
A Data Transformation Method Based On Schema
Mapping

You Li(1) ,Dongbo Liu(2),Weiming Zhang(1)

(1)Department of Management Science and Engineering

 National University of Defense Technology, Changsha P. R. China
liyoumail@sina.com

(2)College of Computer Science & Technology

Huazhong University of Science & Technology, Wuhan, P. R. China
ldb0853@sina.com

Abstract: Schema mapping is an important approach to solve the problem of data
integration. This paper introduces a research prototype called SDE, which is a
system for managing and facilitating the complex tasks of heterogeneous data
transformation and integration. We also present a data transformation method
based on schema mapping techniques. By analyzing the mappings and schemas it
can automatically fulfill the task of data transformation and guarantee that the
target result satisfies the target structure and constraints. It allows users to view the
other participants’ information as an extension of its own information system,
without concerning for heterogeneity.

1 Introduction

Currently people have entered the age of “Information Explosion”. The emergence of the
Word-Wide Web (WWW) along with the advances in data storage technology has
resulted in the increments of data source in both size and quantity. These data sources
are characterized in large scale, dynamic, physically distributed, autonomous and
heterogeneous. Consequently we have too many “stovepipes”, which limit the
interoperability. Therefore the problem of data integration and transformation has been
recognized as the key factor of interoperability. Despite their importance and the wealth
of research on data integration, practical integration tools are either impoverished in their
capabilities or highly specialized to a limited task or integration scenario [MH+01]. As a
result, integration and transformation is largely performed manually. Obviously,
manually specifying data integration is a tedious, time-consuming, error-prone, and
therefore expensive process. In web-based applications and services, such a manual
approach is a major limitation due to the rapidly increasing number of data sources.
Hence approaches for automating the data integration tasks as much as possible are
badly needed to simplify and speed up the development, maintenance and use of such
applications.
Schema integration and schema mapping are two important approaches for data
integration [MH+00,HM+01]. Most work on heterogeneous data focuses on the schema
integration problem where the target (global) schema is created from one or more source
(local) schemas (and designed as a view over the sources). The target is created to reflect

67

the semantics of the source and has no independent semantics of its own. Schema
mapping is used to solve the problems of data integration and transformation among
independently created sources by creating mappings among schemas. It is very flexible
and extensible, because the schemas may have different semantics, and may be reflected
in differences in their logical structures and constraints.
SDE (Shared Data Environment) is a prototype system for managing and facilitating the
complex tasks of heterogeneous data transformation and integration. It semi-
automatically supports the user to fulfill the task in a faster and less labor-intensive way.
Since in many cases the target schema does not depend for its definition on the identity
and structure of the source, we choose the schema mapping approach in SDE. We can
use SDE in both data transformation application between two heterogeneous systems
(see Fig. 1) and data integration application based on common representation model (see
Fig. 2). In the “Harmonization Space” in Fig. 2, all the participants are obliged to use the
common representation language to cooperate with others.

The rest of this paper is divided as follows. We provide an overview of SDE in Section 2
followed by a description of the core algorithm of data transformation based on schema
mapping expressions in Section 3. We briefly discuss the related work in Section 4 and
conclusion in Section 5.

2 An Overview of SDE

SDE is a prototype system for managing and facilitating the complex tasks of
heterogeneous data transformation and integration. It supports the generation and
management of schemas, mappings between schemas, and queries between schemas.
Fig. 3 highlights the main components of SDE. It consists of Gateway Generator and
Local Semantic Gateway. Furthermore, Gateway Generator is composed of Schema
Engine and Correspondence Engine, and Local Semantic Gateway is composed of
Mapping Set and Local Query Engine. Global Query Engine is an optional component as
shown in Fig. 2, which is used to deal with the global query in the integration
application. Each management and reasoning component makes use of a database

System
B

System
A

SDE

Figure 1:SDE in Data
Transformation Application

Common

Representation Model

Harmonization Space

SDE

SDE SDE

System C

System B System A

GUI

Figure 2: SDE in Data Integration Application

Global Query Engine

68

management system for storing knowledge gained about schemas and integration. The
following describes the functions of each component.

