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Abstract: Software developers are often confronted with tasks for which there are widespread solution
patterns. Searching for solutions using natural language queries often leads to unsatisfying results.
Github, Microsoft Research and Weights & Biases created the CodeSearchNet Challenge [Hu19]
to address this problem. Its goal is to develop code search approaches that return the code that best
matches a natural language query. In this paper, we investigate two different approaches in this context.
First, a Neural Bag-of-Words encoder using TF-IDF weighting and second, a Graph Convolutional
Network which includes the call hierarchy in a target method’s representation. In our experiments
we were able to improve the Neural Bag-of-Words models, whose results were published in the
CodeSearchNet Challenge. Our Neural Bag-of-Words encoder improves the MRR by 4.38% for
Python and 4.98% for Java. The Graph Convolutional Network did not improve the results over of the
Neural Bag-of-Words model.

Keywords: Semantic Code Search; Graph Convolutional Network; Neural Bag-of-Words; Code-
SearchNet Challenge

1 Introduction

This paper introduces two novel approaches towards the development of a search engine
for code. This challenge - referred to as semantic code search - has applications in
supporting software development because it faciliates an easier on-demand reuse of code.
Github, Microsoft Research and Weights & Biases have established the CodeSearchNet
Challenge [Hu19] for this purpose. The participants are asked to design their own approaches
to retrieve a suitable code function from a corpus. The provided data corpus includes code
functions from open source Github repositories and their docstrings. It contains code in the
programming languages Python, Java, Ruby, Go and PHP. 5

Semantic similarities between search queries and code functions are not always based
exclusively on the same keywords, for example when looking at synonyms such as “picture”
and “image” and declensions such as “load” and “loading”. Instead of using simple keyword
matching, semantic relationships between words should be learned.

One common approach called Bag-of-Words is to be developed. Bag-of-Words models map
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search queries and code functions each to a vector that marks the keywords. By means of
neural networks, similarities between vectors belonging to each other (code function and
corresponding docstring) are to be established. Ultimately, syntactically different words that
are, however, in context with each other are to be identified. For example, it could be learnt
that queries containing the word “database” match functions containing the word “db”.
Our second approach deals with the inclusion of code that is called within code functions.
For this purpose, caller graphs are used. They are assembled based on the corresponding
Github repositories and consumed by a Graph Convolutional Network. With the help of
this technique, the features of a function are to be extended by the features of its callees.
Ultimately, functions are to be characterized more extensively in this way.

We make the following contributions:

. A Graph Convolutional Network trained on caller graphs is used for semantic code
search.
° A Neural Bag-of-Words method with weighting schemes for identifying semantic

similarity between search query and code function is used to retrieve code.

. The models are evaluated quantitatively and compared to baseline models from the
CodeSearchNet Challenge. Our findings are that TF-IDF weighting and Byte Pair
Encoding bring substantial improvement to the Neural Bag-of-Words approach.

Starting with related approaches, the CodeSearchNet Challenge will be presented and
explained in more detail. Then the data corpus used is presented. In the following chapter
we present our approaches to graph-based data processing and to identifying similarities
between docstring and code using the Bag-of-Words method. Finally, the results of our
experiments with the presented methods are shown and a brief conclusion is given.

2 Foundations

This work addresses the CodeSearchNet Challenge and the neural learning of graph
representations. A short overview of related work is given below.

2.1 CodeSearchNet Challenge

Semantic code search is the task of finding relevant code given a natural language query. It
requires bridging the gap between natural language and the language used in the program
code. Unlike natural language, code is not created to be read. Code contains purely syntactic
tokens and different identifiers for the same content. The goal is to relate identifiers in code,
such as “db”, to terms like “database” in natural language.
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Fig. 1: We suggest two approaches towards code search (left/right). In both approaches, queries (blue)
and the respective code (green) from Github are processed by an encoder. Then the respective pairs
are matched based on the distance (bottom).
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With today’s standardized code documentation, both the code and natural language descrip-
tions can be extracted for each documented method of a software project, resulting in data
records containing pairs of code and language. This forms an interesting basis for learning
code-language similarity measures at the large. To encourage researchers and practitioners
to further explore this interesting task, the CodeSearchNet Challenge was created and
presented by Github, Microsoft Research and Weights & Biases as a competition.

The CodeSearchNet Challenge provides an extensive corpus of training, test and validation
data. Overall it consists of 2 million (comment, code) pairs crawled from different open
source libraries, covering six widely used programming languages: Python, JavaScript, Java,
Ruby, Go and PHP. The dataset is provided as json lines files, each containing json objects
of (comment, code) pairs in a preprocessed manner [Hul9]. This enables participants
to directly reuse them for building representations and training, testing and validation of
machine learning approaches like neural networks.

