entries in the 
database should be organized. It is up to the researcher to 
decide about these details, because they generally vary 
from experiment to experiment, depending on the 
hypothesis or game created. In addition, the logging 
framework is not just limited to data acquisition. ETC can 
also be used to integrate gaze-based interaction into a 
digital game, as we will show in the next section. 
It is advised to implement all changes or additions to 
existing components in a new component derived from 
DLC to fully embrace the concept of aggregating 
streamlined components. This feature also allows the easy 
extension of the logging framework to include custom 
components. 
An Example Game Using Eye Gaze Logging 
To show the flexibility of this framework and to evaluate 
its workflow, a digital game was designed for an 

experiment studying gaze interaction, which we called Blob 
(see Figure 4)10. 

 
Figure 4. Screenshot from the Blob example game, 
showing Blobs of different size and color as well as a 
high score on top of the screen. 
In Blob players have to pop as many colored bubbles (or 
Blobs, thus the name) as possible by touching them with 
their own smaller Blob, which we wanted to be controllable 
by mouse or by gaze. New Blobs spawn in one of three 
colors (red, green, or blue) at random positions on the 
screen and gradually grow in size. If two or more Blobs 
collide with one another, the game is over. 
The larger a Blob is when collected, the higher the score 
rewarded for it. Players are also rewarded with a score 
multiplier for consecutively collecting multiple Blobs of 
the same color. The more Blobs of the same color are 
collected in a row, the higher the multiplier is. Final goal of 
the game is to achieve the highest score, which is kept in a 
highscore database (using database access in BLC). 

                                                             
10 A mouse version of the Blob game can be downloaded 

from www.dennissasse.com 



25 
 

We created the Blob demonstrator game in five simple 
steps: 
1. Creating a new XNA game project in Microsoft Game 

Studio Express based on one of the Torque X starter 
kits (provides the project structure, the basic game 
loop, components for collision detection and basic 
player input) 

2. Programming the game logic and components (all 
components, whether the AI that controls Blob 
generation, the control of the player Blob, or the 
logging components had to be programmed) 

3. Building the game world which can be created with the 
graphical user interface in the Torque X Builder 
(including materials, animations, and particle systems). 
Components with game logic scripts were also 
attached to game objects. 

4. Integrating logging functionality. BLC is required by 
any other logging component and thus automatically 
added by the Torque X Builder to any object a logging 
component is attached to. Property panels for each 
logging component are then automatically created. 

5. Building and deployment of the game was done by 
compiling the Torque X Builder files in Microsoft 
Game Studio Express. 

The Blob Logging Component (BlobLC) 
As suggested before, the core components of the logging 
framework should not be edited or accessed directly from 
the game. Instead, a new component should be derived 

from DLC and edited to contain all logging functionality 
that may be required. The number of components is not 
limited; therefore it is possible to create as many new 
components as needed for a particular game. 
In the case of Blob, BlobLC initializes both BLC and ETC. 
It provides methods to identify players currently playing by 
their identification number (ID), to initialize a new play 
session and to write logging events to the database. It also 
handles storage and display of the highscore list, once the 
game is over. 
Similar to all other logging components, BlobLC needs an 
XML configuration file, from which all settings are read on 
initialization. In addition to the ID required to identify a 
player, these settings contain a property to enable or disable 
logging. 
The logging framework itself does not regulate what data is 
written to the database or how the database is organized. To 
provide maximum flexibility, type, and format of the 
logged data has to be defined when developing the 
particular game. Table 1 gives an outline of what data is 
logged by BlobLC and how log events are organized in the 
database. 
A STUDY OF THE GAZE-BASED GAME INTERFACE 
After the gaze-only game was developed, we conducted an 
evaluative user study with several people testing the gaze-
only interaction. 
 
 

Entry Label Value Example Data 
SessionID Internal SessionID of the particular play session bg_03 

GameTime Time at which the particular event happened in millisceconds after the 
beginning of the game. 