Schema Engine It makes use of a graphical user interface to show schema information
and the mappings between two schemas generated by correspondence engine. The
engine provides schema and data browsers to elicit and obtain feedback from users and
to allow user to understand the results produced by each components.
Correspondence Engine It mines the schemas for mappings by using heuristic
algorithm and machine-leaning mechanism, then proposes candidate mappings to the
users and finally generates the mapping set according to the user’s feed back.
Local Query Engine It deals with the target queries on the target schema, automatically
generates the source executable queries and finally accomplishes the task of
transforming the result data into the target representation.
Global Query Engine It is an optional component and only exists in the Harmonization
Space as shown in Fig. 2. According to the source descriptions stored in the repository, it
decomposes the global query into several sub-queries and passes them to the local query
engines. Global query engine is also responsible for combining the results and dealing
with the redundancy.
Heterogeneous data transformation can be fulfilled through the Customization Phase and
the Cooperation Phase. In the customization phase, the user prepares the system to be
“mappable”, and in the cooperation phase, the user can communicate with the other
users (according to the “Local As View”).
During the customization phase, the user, through a GUI in schema engine, accesses the
schema information. At the same time, the correspondence engine mines the schemas for
the mappings and proposes candidate mappings to the user. Lastly, according to the
user’s feed back, the gateway generator binds the mappings together with the local query
engine, creates the local semantic gateway.
In the cooperation phase, the local semantic gateway deals with the queries on the target,
then generates the source executable queries and finally fulfils the task of transforming
the result data into the target representation.
SDE allows users to view the other participants’ information as an extension of its own
information system, without concerning for heterogeneity. By analyzing the mappings
and schemas it can automatically generate the source executable query. This is
distinguished from some previous methods, which usually generate the queries or global

Source
Database

Local Query Engine

Transformation
Rules

Local Semantic Gateway

User

Correspondence Engine

Schema View Data View

Gateway Generator

GUI Schema Engine

Cooperation Phase Customization Phase

Query and
Results

Figure 3: The Architecture of SDE

User

69

views in advance. It also guarantees that the target result satisfies the target structure and
constraints. Furthermore, when the data source changes, we need to do nothing but
modify the mappings in local semantic gateway. The changes will not affect other data
sources. So it is adaptive, flexible and extensible.

3 Data Transformation Algorithm in Local Query Engine

We now present the data transformation algorithm, which is used to support the local
query engine. To keep the notation simple, we assume the source and target schema are
represented in the relational model.

3.1 Notation

Before presenting our algorithm, we outline the notation we will be using.
We use the symbol S to denote source schema and the symbol T to denote the target
schema. AS ={s1,…,sp} represents the set of all source attributes, where si is an attribute
in AS. In the same way, AT ={t1,…,tq} denotes the set of all target attributes. The domain
of an attribute si (or ti) is denoted dom(si) (or dom(ti)). We will represent the mapping set
as M={m1,…,mp}, where mi is a mapping denoting the value correspondence between the
schemas. It can be expressed as follows:

),()()()...()(: 21
TS

iqi AtAstdomsdomsdomsdomm ∈∈→××

Example 3.1 Consider the two schemas of Fig. 4. Suppose a user has indicated that the
product of the values in the PayRate(HrRate) and WorksOn(Hrs) attributes should also
appear in Personnel(Sal). This value correspondence is represented by the mapping m1.
And m2 means Student(Name) is correspond to Professor(Name).

)()(*)(:1 SalPersonnelHrsWorksOnHrRatePayRatem →
)()(:2 NamePersonnelNameStudentm →

Let SourceAttrs(M)={s1,s2,…sq} be the set of all source attributes used in M,
TargetAttrs(M)={t1,t2,…tp} be the set of all target attributes used in M. We use QS to

Rank HrRate Company

Name GPA Yr

ProjName Holder Time

Hrs ProjRank Proj Name
ProjName EmpID

Figure 4: Example Schemas

m1

m2
Company

Project

PayRate

WorksOn

Student Addr Sal Name Id

Personnel

Source Target

Project

m3

Name AddrOwner

70

denote the query over source schema, and QT to denote the query over target schema.
Their results are represented as RS and RT, respectively. Attrs(QT) represents the attribute
set used in QT.