2.2 Related Works on Retrieving Code

There exist various approaches on retrieving code. In this section, some related works are
mentioned that dealt with a similar topic.

In “Semantics-Based Code Search” by Reiss et. al [Re09], relevant source code snippets
are suggested based on the specification formulated by the user. This specification must
at best include semantics and signature and should be formulated as precisely as possible.
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The initial suggestions are selected by keyword matching. To have a more robust system
with regard to synonyms, our approach learns semantic connections between terms. Wan
et. al’s approach in their paper “Multi-Modal Attention Network Learning for Semantic
Source Code Retrieval” [Wal9] uses Abstract Syntax Trees and Control Flow Graphs for
code embeddings. Furthermore, the system works with an LSTM and a Gated Graph Neural
Network. An abstract syntax tree is used to decompose code fragments syntactically in
order to better extract the semantics. In contrast, we only use the code tokens. The approach
of Kanade et. al, discussed in “Pre-trained Contextual Embedding of Source Code” [Kal9],
proposes CuBERT (Code Understanding BERT) as a further development of the BERT
framework. Here Word2Vec embeddings for code are pre-trained. As in this paper, in Sachdev
et. al’s paper “Retrieval on Source Code: A Neural Code Search” [Sal8], word embeddings
are used in combination with TF-IDF weighting. Furthermore, a high-dimensional vector
similarity search is performed. Additionally, a supervision layer and a custom ranking
system have been developed. In Cambronero et. al’s work “When Deep Learning Met Code
Search” [CKC], the authors used a Sequence-to-Sequence Gated Recurrent Unit Network
and an LSTM for code retrieval.

2.3 Graph Convolutional Network (GCN)

The key to semantic code search is to understand the complete functionality of a method.
However, methods are usually not functionally complete but may outsource vast parts of
their functionality to other methods, so that the internal dependencies of methods become
relevant. To represent the functional range of a method, it is common practice to represent
software programs as caller graphs [NGVO0S8]. A Graph Convolutional Network can be
applied to the resulting graph-structured data. Our key idea is to utilize this caller graph to
learn more complete representations of methods for semantic code search.

A GCN is a folding neural network for learning on graph structured data. The most prominent
approach for this task is provided by Kipf et al. [KW16] and offers a modified architecture
for spectral graph convolution on undirected graphs. Each layer can be described as follows:

H* = (D2 AD 2 H'W) (1)

In1, A = A+1 is the graph’s adjacency matrix with added self-connections and I as
identity matrix. D is the diagonal node degree matrix of A. W' is a layer-specific trainable
weight-matrix. Input parameters for H'*! are H' and A, with H® = X and X as feature
matrix. o (+) is a non-linear activation function (in our case ReLU, Rectified Linear Unit).
The GCN proposed by Kipf et al. shows a significant increase in efficiency and improvement
in the classification of nodes and graphs, compared to earlier work in this field [KW16].
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3 Approach

The general approach towards semantic code search is to encode a search query and
code function tokens obtaining embeddings. Then the resulting embeddings are compared,
obtaining a similarity. The following notation is defined:

. Given a search query ¢ and a target function f, a sample is designated (g, f).

. The vocabulary that is created using the training samples and should contain all
relevant words is referred to as V. It consists of the preprocessed natural language
tokens and code tokens.

. A word (or token) is denoted by ¢. This can belong to a query or a method. A list of
relevant tokens from a query or a method, also referred to as a document below, is
denotedby d = [t |t € dand t € V].

. The number of occurrences of a word t in document d is represented as #(z, d).

. The embedding vector of a document d is a real-valued vector and denoted by e.

Given a query g, we rank functions f by the similarity between e, and e .

3.1 Bag-of-Words

As a baseline a Bag-of-Words encoder is used. For this purpose, a vocabulary is generated
from the most frequently occurring words in the entire corpus. Each document gets an
embedding e; € NV, where ey[i] = #(t;,d) and t; = V[i]. Finally, the distances of an
encoded query to the encoded code functions are measured by the angular metric. The
smaller the distance, the better the function is ranked. In the following, the implemented
model is referred to as BoW (Bag-of-Words) encoder.

The data from the CodeSearchNet Challenge is preprocessed by splitting at special characters,
camelcase splitting as well as lowercasing and stopword filtering. The stop word list contains
the keywords of the respective programming language. For example, the document d =
[def, connect_to_db(portNumber)] is transformed to d” = [connect, to, db, port, number].