00:03:49.2 

Event Code to identify a log event, such as PlayerCollectBlob if the 
player collected a blob or BlobsCollide if two blobs collided. 

BlobsCollide 

Score Current score of the player at event. 133753 

ComboMultiplier Current combo multiplier at event. 5 

BlobsCollected Number of blobs the player has collected at event. 42 

PlayerBlobColor Current color of the player's blob at event. Red 

BlobColor Color of the blob the player collected or the blob that is colliding. 
Note: This value depends on the event. If two blobs were colliding, 
there are two entries: One for each of the colliding blobs. 

Green 

PlayerFocusObject ObjectID of the object the player is looking at. 
Note: This entry is only written if the player looks at an object. 
Object(s) in the player's gaze focus are detected by a region-based 
approach (see Figure 2). If there is more than one object in gaze focus, 
this event will be written to the database for each object in gaze focus. 

BlobGreen_64 

Table 1. Overview of logged data written to the database in the example game Blob. 



26 
 

Design 
In a first test, we used two evaluative questionnaires of 
gameplay experience [8] and spatial presence [31] that 
people who played the gaze-only game had to answer. In a 
second test, we developed another version of the game that 
uses mouse input and we asked a few comparative 
questions concerning the differences in this interaction. For 
a better understanding of the evaluative questionnaires in 
the first test, we will briefly explain the concept of presence 
and gameplay experience in games. 
Presence and Gameplay Experience Concepts 
Spatial presence is a two-dimensional construct in which 
the core dimension is the sensation of physical location in a 
virtual spatial environment and the second dimension 
entails the perceived action possibilities (i.e., individuals 
only perceive possible actions relevant to the virtual 
mediated space) [34]. Regarding gameplay experience in 
general, IJsselsteijn, Poels, and de Kort theorized that 
immersion, tension, competence, flow, negative affect, 
positive affect, and challenge are all important elements of 
gameplay experience and developed a game experience 
questionnaire (GEQ) to assess these elements [8]. 
Participants 
For our study, 25 male higher education students 
participated, aged between 19 and 38 years (M = 24 years, 
SD = 5). Most of the participants were right-handed (88% 
right-handed) and a little more than half of them were not 
wearing glasses or contact lenses (56%). All the 
participants owned a personal computer (PC) and 96% also 
rated this as their preferred gaming platform. 
Game Material 
The digital game blob was created as described in the 
section before. For the second evaluative test in the study, 
we developed a version of Blob that can be played with 
mouse input. Blob itself was consciously designed so it 
would allow for both types of interaction mechanics, 
classic mouse input, and gaze input from the Tobii 1750 
eye tracker.  
Measures 
We used the game experience questionnaire (GEQ) [8] as 
well as the short scale spatial presence questionnaire (MEC 
SPQ) [31] to get an overview of gameplay experience with 
the gaze-only game. The GEQ combines several 
experiential measures. It was developed based on 
investigations of frequent game players. It has seven 
dimensions: flow, challenge, competence, tension, negative 
affect, positive affect and sensory and imaginative 
immersion. Each dimension is measured, each using 5 
items in the full version. Each item consists of a statement 
on a five-point scale ranging from 0 (not agreeing with the 
statement) to 4 (completely agreeing with the statement). 
The MEC SPQ scales self-location and possible action are 
constructed in a similar fashion (except: scale from 1 to 5). 

Six preference questions were used in the second test, when 
comparing gaze with mouse input (Q1: Which interaction 
mode did you enjoy playing with more? Q2: Which 
interaction mode was easier to learn? Q3: Which 
interaction mode was easier to use? Q4: With which 
interaction mode did you feel more immersion in the game? 
Q5: For which interaction mode did the controls feel more 
natural? Q6: Which interaction mode would you prefer to 
use in the future?). Participants had to answer with either 
gaze or mouse depending on their preference. 
Procedure 