3.2 The Core Algorithm

The heterogeneity of the schemas leads to the multiplicity of the mappings. Except for
one-to-one mappings, we also have many-to-one mappings that single target attribute
relates to more than one mapping, and mapping function, such as concat() and
multiply(). We can manage the mapping functions by decomposing and composing their
variables. By using the grouping algorithm, we can solve the problem of many-to-one
mapping. The algorithm divides the set of mappings into subsets, which satisfy certain
constraints and include only one-to-one mappings. Some of the candidate sets can be
mapped into SQL queries. After executing these queries, we use the UNION operation to
horizontally compose the sub-results into one integrated result. Even for the one-to-one
mappings, we also need to find the way of joining the tuples. Joining algorithm uses the
join operator to vertically compose the tuples by mining the data for possible keys and
foreign keys.
We divide the algorithm into five phases including pre-processing, grouping, computing
joining constraints, query execution and results combining.

The main task of the pre-processing phase is to find out the corresponding mapping set
M according to the target query QT and the mapping set M0 in the local semantic
gateway.

{ })()(,| 0
T

iii QAttrsmsTargetAttrMmmM ⊂∈=
As shown in Algorithm 3.1, the function Attrs(QT) finds out the target attribute set A
used in QT. The function Correspond (M0, A) extracts all the mappings whose target
attributes are in A and constructs the corresponding set M.
Example 3.2 Consider the two schemas of Fig. 5. M0 is the mapping set in the local
semantic gateway, M0={m1, m2, m3, m4, m5, m6, m7}. CS={c1, c2, c3, c4} denotes the key
and foreign constraints of source schema. QT is a query over the target.

Algorithm 3.1 – Main Algorithm
Input: Query on Target Schema QT

Set of Mappings M0
Body: A← Attrs(QT)

M ←Correspond (M0 , A)
({M1, M2, …Mk}, G) ←Grouping(M)
RS ←ф
For each Mi

Ji=Joining (Mi,G)
Qi

S=Replace(QT, Mi)+ Ji
Ri

S ← Execute(Qi
S)

RS= RS ∪ Ri
S

Replace(RS, Mi)=RT
Output: Set of Result RT

71

The result of the pre-processing phase is A={t2, t4, t5}, M={m1, m2, m3, m4, m5, m6}.
In the grouping phase, we horizontally divide the mapping set M into subsets in order to
solve the many-to-one problem. These subsets satisfy certain constraints and contain
only one-to-one mappings. At the same time, we associate the source schema with
digraph G=(V, E). Each vertex vi is assigned to a table in source schema. The edge set is
constructed according to the tables’ dependency relationship, i.e. for each pair of vertices
vi, vj in V(G), if the table vi has a foreign key of vj ,then we create an arc <vi, vj>.

Example 3.3 Continuing the example, The candidate set M is grouped into four subsets
in the grouping phase. They are M1, M2, M3 and M4 where M1={m1, m4, m3}, M2={m1,
m4, m2}, M3={m1, m5, m2}, M4={m1, m5, m3}. Fig. 6 is the digraph G constructed
according to the source schema.

In the phase of computing joining constraints, the joining algorithm figures out joining
constraint set Ji according to each Mi.
Example 3.4 Continuing the example, we can get the joining constraint set Ji of each Mi
as follows:

J1={A.s1=B.s3, C.s6 =B.s4}
J2={A.s1=B.s3, C.s6 =B.s4}

QT: SELECT G.t2, H.t4, H.t5
 FROM G, H
 WHERE G.t1=H.t3

B

A

F

E

C D

A.s1=B.s3

B.s4=C.s6 B.s4=D.s10
E.s11= F.s12

Figure 6: The digraph G

t6

s1 s2

s3 s4 s5

s6 s7 s8

s9 s10

s11

A

D

E

C t2t1G

Source Target

B

s12 s13 F

t4 t5 t3 H

m1

m2

m3

m4

m5

m6

m7

Figure 5: Example Schemas

c3

c2

c4

c1

c5

72

J3={A.s1=B.s3, B.s4 =D.s10}
J4={A.s1=B.s3, D.s10 =B.s4, C.s6 =B.s4}

In the query execution phase, the function Replace(QT, Mi) transforms the QT into the
source query according to each subset Mi. By adding the joining constraints Ji generated
in previous phase, we get the local executable query Qi

S. Symbol Ri
S denotes the result

set of function Execute (Qi
S).

Example 3.5 In the example 3.2, for each Mi, we get the following local executable Qi
S

that transformed from the target query QT.