In further experiments the preprocessing is extended by a Byte Pair Encoding (BPE). For this
purpose, the vocabulary from the training data is created and stored using a Sentencepiece®
model. Before creating the embeddings, the tokens are preprocessed using this model.

In order to distinguish relevant words from unimportant ones, words can also be weighted
using the TF-IDF (Term Frequency-Inverse Document Frequency) scheme. The weight of

6 https://github.com/google/sentencepiece
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a word in the entire corpus tfidf(t,d) is thus calculated as shown below and normalized to
euclidean norm [De20].
#d + 1
thidf(s,d) = #(t,d) - log=——— 2)
(1.d) = #(1.d) S S

The idea of this formula is to combine the frequency of a token # in the document d and the
relative frequency of the documents in which ¢ occurs into a total weight.
The vocabulary is created from all tokens in all documents. The embedding e, contains the
TF-IDF values in the order of the words in the vocabulary. Frequent tokens get low weights
anyway, so a stopword list is omitted. The encoder operating with the TF-IDF weights is
referred to as BoW TF-IDF encoder.

3.2 Neural Bag-of-Words

To improve the results of the BoW TF-IDF encoder, we aimed for a fuzzy matching (e.g.
image matches picture), which we implemented with a Neural Bag-of-Words encoder
(NBoW). Each token ¢ € V gets an embedding e, € R* of k dimensions. The embedding
of a docstring or a method is calculated by averaging its tokens’ embeddings. In addition,
TF-IDF weights are used to weight the embeddings accordingly:

1
= ; tidf(z, d) - e, 3)

The embeddings e, are trained such that matching code and queries are considered similar
while unmatching code and queries are not. The Triplet Margin Loss [VM16] is used for this
in training. It takes a docstring embedding as anchor e, its corresponding code embedding
as positive example e,, and the code embedding of a random other sample as negative
example e,. A margin vy is also used, which is set to 1 by default.

L(a,p,n) = max{llea —epll2 —llea — enll2 + 7,0} “4)

Basically, the loss is zero if e, and e, have a short distance, but e, and e,, have a large
distance.

3.3 GCN-based Neural Bag-of-Words

As a novel approach towards code representation we use Graph Convolutional Networks.
To represent the functionality of a method as accurately as possible, it is important to
understand all other methods called in the method under consideration. To view internal
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dependencies, we consider a method as a node in a caller graph [NGV08]. For learning on
this kind of data we use the modified framework of spectral graph convolutions by T. Kipf
and M. Welling [KW16]. Since this approach can only work on undirected graphs, we also
consider caller graphs as undirected graphs.

f
call call
GCN
call
GCN GCN
1 f2

f fa

Fig. 2: The blue edges show which methods are called by f. In order to be able to display the
functionality of f as accurately as possible, f must be enriched with the information of all called
methods. The GCN (red edges) aggregates the features of the called methods up to f.

To train the GCN, the method’s code is extracted from the caller graphs. To apply the
propagation rule from Equation 1, the code is entered as H. The caller graph’s adjacency
matrix is used as A. As loss function, the Triplet Margin Loss is derived from Equation 4 is
used, where it takes the output of the GCN as anchor, its corresponding docstring embedding
as positive example and the docstring embedding of a random sample as negative example.
In this way, the net tries to approximate the natural language description of a method and
its code. We trained the GCN on 4.292 caller graphs (see Table 1), 100 iterations each,
using a learning rate of 0.004 and Adam optimizer. To generate the embeddings, the Neural
Bag-of-Words from Subsection 3.2 has been used.

4 Caller Graph Generation

We generated caller graphs for 4.197 GitHub repositories corresponding to the CodeSearch-
Net Challenge’s Java subset (Fig. 3 shows a small visualized subgraph). 3.787 caller graphs
are used for training, 189 for testing and 221 for validation of our GCN model (see also
Table 1). The distribution follows the CodeSearchNet Challenge’s original split.

org.redisson.Redisson.createRx

[ org.redisson.Redisson.createReactive ]

{ org.rediszon.config.SingleServerConfig.setAddress ]

org rediszon.Redisson. Nods. start
org.redisson.Redisson.create

Fig. 3: Section of the caller graph generated from a repository called redisson. Rectangles symbolize
methods and edges symbolize calls. We consider caller graphs as undirected graphs.
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We reused the (comment, code) pairs provided in the CodeSearchNet Challenge’s Java subset.
Additionally, we extracted code fragments from the corresponding GitHub repositories to
ensure that the caller graphs are as deep as possible to get the most benefit from using a GCN.
Note that by doing this, we did not filter for the quality criteria used by GitHub for creating
the CodeSearchNet corpus (e.g. removing test methods) [Hul9]. The additional data only
serves to enhance the CodeSearchNet Challenge’s methods. No additional (comment, code)
pairs have been added for training.

