The vital few and trivial many: An empirical analysis of the
Pareto Distribution of defects

Timea Illes-Seifert, Barbara Paech

Lehrstuhl fiir Software Systeme, Institut fiir Informatik
Im Neuenheimer Feld 326
69120 Heidelberg
illes-seifert@informatik.uni-heidelberg.de
paech@informatik.uni-heidelberg.de

Abstract: The Pareto Principle is a universal principle of the “vital few and trivial
many”. According to this principle, the 80/20 rule has been formulated with the
following meaning: For many phenomena, 80% of the consequences originate
from 20% of the causes. In this paper, we applied the Pareto Principle to software
testing and analysed 9 open source projects (OSPs) across several releases. The
results show that a small number of files account for the majority of defects, even
across several releases. In contrast, there is no evidence that this small part of files
containing most of the defects also makes up only a small part of the system’s code
size. While this is not the first study about the Pareto Principle, it adds to the body
of empirical body of knowledge wrt. software defects.

1 Introduction

The Pareto Principle, also known as the 80-20 rule has been originally analysed by
Vilfredo Pareto [Re05] who observed that 80% of property in Italy was owned by 20%
of the Italian population. Juran [JG88] generalized this principle he called the “vital few
and trivial many”, stating that most of the results in any context are raised by a small
number of causes. This principle is often being applied in several contexts, e.g. in sales,
stating that 20% of the customers are responsible for 80% of the sales volume. One of
the first studies that translated this principle to the software engineering area is reported
in [En79]. The author analyses the distribution of defects in an operating system
developed at IBM laboratories. The distribution of about 430 defects over about 500
modules has been analysed and confirms the Pareto Principle, i.e. approximately 80% of
the defects were contained in 20% of the modules.

Two main hypotheses related to the Pareto Principle form the basis of this study. First,
we want to analyse whether a small part of files accounts for the majority of defects.
Second, if this is the case, we want to determine whether this small part of files also
constitutes a small part of the system’s code size. Knowing the validity of the Pareto
Principle in the testing context is very valuable for testers, because they can focus their
testing activities on the “vital few” files accounting for most of the defects. In addition,
the Pareto Principle can form the basis for defect prediction algorithms, as presented in
[KZ+08] which predicts the subset of the most fault-prone files. From the research

151



perspective, this study increases the empirical body of knowledge in the area of defect
distribution. First, by replicating empirical studies conducted before, more general
conclusions can be derived. In any discipline, progress involves the building of a solid
empirical body of knowledge [BL99]. Second, to our knowledge, this is one of few
studies that focus on the analysis of the Pareto Principle in detail, including data from 9
large OSPs. The availability of OSPs enables to conduct such a comprehensive study.

The reminder of this paper is organized as follows: The design of our study is described
in Section 2, including hypotheses, characteristics of the analysed projects, as well as
data collection procedures. In Section 3, the results of our empirical study are presented.
In Section 4, we discuss the threats to validity and in Section 5 an overview of related
work is given. Finally, Section 6 concludes the paper.

2 Study Design

In this paper, we use the definition of defects and failures provided in [IS07]: A defect
or fault is “a flaw in a component or system that can cause the component or system to
fail to perform its required function. A defect, if encountered during execution, may
cause a failure of the component or system”. Thus, a failure is the observable “deviation
of the component or system from its expected delivery, service or result”. Defect count
is the number of defects identified in a software entity. In this paper, we count the
number of defects of a file. The file a is more fault-prone than the file b if the defect
count of the file @ is higher than the defect count of the file . In the subsequent Sections
details on the experiment are described.

Hypotheses. In this paper, the following hypotheses related to the Pareto Principle will
be analysed:

e Hypothesis 1, Pareto distribution of defects in files: A small number of files
accounts for the majority of the defects.

e Hypothesis 2, Pareto distribution of defects in files across releases: If the
Pareto Principle applies to one release, then it applies to all releases of a
software project.

e Hypothesis 3, Pareto distribution of defects in code: A small part of the
system’s code size accounts for the majority of the defects.

e Hypothesis 4, Pareto distribution of defects in code across releases: If the
Pareto Principle applies to one release, then it applies to all releases of a
software project.

Subject Projects. In this study, we analysed 9 OSPs. As required in [Ha08], we applied
the following criteria to select the OSPs: (1) The project is of a large size in order to
permit significant results. Thus, the size of the selected projects ranges from about
70.000 LOC to about 240.000 LOC. (2) A well documented defect history is available.
We searched for projects for which a bug tracking system is available. (3) The project is
mature so that effects will have appeared if present. According to this criterion, we
selected projects with a number of check-ins (we call them history touches - HT) in a

152



versioning control system (VCS) greater than 50.000. (4) The source code is available
for at least one release. We included one project, OSCache that does not fulfil the criteria
defined above, in order to compare the results obtained for all other projects with a
smaller but mature' project. The URL of all projects are given in the footnote?.