In the last phase, we use the union operator to horizontally combine Ri

S into one
integrated result RS. Lastly, we use function Replace() to transform RS into RT. The
function Replace() is also responsible for managing the mapping functions such as
concat(), multiply() by means of decomposing and composing their variables.
Example 3.6 We consider the mapping m1 in Fig. 4. During the QT to QS transformation,
the Replace() function decomposes the attribute Personnel(Sal) into WorksOn.Hrs and
PayRate.HrRate, and composes their results into Personnel(Sal) conversely.

3.3 Grouping Algorithm

In the grouping phase, we use the grouping algorithm to horizontally decompose the
mapping set M into several subsets Mi, which satisfies certain constraints and only
contains one-to-one mapping. In this way, we change the problem of many-to-one into
one-to-one problem.
The decomposed subsets Mi should satisfy the following constraints.

1) ΦmsTargetAttrmsTargetAttrmmMmm klklikl =∩≠∈∀)()(),(,
2))(..),(kik

T msTargetAttrttsMmQAttrst ∈∈∃∈∀

3) TrueGvvExistPathVvv ji
k

subji =→∈∀),,(_, 0
The first and the second constraints require that each target attribute in QT should relate
and only relate to one mapping. We assume that Vk

Sub is a set of tables that contain
source attributes of the decomposed subset Mk, Vk

Sub ⊂ V(G). G0 is an underlying graph
of digraph G. The third constraint requires each pair of vertices should be connected, i.e.
each pair of tables in Vk

Sub should have direct or indirect dependency relation.

Q1
S: SELECT A.s2, C.s7, C.s8 FROM A, B, C

WHERE (A.s1=B.s3) AND (C.s6 =B.s4)

Q2

S: SELECT A.s2, C.s7, B.s5 FROM A, B, C
WHERE (A.s1=B.s3) AND (C.s6 =B.s4)

Q3

S: SELECT A.s2, D.s9, B.s5 FROM A, B, C
WHERE (A.s1=B.s3) AND (D.s10 =B.s4)

Q4

S: SELECT A.s2, D.s9, C.s8 FROM A, B, C
 WHERE (A.s1=B.s3) AND (C.s6 =B.s4) AND (D.s10 =B.s4)

73

The process of grouping can be divided into four steps as follows.
Step 1:Grouping the target attributes. We extract all the target attributes of M, and
construct the target attribute set A. By using the function NumofMapping() to figure out
the number of mappings relates to each target attribute in A, we divide A into subsets Aα
and Aβ. Aα consists all the target attributes that only each one relates to one mapping. Aβ
consists all the target attributes that each one relates to more than one mapping.
Example 3.7 In the example of Fig.5, we can get A={t2, t4, t5}, Aα={t2}, Aβ={t4, t5}.
Step 2: Grouping mapping set. Firstly we choose the mappings whose target attributes
are in Aα and construct mapping set Mα, which only contains one-to-one mappings. For
each element t in Aβ, we select the mappings whose target attributes are t, and construct
the mapping set Mi

β, respectively.
Example 3.8 Continuing the example of Fig. 5, we get n0=2, Mα={m1}, M1

β={m4, m5,
m6}, M2

β={m2, m3}.
Step 3: Reconstructing the mapping set. By extracting one mapping from each Mi

β
respectively, we construct Mk

γ. Mγ={Mk
γ| k=1,2,…,m0} is the set of Mk

γ. m0 is the order

of Mγ, and can be got by the formula ∏
=

=
0

1
0 ||

n

i
iMm β . Lastly, for each Mk

γ, we get Mk by

using the union operation, i.e. Mk=Mk
γ ∪ Mα. Mk will satisfy the constraints (1) and (2).