 
Figure 5. A person playing the Blob game using only eye 
tracker input. 
In the first test, participants only played the gaze version of 
the game and answered the GEQ and SPQ. Later, 
participants returned to play Blob with once with mouse 
and one time using gaze interaction (see Figure 5). The 
sequence in which the game interaction modes were used in 
the second test was randomized. Each interaction mode was 
played for 5 minutes and then switched. All participants 
had to fill out an evaluative questionnaire and a presence 
questionnaire for the gaze interaction part [31], where they 
had to rate their feeling of presence (SPQ) on a scale from 
1 to 5 (GEQ was on a scale from 0 to 4). 
Results 
The results from the GEQ are shown in Figure 6. General 
appraisal of gaze-only interaction was positive. 

 
Figure 6. GEQ results for gaze-only interaction. 



27 
 

 
The low ratings for negative affect and tension, together 
with higher ratings of flow, challenge, and positive affect 
indicate a more positive than negative gameplay experience 
in line with previous research findings [22]. However, it 
needs to be noted that–except for positive affect and 
challenge–the result are below the median of the 
measurement scale (2), indicating a generally not very 
expressive or extreme response to the game stimulus.  The 
reliability of the GEQ was acceptable in this test 
(Cronbach's α = .72). 
For the component spatial presence self location reliability 
was very high (Cronbach's α = .95). The mean for items 
was below the median value (M = 2.1, SD = 1.1). The other 
component used was spatial presence possible actions, 
which was also reliable (Cronbach's α = .88). Its item mean 
value was higher but still just below the median value (M = 
2.9, SD = 1.4). Thus, gaze only interaction did not seem to 
especially facilitate feelings of presence in the game. 
For the comparative part of the study, when asked which 
interaction mode they preferred, 17 people answered that 
they preferred steering the game with their eyes. However, 
only 3 found this interaction mode easy to learn and 21 
found the mouse interaction easier to use for this game. 
Additionally, 13 people found the mouse control felt more 
natural, but 18 people would prefer to use gaze interaction 
in the future if they had more time to train for it. The 
reliability of the questionnaire for comparison between 
mouse and gaze was acceptable (Cronbach's α = .76). 
Observations and Brief Discussion 
A major complaint of participants was the immediate 
responsiveness of the system when under eye tracking 
control. This may cause discomfort due to the natural 
600ms delay between a person making a decision (pointed 
out by eye movement) and the execution of a task [17]. In 
general, we have to note the positive gameplay experience 
indicated by the GEQ results when playing the gaze-only 
game. This supports that players highly appreciate novel 
forms of game interaction although they might be 
challenging to learn. 
Our study shows that the logging framework cannot only 
be used to implement gaze input and logging, but also that 
users appreciated a gaze-only game, which was created 
with our framework and they even preferred the novel 
experience of steering the Blob with their eyes (although 
their feeling of presence was rather low). However, the 
accuracy of the eye logging data needs to be tested in a 
larger scale verification study (for an example see [28]). 
CONCLUSIONS AND FUTURE WORK 
Eye tracking technology has great potential for studying 
player behavior on the one hand and to be used as an input 
device for games on the other hand. The presented work 
needs to be understood as a first effort in the direction of 
integrated logging and interaction solutions for digital 
games. A more comprehensive framework with support for 

more components, including various novel input and output 
devices shall be created in the future. First approaches into 
visual analysis within a game engine, also using XNA 
technology have already been undertaken [29] and promise 
interesting application scenarios. 
With the framework presented in this paper, we can 
facilitate experiments using eye tracking for analysis of and 
interaction with digital games. Our study also showed how 
easy a game with this functionality can be implemented and 
how gaze steering is appreciated as a novel input method 
for digital games. 
The logging framework will be extended to 3D games in 
the future since we are already investigating integration 
with Half-Life 2. The integration into a graphical 3D editor 
integrated with Torque X (also visualizing gaze data in 
virtual environments) will be a next step [30]. 
We can conclude that integrating logging into games in 
general is a valuable method to analyze game design. Using 
these data to evaluate novel player-game interaction holds 
great research potential for the future. Thus, we have only 
begun to see the tip of the iceberg for research in the area 
of game analysis by logging and of gaze interaction. 
ACKNOWLEDGMENTS 
The development of this framework was partially supported 
by the European Community FP6 FUGA research project 
(NEST-PATH-028765), as well as the BMBF 
(Bundesministerium für Bildung und Forschung) funded 
ViERforES project. We thank our FUGA colleagues at 
BTH, especially Craig A. Lindley for great support and 
stimulating discussions. In addition, we would like to 
extend our heartfelt thanks to the volunteer participants in 
the user study. 
REFERENCES 
1. Castellina, E. and Corno, F. Multimodal Gaze 