OS-Project Project since # Defects #HTs LOC # Files
1. Ant (1.7.0) 2000 4804 62763 234253 1550)
2. FOP (0.94) 2002* 1478 30772 192792 1020)
3. CDK (1.0.1) 2001* 602 55757 227037 1038]
4. Freenet (0.7) 1999* 1598 53887 68238 464
5. Jetspeed2 (2.1.2) 2005 630) 36235 236254 1410
6. Jmol (11.2) 2001* 421 39981 117732 332]
7. Oscache (2.4.1) 2000 2365 1433] 19702 113
8. Pentaho (1.6.0) 2005* 856 58673 209540 570]
9. TV-Browser (2.6 ) 2003 190 38431 170981 1868]

Table 1: Subject Programs

A * behind the data in the column “Project since” denotes the date of the registration of
the project in SourceForge®. For the rest, the year of the first commit in the versioning
system is indicated. The column “OS-Project” contains the name of the project followed
by the project’s latest version for which the metrics “LOC” (Lines of Code) and the
number of files have been computed. The 3rd and the 4th columns contain the number of
defects registered in the defect database and the number of HTs extracted from the VCS.

Data collection. Similarly to the approach used in [FPG02], [CMO03], [SZZ05], we
combine the information contained in VCSs with information contained in defect
tracking systems in order to compute the defect count per file. For this purpose, we
extract the information of the VSC into a history table of a data base. Additionally, we
extract the defects of the corresponding project into a defect table of the same data base.
Then, we use a 3-level algorithm. Direct search: First, we search for messages in the
history table containing the defect-IDs from the defect table. Messages containing the
defect-ID and a text pattern, e.g. “fixed” or “removed”, are indicators for defects that
have been removed. Keyword search: In the second step, we search for keywords, e.g.
“defect fixed”, “problem fixed”, within the messages which have not been investigated
in the step before. Multi-defects keyword search: In the last step, we search for
keywords which give some hints that more than one defect has been removed (e.g. ,,two
defects fixed).We used SPSS*, version 11.5, for all statistical analyses.

'The project exists since 2000.

*1. http://ant.apache.org/, 2. http://xmlgraphics.apache.org/fop/index.html, 3.
http://sourceforge.net/projects/cdk/, 4. http://freenetproject.org/whatis.html, 5.
http://portals.apache.org/jetspeed-2/, 6. http:/jmol.sourceforge.net/, 7.
http://www.opensymphony.com/oscache/, 8. http://sourceforge.net/projects/pentaho/, 9.
http://www.tvbrowser.org/

*http://sourceforge.net/

4 SPSS, http://www.spss.com/

153



3 Results

3.1 Hypothesis 1: Pareto distribution of defects in files

The first hypothesis related to the 80/20 rule concerns the distribution of defects in files.
All OSPs presented in Section 2.2 have been analysed graphically in order to verify this
hypothesis. Figure 1 shows the Alberg Diagram suggested by Fenton and Ohlsson
[FOO00] for the graphical analysis of the Pareto Principle. Thus, files are ordered in
decreasing order with respect to the number of defects. Then the cumulated number of
defects is plotted on the y-Axis of the Albert diagram relative to the percentage of files
(plotted on the x-Axis). For example, in the case of the Jetspeed2 project, 80% of the
defects are contained in 27% of the files. Figure 1 shows the distribution of defects of all
analysed OSPs within one Alberg diagram.

Haa
00 = - = - —
>~ &NT
L Apache FOP
= o | & COK
s ;
i r 4
o vl il
k] el e
¥ I
= ,r Iy et
5 L ]
TVELeT
=] -
[= R
a 0 & 0 B 10 120
13 =T33 % ol files

Figure 1: Pareto distribution of defects for each OSP in an Alberg diagram

Approximately 80% of the defects are concentrated in a range of 1.3% (in the case of the
TVBrowser project) to 27.2% (in the case of the Jetspeed2 project) of files. Thus, the
TVBrowser project shows the strongest focus of defects on a very small part of the files.
Only one project shows a concentration of 80% of defects in clearly more than 20% of
the files. This is the case of the Jetspeed2 project, with 27.2%. In case of the Pentaho
project, 21.9% of the files contain 80% of the defects that can be considered much closer
to the 20% formulated in the hypothesis.

Based on this analysis, Hypothesis 1 can be largely confirmed for OSPs: 4 small number
of files account for the majority of the defects in OSPs. 7 OSPs show an even stronger
focus of the majority of defects on a small part of files than required by the 80/20-rule.
This is the case of TVBrowser, Jmol, OSCache, CDK, Ant and Freenet. Two other
projects are close to the 80/20 rule.