Example 3.9 Continuing the example, we can get 623||
2

1
0 =×== ∏

=i
iMm β . Mγ={M1

γ,

M2
γ, M3

γ, M4
γ, M5

γ, M6
γ}, M1 ={m1, m4, m2}, M2 ={m1, m4, m3}, M3={m1, m5, m2},

M4={m1, m5, m3}, M5={m1, m6, m2}, M6={m1, m6, m3}.
Step 4: Refining Mk. In order to make the output grouping set Mgroup satisfy the

Algorithm 3.2 – Grouping Algorithm
Input: Set of Mappings M

Source Schema S
Body: A=TargetAttrs(M)
 Aα={ti | Num0fMappings(ti)=1}
 Aβ=A- Aα

 Mα={mi | mi∈M, TargetAttrs(mi) ⊂ Aα}
 n0=Num(Aβ)
 for each t∈Aβ

Mi
β={mj| mj∈M, t∈TargetAttrs(mj)} (i=1,2,…n0)

∏
=

=
0

1
0 ||

n

i
iMm β

Mγ={{m1,m2,…mn0} | mi∈Mi
β,i=1,2,…n0} ={Mk

γ| k=1,2,….m0}
Mk=Mk

γ ∪ Mα
Mgroup← ф

 G=(V, E)=Digraph(S)
 G0=Graph(G)

 For each Mk
Vk

Sub=SourceTables(Mk)
If for all vi, vj∈Vk

Sub Path_Exist(vi, vj, G0)=True
then Mgroup = Mgroup ∪ {Mk}

Output: Mgroup ={M1, M2,….Mn}
 Diagraph G

74

constraint (3), we must refine its element Mk. Function Digraph(S) is used to mine the
source schema for dependency information, and associate the source schema with
digraph G=(V, E).
For each subset Mk, we construct the set Vk

Sub of tables that contains the target attribute of
Mk. G0 is an underlying graph of digraph G. In order to make Mk satisfy the third
constraint, we use the function Path_Exist(vi, vj, G0) to figure out if there is a path
between each pair of vertices in Vk

Sub. If there is, then Mgroup = Mgroup ∪ {Mk}, otherwise
eliminate Mk. Here the output mapping set Mgroup satisfies all the constraints.
Example 3.10 Continuing the example, we get the result as follows: V1

Sub ={A, C, B},
V2

Sub ={A, C}, V3
Sub ={A, D, B}, V4

Sub ={A, D, C}, V5
Sub ={A, F, B}, V6

Sub ={A, F, C}. We
eliminate M5 and M6 because F in V5

Sub and V6
Sub are isolate. Finally we get Mgroup={M1,

M2, M3, M4}.

3.4 Joining Algorithm

In the grouping phase, we horizontally divide the set of mappings into subsets, which
satisfy certain constraints and contain only one-to-one mappings. Even for the one-to-
one mappings, we also need to find the way of joining the tuples. Joining algorithm uses
the join operator to vertically combine the tuples by mining the data for possible keys
and foreign keys. The main task of joining algorithm is to compute the joining constraint
set Ji according to each Mi.

For each mapping set Mi, Joining algorithm generates the joining constraint set Ji. The
process of computing joining constraints can be divided into four steps as follows.

Algorithm 3.3 – Joining Algorithm
Input: Set of Mappings Mi

 Diagraph G
Body: VSub=SourceTables(Mi)
 For all vi, vj∈VSub

PathA=AllPath(vi,vj,G)
 V0=Vertex(PathA)
 H=G(V0)

 For H
 Vroot={vi | id(vi)=0, vi ∈VSub }
 Vother= VSub - Vroot
 E’<—ф

 For each vi∈Vroot

For each vj∈Vother
 PathS=ShortPath(vi, vj,PathA)
 Epath=GetEdges(PathS)
 E’= E’ ∪Epath

Ji<—ф
For each ej∈E’

 cj= Key_constraint(ej, meta_data)
 Ji=Ji∪{ cj }
Output: Joining Constraints Ji

75

Step 1: Construct induced subdigraph H of diagraph G. For each input mapping set Mi,
we construct the set VSub of tables that contains the target attribute of Mi. Symbol PathA is
used to denote all of the paths that exists between each pair of vertices in VSub. We use
Vertex() to extract all of the vertices in PathA, and construct V0 as the set of these
vertices. H is an induced subdigraph of G, which is induced by V0.
Step 2: Constructing the subset of tables Vroot and Vother. In subdigraph H, subset Vroot
contains the vertices of VSub, whose in-degree are equal to zero, while subset Vother
contains all the other elements of VSub.
Step 3: Constructing edge subset E’. For each element vi in Vroot and each element vj in
Vother, we use the function ShortPath() to find the shortest path from the set of path
PathA.and denote it as PathS. By using the function GetEdges() to extract all of the edges
in PathS, we construct the edge subset E’.
Step 4: Constructing the joining constraint set Ji. For each edge ej=<vk, vl> in E’, we use
Key_constraints() to mine the source schema for dependency information, and generate
the joining constraint cj, which is used to construct the joining constraint set Ji. Joining
constraint cj is the key or foreign key relationship between the vertices vk and vl.
Example 3.11 Continuing the example, we can get table 1.