Because the reused (comment, code) pairs are provided in a preprocessed way, the additionally
extracted code fragments had to be preprocessed, too. This has been done by applying
camelcase splitting, stopword filtering and lowercasing. We observed a huge amount of
non-latin characters in Unicode representation in both the provided (comment, code) pairs
and the additionally extracted code fragments and therefore transliterated all data into ASCII
representations using Unidecode 7, a Python library.

4.1 Pipeline
Our caller graph generation pipeline consists of the following steps:

1. Repository crawling — The repositories are cloned in the version of the commit sha
contained in the CodeSearchNet Challenge. (comment, code) pairs of one project are
always of the same revision.

2. Code and comment extraction — Additional code and comments are extracted from
the crawled repository using the TreeSitter 8 Java parser.

3. Generate individual caller graphs — For each method, a caller graph is generated
using Doxygen, a software documentation tool. Each caller graph contains the fully
qualified method name and its full call hierarchy, representing each referenced method
as a node.

4.  Caller graph assembly — Combining the separate caller graphs of one repository’s
methods results in a complete representation of its call hierarchy. Additionally, each
node is enriched by the corresponding code and comment.

Finally, a vocabulary is extracted containing all code and docstring tokens over all assembled
caller graphs.

Overall, we assembled 4.197 caller graphs (see Table 1) containing 1.954.908 methods.
Table 2 shows the composition in more detail. It should again be noted that only the
docstrings of the 213.203 methods from the CodeSearchNet Challenge have been used to
train the GCN. Self-extracted docstrings have not been used.

7 https://pypi.org/project/Unidecode/
8 https://tree-sitter.github.io/tree-sitter/
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Train | Test | Valid | Overall
Full CodeSearchNet Dataset | 4.292 | 239 238 4.769
Usable in GCN 3.787 189 221 4.197

Tab. 1: Table showing how many repositories are provided in the full CodeSearchNet Challenge’s
Java subset and how many could actually made usable for the GCN.

Train Test Valid Overall
Methods in caller graph 1.798.287 | 64.674 | 91.947 | 1.954.908
Methods in caller graph (provided by CodeSearchNet Challenge) 198.092 7.605 7.506 213.203
Methods in caller graph (self-extracted) 1.600.195 | 57.069 | 84.441 | 1.741.705
Methods in caller graph without docstring 1.182.338 | 44.028 | 70.733 | 1.297.099
Methods in caller graph with docstring ((comment, code) pairs) 615.949 | 20.646 | 21.214 657.809

Tab. 2: Table showing the final composition of our generated caller graphs under two aspects:
Contained in the CodeSearchNet Challenge / self-extracted and without docstring / with docstring.

4.2 Problems during Caller Graph Generation

During the generation of the caller graphs using our pipeline, several problems occured
in steps 2 and 3, primarily in the context of encoding processed java files. The usage of
non-standard names led to invalid caller graphs that could not be used. Overall, this resulted
in a loss of 305 repositories (see Table 1).

S Experiments

Faced with the CodeSearchNet Challenge [Hul9], we conducted several experiments. The
challenge is about finding the correct code function among 1000 different code snippets
using a given docstring. For this purpose, we implemented different Bag-of-Words models as
well as Neural Bag-of-Words models and compared them to each other. We also conducted
experiments with the Graph Convolutional Network regarding the challenge. To compare the
results to the CodeSearchNet Challenge baseline, we used the test det of the CodeSearchNet
Corpus for the evaluation, although the GCN approach could only use it partially for the
evaluation (see Table 1).

5.1 BoW vs. Neural BoW

The Bag-of-Words and Neural Bag-of-Words approaches are based on training on the train
set of the CodeSearchNet Corpus [Hul9]. For experiments with the Bag-of-Words encoder
a vocabulary is necessary, which has been created from the docstring tokens and code
tokens of the train set. The preprocessing of the tokens is explained in section 3.1. In our
experiments, we created the vocabulary only from tokens that occurred at least twice in
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the corpus. Ignoring stopwords, this resulted in a vocabulary size of 87,582 for Java and
140,002 for Python. The BoW encoder thus received an MRR of 31.55% for Java and
34.67% for Python, see Table 3. To improve our results, we gave the Bag-of-Words encoder
TF-IDF weighting (BoW TF-IDF), which resulted in a significant increase of 20% for Java
and Python. In this case, ignoring stopwords has no longer been necessary and therefore the
vocabulary size was 87,633 for Java and 140,053 for Python. At that time we already had
comparable results to the Neural Bag-of-Words results of the CodeSearchNet Challenge
(NBoW CSNC [Hul9]).