154



3.2 Hypothesis 2: Pareto distribution of defects in files across releases

In order to analyse this hypothesis, the percentage of the most fault-prone files
containing 80% of the defects has been computed for several releases of the OSPs. Table
2 shows the results. The first column contains the name of the OSP, followed by the
number of the analysed releases. The next two columns indicate the absolute and,
respectively, the relative number of releases for which about 80% of the defects are
concentrated in a small percentage (below 25%) of files. The column “Range” indicates
the range for the concentration of defects. For example, the concentration of defects in
the ANT project ranges from 8.23% to 24.97% of the files depending on the analysed
release.

Pareto distribution holds 100% of defects contained
for ... in less than 25% of the files.
This holds for ...
Number of Absolute # Percentage
analysed Absolute # | Percentage of of analysed | of the
OSP releases of analysed | the analysed | Range releases analysed
releases releases releases
8.23% - 24.97%
1. ANT 5 5 100% 4 80%
2. ApacheFOP 4 4 100% 12.02% - 24.79% 1 25%
3.CDK 7 7 100% 3.14% - 20.56% 7 100%
4. Freenet 6 6 100% 1.95% - 17.29% 2 17%
5. Jetspeed2 3 2 66.67% 19.03% - 67.73% 0 0
6. Jmol 9 9 100% 1.52% - 17.42% 8 89%
7. OSCache 4 4 100% 3.95% - 13.98% 4 100%
8. Pentaho 3 2 66.67% 9.12% - 35.12% 1 33%
9. TVBrowser 4 4 100% 2.69% - 29.32% 3 75%

Table 2: Pareto Distribution of defects in files across releases

For 7 of the 9 analyses OSPs, 80% of the defects are contained in less than 20% of the
most fault-prone files. The concentration of the defects ranges from 1.52% in the case of
the Jmol project to 35.12%, in case of one analysed release of the Pentaho project. One
exception is the Pentaho project. In one of the analysed releases, the defects are not
concentrated on a few files but rather distributed among 67.73% of the files. In many
releases of the analysed OSPs, we observed a high concentration of defects on a very
small number of files. Thus, we additionally determined the percentage of files that
account for 100%, i.e. for all defects in a system. The last two columns in Table 2 show
the absolute and relative number of releases for which 100% of defects are contained in
about 20 % of the files. Again, we used 25% of files as a threshold. In two thirds of the
analysed releases of the OSPs (30 of 45), 100% of the defects are concentrated in less
than 25% of the files. In 27 of 45 analysed releases, 100% of the defects are even
contained in less than 20% of the files.

Based on the results of these analyses, it can be concluded that the Pareto Principle
largely persists across several releases of a software project. The concentration intensity
can vary slightly from release to release.

155



3.3 Hypothesis 3: Pareto distribution of defects in code

In order to analyse the Pareto hypothesis for code, the percentage of code that accounts
for 80% of the defects contained in the most fault-prone files has been computed.
Consequently, this analysis determines if the small part of the files responsible for most
of the defects also represent a small part of the code. The results of this analysis are
shown in Figure 2. On the X-axis, the analysed releases of the OSPs are indicated’. The
line chart and the bar chart indicate for each release the percentage of files and the
corresponding percentage of code that account for approximately 80% of the defects. For
example, in the case of the Jmol 9 release, 10.18% of the files that account for 80% of
the defects make up 16.93% of the system’s code. Similarly, in the case of the Ant 1.6.1
release, 24.97% of the files that account for 80% of the defects make up 89.42% of the
system’s code.

100.00% T
90.00%

80.00% T
70.00%

60.00% T
50.00% T
40.00% +
30.00% -
20.00% T
10.00% -

% of code vs. % of files containing 80% of the
defects

0.00% -

OSP releases

[ % of code —— % of files

Figure 2: Pareto distribution of defects in code

The concentration of the majority of the defects on a small part of the system’s code is
true only for a small part of the OSP releases. About 5 releases show a concentration of
defects on less than about 25% of the code (TVBrowser 2.0, Jmol 9, CDK 1, TVBrowser
1.0, TVBrowser 0.9). Most of the analysed releases show a distribution of the defects on
about 30% to about 60% of the code. For a small part of the releases, the defects are
distributed on almost the whole system.

Based on this analysis, the hypothesis has to be rejected. A small part of the code
accounts for the majority of the defects only in a few of the analysed cases. In addition,
there is no evidence for the contrary hypothesis: If a small number of files account for

> This analysis comprises all releases of the OSPs for which the source code is available.

156



the majority of the defects, it is because these files contain the most code. This statement
is true for a small part of the analysed OSPs only.