We now present a typical example to illustrate our joining approach.
Example 3.12 Consider the two schemas of Fig. 4. QT is the query over the target.

The following table shows the result we can get during the process.

4 Related Work

We have already described the differences between classical schema integration, which
is primarily a schema design problem, and the schema mapping problem we have
addressed here.
The Clio tool is a collaboration between IBM Almaden Research Center and the
University of Toronto [MH+01,HM+01]. It can automatically generate the source
executable query according to the mapping set and the user’s requirement. It is
extensible and flexible. The Clio algorithm can be divided into four phases: Group Value
Correspondence, Select Candidate sets, Rank all Covers and Generate Query. In the
phase of Grouping, the Clio algorithm finds all the possible mapping subsets that each

Mi VSub Vroot Vother E’ Ji
M1 {A,C,B } {A} {C,B} {(A,B), (B,C)} {A.s1=B.s3, C.s6 =B.s4}
M2 {A,C} {A} {C} {(A,B), (B,C)} {A.s1=B.s3, C.s6 =B.s4}
M3 {A,D,B} {A} {D,B} {(A,B), (B,D)} {A.s1=B.s3, B.s4 =D.s10}
M4 {A,D,C} {A} {C,D} {(A,B), (B,C)},

(B,D)}
{A.s1=B.s3, D.s10=B.s4,
C.s6 =B.s4}

QT: SELECT Personnel.Sal, Project.ProjName
 FROM Personnel,Project
 WHERE Personnel.ID=Project.EmpID

Table 1. The Values of Variables in Step 3 and Step 4

76

subset contains at most one mapping per target attribute of Q. As a result, it generates
lots of candidate sets. In the third phase, we attempt to find the subset Γ of the candidate
sets that covers all mappings in the corresponding set M (that is, every mapping in M
appears at least once in Γ). If there is more than one cover, Clio ranks them and picks
out the better one, and build the query from the selected cover.

Comparing with Clio, SDE algorithm finds all the possible mapping subsets that each
subset contains one and only one mapping per target attribute of Q. As a result, it
reduces the quantity of candidate sets. We finally combine all the subsets and build the
query from it. For there is only one cover, the Clio’s ranking phase is no longer needed.
We assume n, m is the source attributes and the schema attributes of query Q,
respectively, k is the quantity of the subsets generated in the grouping phase. For
example, if n=5,m=4, the mappings between the source schema and the target schema is
shown in Figure 9, then we can get kSDE and kClio as follows.

Variable Value Variable Value
M0 {m1 ,m2, m3} M {m1 , m3}

 Mgroup {{m1, m3}} Vsub {Project, WorksOn, PayRate}
PathA {WorksOn-Project,

WorksOn-PayRate,
WorksOn-Student-PayRate}

V0 {Project, WorksOn,
PayRate, Student}

Vroot {PayRate,Project} Vother {WorksOn}
PathS

(WorksOn
, Project)

{WorksOn-Project}

PathS

(WorksOn,
PayRate)

{WorksOn-PayRate}

E’

{(WorksOn,Project),
(WorksOn,PayRate)}

J1

{Project.ProjName=
 WorksOn.Proj,
PayRate.Rank=

 WorksOn.ProjRank}

G

H

QS

SELECT Project.ProjName,WorksOn.Hrs, PayRate.HrRate
FROM Project,WorksOn,PayRate
WHERE (Project.ProjName=WorksOn.Proj) AND

(PayRate.Rank=WorksOn.ProjRank)

Table 2. The Values of Variables in Example 3.12

Company

PayRate
Student

WorksOn

Project

Figure 7: Digraph G

PayRate

Student

WorksOn

Project

Figure 8: Induced Subdigraph H

77

23261635

221
1
2

3
3

1
2

2
3

3
3

1
2

1
3

2
3

1
5

1
2

1
1

1
1

1
1

=+++++=+++++=

=×==

CCCCCCCCCk

CCCCk

Clio

SDE

The following tables show the max number of the candidate sets generated by Clio and
SDE in the case of n=4, n=5, n=6, respectively. We use m as the x-axis and k as the y-
axis. We can see from it that the more target attributes we have in QT, the more efficient
of our SDE.