Another experiment was the creation of the vocabulary using Byte-Pair Encoding (BoW
BPE), which in combination with TF-IDF brought an improvement of one to two percent.
Here the size of the model vocabulary generated by training was set to 5000 and the tokens
were encoded using the model. Afterwards, the TF-IDF algorithm was applied. With the
BPE encoding of the tokens the vocabulary size for Java was 19,781 and for Python 15,706.

Our next experiment consisted of a Neural Bag-of-Words encoder with an embedding
dimension of 700, a learning rate of 0.0003, a batch size of 512 and Adam optimizer. With
TF-IDF weighting and the byte-pair encoded vocabulary (NBoW TF-IDF BPE), we achieved
our best result with an MRR of 56.38% for Java and 62.47% for Python, an improvement of
4.98% for Java and 4.38% for Python over the currently published Neural BoW model of the
CodeSearchNet Challenge [Hu19]. Nevertheless, the CodeSearchNet Challenge baseline
remains best with their attention-based model (Self-Att CSNC in table 3). Yet, including
TF-IDF weighting may be an interesting approach for other neural models, too.

Encoder MRR in percentage

Text and Code Java Python
SelfAtt CSNC [Hu19] 58.66 69.22
NBoW CSNC [Hul9] 51.40 58.09
BoW 31.71 34.85
BoW BPE 29.46 28.94
BoW TF-IDF 51.52 58.38
BoW TF-IDF BPE 53.83 59.43
NBoW 51.24 55.49
NBoW TF-IDF 54.59 60.94
NBoW TF-IDF BPE 56.38 62.47

Tab. 3: Mean Reciprocal Rank (MRR) on the test set of CodeSearchNet Corpus in comparison to the
baseline results of the CodeSearchNet Challenge (CSNC) [Hu19]. This is the evaluation of the CSNC
training task, where the models try to rank the correct code snippet among 999 distractor snippets,
when the documentation comment is given as a query.

That the matching of the Neural BoW compared to BoW has become more fuzzy and
therefore better can be seen more clearly in the following example: The sample with the
docstring tokens “move bytes left or right of an offset .” has the following code tokens:
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public void move ( final int i from , final int i position ) {
if ( i position = = 0 ) return ;
final int to = i from + i position ;
final int size = i position > O ? buffer . length - to : buffer . length - i from ;
system . arraycopy ( buffer , i from , buffer , to , size ) ;

Listing 1: Code tokens of a Java function that shifts bytes left or right from an offset

The tokens left and right of the docstring do not appear in the code, but instead the token
position. With the BoW TF-IDF BPE encoder the code was ranked at position 43. This
is due to the fact that the tokens left, right and position are evaluated in the vocabulary
as completely different tokens, which have no relation to each other. Only the dot and the
token move count as real matches. In contrast, the NBoW TF-IDF BPE encoder ranked the
code at position 5, which shows that semantically similar tokens like position, left and right
have been learned while training.

5.2 GCN

To measure the quality of the GCN-based approach, we exclusively used the Java data
sets from the CodeSearchNet Challenge. A caller graph was generated from each project,
according to the process from Section 4, and trained on it. The evaluation is also based

Encoder MRR in percentage

Text and Code Java (GCN)
BoW 29.90
BoW BPE 28.73
BoW TF-IDF 49.27
BoW TF-IDF BPE 52.46
NBoW 48.81
NBoW TF-IDF 54.49
NBoW TF-IDF BPE 55.01
GCN 27.15

Tab. 4: Comparison with GCN on Java test data

exclusively on the Java test data from the CodeSearchNet Challenge. The exact procedure
of the evaluation and calculation of the result is described in subsection 5.1.

Table 4 shows the results of the GCN-based approach compared to the previous approach
and the CodeSearchNet Challenge results. Unfortunately, at 27,15%, the GCN result is the
worst score in this comparison.
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6 Conclusion

In this paper, two approaches on the task of semantic code search have been presented. The
first one is based on a Neural Bag-of-Words encoder. Different variations have been tried
out with TF-IDF weighting and byte-pair encoding. The best model, which used TF-IDF
and byte-pair encoding, achieved an MRR of 56.38% on the Java data set and an MRR
of 62.47% on the Python data set. This exceeds the Neural Bag-of-Words approach of the
Code-Search-Net Challenge [Hu19], but the attention based-model of the Code-Search-Net
Challenge could not be exceeded so far. The other approach dealt with semantic code search
based on functional dependencies. A caller graph has been created for the search in a
repository. This served as input for the GCN. The usage of the GCN, however, showed no
improvement.
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