Interaction in 3D Virtual Environments. Proceedings 
of COGAIN 2008: Communication, Environment and 
Mobility Control by Gaze, COGAIN (2008), 33-37. 

2. Cournia, N., Smith, J.D., and Duchowski, A.T. Gaze- 
vs. hand-based pointing in virtual environments. CHI 
'03 extended abstracts, ACM (2003), 772-773. 

3. Drachen, A. and Canossa, A. Analyzing Spatial user 
Behavior in Computer Games using Geographic 
Information Systems. Proc. MindTrek, ACM (2009). 

4. Drachen, A. and Canossa, A. Towards gameplay 
analysis via gameplay metrics. Proc. MindTrek, ACM 
(2009), 202-209. 

5. Drachen, A., Canossa, A., and Yannakakis, G.N. 
Player Modeling using Self-Organization in Tomb 
Raider: Underworld. Proc. of CIG2009, IEEE (2009). 

6. Duchowski, A.T. Eye tracking methodology: Theory 
and practice. Springer, New York, 2007. 

7. Ekman, I.M., Poikola, A.W., and Mäkäräinen, M.K. 
Invisible eni: using gaze and pupil size to control a 
game. CHI '08 extended abstracts, ACM (2008), 
3135-3140. 



28 
 

8. IJsselsteijn, W., Poels, K., and de Kort, Y. The Game 
Experience Questionnaire: Development of a self-
report measure to assess player experiences of digital 
games. Report. TU Eindhoven, Eindhoven, 2008. 

9. Isokoski, P., Hyrskykari, A., Kotkaluoto, S., and 
Martin, B. Gamepad and eye tracker input in first 
person shooter games: Data for the first 50 minutes. 
Proceedings of COGAIN (2007), 11-15. 

10. Isokoski, P., Joos, M., Spakov, O., and Martin, B. 
Gaze controlled games. Universal Access in the 
Information Society 8, 4 (2009), 323-337. 

11. Isokoski, P. and Martin, B. Eye Tracker Input in First 
Person Shooter Games. Proceedings of the 2nd 
Conference on Communication by Gaze Interaction: 
Communication by Gaze Interaction - COGAIN 2006, 
(2006), 78-81. 

12. Istance, H., Vickers, S., and Hyrskykari, A. Gaze-
based interaction with massively multiplayer on-line 
games. CHI09 extended abstracts, ACM (2009), 4381-
4386. 

13. Jacob, R.J.K. What you look at is what you get: eye 
movement-based interaction techniques. Proc. of CHI 
1990, ACM (1990), 11-18. 

14. Jönsson, E. If Looks Could Kill: An Evaluation of Eye 
Tracking in Computer Games. 2005. Master's Thesis. 
Royal Institute of Technology. Stockholm, Sweden. 

15. Kenny, A., Koesling, H., Delenay, D., McLoone, S., 
and Ward, T. A preliminary investigation into eye 
gaze data in a first person shooter game. Proceedings 
of the 19th European Conference on Modelling and 
Simulation, (2005). 

16. Kim, J.H., Gunn, D.V., Schuh, E., Phillips, B., 
Pagulayan, R.J., and Wixon, D. Tracking real-time 
user experience (TRUE): a comprehensive 
instrumentation solution for complex systems. Proc. of 
CHI 2008, ACM (2008), 443-452. 