5 Conclusions

We have discussed SDE, a system for managing and facilitating the complex tasks of
heterogeneous data transformation and integration. We also present a data
transformation method based on schema mapping techniques. It can automatically
generate the source executable query according to the mapping set and the user’s
requirements. This is distinguished from some previous methods, which usually generate
the queries or global views in advance. Furthermore, it is adaptive, flexible and
extensible for it only needs to modify the mappings in the local semantic gateway when
data source changes.

Bibliography

[DD99] R. Domenigand, K. R. Dittrich,. An Overview and Classification of Mediated Query

Systems. In SIGMOD Record, 28(3), 1999.

[DD+01] AnHai Doan, P. Domingos, A. Halevy. Reconciling Schemas of Disparate Data

Sources: A Machine-Learning Approach. In SIGMOD Record, 2001.

Figure 10: when n=4

Figure 12: when n=6 Figure 11: when n=5

Figure 9. Example Schemas

Target Source

78

[DF02] M. Dell’Erba, O. Fodor, F. Ricci, H. Werthner:. Harmonise: A Solution for Data

Interoperability. IFIP I3E 2002.

[DR02] Hong-Hai Do, Rehard Rahm,. COMA-A System for Flexible Combination of Schema

Matching Approaches. In Proc. of the Int’l Conf. on Very Large Data Bases (VLDB),
Hong Kong, China, 2002.

[Le00] Alon Y. Levy. Logic-Based Techniques in data integration. In Logic Based Artifical

Intelligence, Jack Minber(ed.). Kuwer, 2000.

[LM+95] A.Y.Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering Queries Using

Views. In Proc. of the ACM Symp. On Principles of Database Systems (PODS), San
Jose, CA, May 1995.

[FD+02] O. Fodor, M. Dell’Erba, F. Ricci, A. Apada and H. Werthner. Conceptual

Normalisation of XML Data for Interoperability in Tourism. In Proceedings
“Workshop on Knowledge Transformation for the Semantic Web (KTSW)”, ECAI,
2002.

[FK+03] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa. Data Exchange: Semantics and Query

Answering. In ICDT, pp. 207-224, Jan 2003.

[HG+96] J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yerneni, M. Breuning and V. Vassalos.

Template-Based Wrappers in the TSIMMIS System. In Proc. ACM SIGMOD
Conference, 1996.

[HM+99] L. M. Haas, R. J. Miller, B. Niswonger, M. Tork Roth, P. M. Schwarz, and E. L.

Wimmers. Transforming Heterogeneous Data with Database Middleware: Beyond
Integration. IEEE Data Engineering Bulletin, 22(1):31- 36, 1999.

[HM+01] Mauricio A. Hernández, Renée J. Miller, Laura M. Haas. Clio: A Semi-Automatic

Tool For Schema Mapping. In SIGMOD, 2001.

[MB+01] J.Madhavan, P.A.Bernstein, W.Rahm, Generic Schema Matching with Cupid, VLDB

2001.

[MH+00] R. J. Miller, L. M. Haas, and M. Hernhdez. Schema Mapping as Query Discovery. In

Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pages 77-88, Cairo, Egypt,
September 2000.

[MH+01] R. J. Miller, M. A. Hernández, L. M. Haas, L. Yan, C. T. Howard Ho, R. Fagin, L.

Popa. The Clio Project: Managing Heterogeneity. In SIGMOD Record, 30 (1), 2001.

[PV+02] L. Popa, Y. Velegrakis, M. Hernandez, R. J. Miller, R. Fagin. Translating Web Data.

In VLDB, pp. 598-609, Aug 2002.

[RB+01] Erhard Rahm, Philip A. Bernstein. A Survey of Approaches to Automatic Schema

Matching. In VLDB, 10:334-350,2001.

[RS97] M. Tork Roth, and P. Schwarz. Don’t Scrap It, Wrap It! A Wrapper Architecture for

Legacy Sources. In Proc. VLDB Conference, 1997.

79