17. Koesling, H. and Höner, O. Bend it like Beckham - 
Mindsets and Visual Attention in Decision-Making in 
Soccer. Proc. of ECEM 12, (2003). 

18. Maughan, L., Gutnikov, S., and Stevens, R. Like more, 
look more. Look more, like more: The evidence from 
eye-tracking. The Journal of Brand Management 14, 
(2007), 335-342. 

19. Nacke, L. Facilitating the Education of Game 
Development. 2005. Diplomarbeit. Otto-von-Guericke 
University. Magdeburg, Germany. 

20. Nacke, L. Affective Ludology: Scientific 
Measurement of User Experience in Interactive 
Entertainment. 2009. Ph.D. Thesis. Blekinge Institute 
of Technology. Karlskrona, Sweden. 

21. Nacke, L., Lindley, C., and Stellmach, S. Log Who's 
Playing: Psychophysiological Game Analysis Made 

Easy through Event Logging. Proc. of Fun and Games 
08, Springer (2008), 150-157. 

22. Nacke, L., Stellmach, S., Sasse, D., and Lindley, C.A. 
Gameplay experience in a gaze interaction game. 
Proceedings of COGAIN 2009: Gaze Interaction For 
Those Who Want It Most, The COGAIN Association 
(2009), 49-54. 

23. Schießl, M., Duda, S., Thölke, A., and Fischer, R. Eye 
tracking and its application in usability and media 
research. MMI-interaktiv Journal 6, Sonderheft: 
Blickbewegung (2003). 

24. Sennersten, C., Alfredson, J., Castor, M., et al. 
Verification of an experimental platform integrating a 
Tobii eyetracking system with the HiFi game engine. 
Research Report. FOI, Linköping, 2007. 

25. Skinner, B.F. The Behavior of Organisms: An 
Experimental Analysis. D. Appleton-Century 
Company, 1938. 

26. Smith, J.D. and Graham, T.C.N. Use of eye 
movements for video game control. Proc. of ACE 
2006, ACM (2006), 20. 

27. Špakov, O. EyeChess: the tutoring game with visual 
attentive interface. Alternative Access: Feelings & 
Games, University of Tampere (2005), 81-86. 

28. Stellmach, S. A psychophysiological logging system 
for a digital game modification. 2007. Research 
Report. Otto-von-Guericke University. Magdeburg, 
Germany. 

29. Stellmach, S. Visual Analysis of Gaze Data in Virtual 
Environments. 2009. Diplomarbeit. Otto-von-Guericke 
University. Magdeburg, Germany. 

30. Stellmach, S., Nacke, L., and Dachselt, R. Advanced 
Gaze Visualizations for Three-dimensional Virtual 
Environments. Proc. Eye Tracking Research & 
Applications (ETRA 2010), ACM (2010). 

31. Vorderer, P., Wirth, W., Gouveia, F.R., et al. MEC 
Spatial Presence Questionnaire (MECSPQ): Short 
Documentation and Instructions for Application. 2004. 
Report to the European Community, Project Presence: 
MEC (IST-2001-37661). 

32. Vosskühler, A., Nordmeier, V., Kuchinke, L., and 
Jacobs, A.M. OGAMA (Open Gaze and Mouse 
Analyzer): open-source software designed to analyze 
eye and mouse movements in slideshow study designs. 
Behavior Research Methods 40, 4 (2008), 1150-1162. 

33. Wilcox, T., Evans, M., Pearce, C., Pollard, N., and 
Sundstedt, V. Gaze and voice based game interaction: 
the revenge of the killer penguins. ACM SIGGRAPH 
2008 posters, ACM (2008), 1-1. 

34. Wirth, W., Hartmann, T., Böcking, S., et al. A Process 
Model of the Formation of Spatial Presence 
Experiences. Media Psychology 9, 3 (2007), 493-493. 

 
 