3.4 Hypothesis 4: Pareto distribution of defects in code across releases

Since the Pareto hypothesis on the distribution of defects in code has been rejected, the
hypothesis 4 has to be adjusted. For all cases, in which the Pareto hypotheses could be
confirmed: Does the Pareto distribution of defects in code hold for all or at least for the
most releases of an OSP? Despite the fact that Hypothesis 3 has been rejected, this
research question is important to be analysed. If this is the case, it means that for a small
part of OSPs the Pareto Principle is valid and it is worthwhile to perform further
analyses in order to determine characteristics of such programs and to find out factors
that favour such a distribution.

@ 100.00% T
has 88.63%
5 90.00% |
g
@ 80.00%
=]
£ 70.00% +
'€ 00% 63.24%
1]
€ 60.00% T
Qo wn
S5
3 .% 50.00% T
= T
5 40.00%
R
@ 30.00% T
>
3 20.00% 7
Q
o
5 10.00%
® 0.00% -
. o
CDK 2005 | CDK 2006 CDK 1 Jmol 9 Jmol 10 Jmol 11.2 |tbrowser 0.9 |tbrowser 1.0 |tbrowser 2.0 tbrowser 2.6
‘_ % of code | 30.78% 44.27% 18.09% 16.93% 44.65% 63.24% 24.53% 20.38% 7.88% 88.63%
‘—0—% of files 17.44% 20.56% 7.29% 10.18% 14.44% 17.42% 7.74% 4.30% 2.69% 29.32%

OSP releases

‘- % of code —— % of files ‘

Figure 3: Pareto distribution of defects in code across releases

Figure 3 shows the distribution of 80% of the defects in code across releases for all OSPs
for which at least one release shows a concentration of most of the defects on less than
20% of the code. The bar chart shows the percentage of code that contains 80% of the
defects, and the line chart shows the percentage of files accounting for 80% of the
defects. In the case of the CDK and the Jmol project, only a single release shows a
concentration of most of the defects on a small part of the code. For the other analysed
releases, the defects are distributed on about 30% to 63% of the code. In the case of the
TVBrowser project, three of four analysed releases show a concentration of most of the
defects on a small part of the code. The last analysed release, however, shows a high
distribution of the defects on about 88% of the code.

157



Based on the results of this analysis, the hypothesis can not be confirmed. A
concentration of most of the defects on a small part of the code in one release does not
mean that this concentration will persist in consequent releases.

4 Threats to validity

Internal validity is concerned with the degree to which conclusions about the causal
effect of the independent variables on the dependent variable can be drawn [WR+00].
One threat to validity is that not all developers deliver meaningful messages when they
check-in files. Developers, for example, can also check in files without specifying any
reason, even though they had corrected a defect. Thus, the defect count of a file can be
higher than the defect count computed by our algorithm. This concern is alleviated by
the size of the analysed OSPs. External validity is concerned with the degree to which
results can be generalized [WR+00]. This issue is alleviated by the number and diversity
of the analysed OSPs. The more OSP programs show the same characteristics, the higher
the probability that other OSP programs would also show these characteristics.
Additionally, we choose programs from different application domains in order to
increase the representativeness of the study results. Furthermore, analyses of additional
programs that are intended in our future work would increase the external validity.

5 Related Work

There are several studies that analyse the Pareto distribution of defects in files. In
contrast to our study, most of the studies concentrate on analysing few or one releases of
a system or do not detail the results per release. Exceptions are the studies reported in
[OWO02] and in [KZ+08]. The Pareto distribution of defects in files is largely confirmed
by most of the authors. The extent of the concentration varies from program to program.
This is similar to the results obtained by studying OSPs in this paper and in [KZ+08]. In
addition, the type of analysed defects differs from study to study. Roughly, the defect
types can be categorized into pre-release’ and. post-release’ defects. The results of the
studies in literature are summarised in Table 3.

In [OW02] and in [KZ+08], the Pareto distribution across several consecutive releases is
reported. In [OWO02], the authors observe that the concentration of defects on a small
part of files becomes stronger when the system matures. In [KZ+08], the authors report
that for all analysed OSPs, 10% of the files account for 73%-95% of the defects. The
results of the latter study are similar to the results reported in this study: The
concentration remains low across nearly all releases of the analysed OSPs, but the extent
to which defects are concentrated on a part of the files varies from release to release.

SPre-release defects are defects reported before release, usually by developers and testers.
"Post-release defects are defects reported after release, usually reported by developers, testers and in some case
also by customers.

158



Ref. Characteristics of the Relationship Kind of defects analysed
analysed projects

[En79] One release of the operating 21-78 pre-release defects: defects found during
system DOS/VS system testing

[ARO7] Three projects from a large 20— 87 (P1), 20 — 87 (P2) post-release defects®
company in the 20 -80 (P3)
telecommunications domain. 20-63 (P1),20 - 70 (P2), pre-release defects

20-70 (P3)

[OA96] Two consecutive releases of a 20 - 60 pre-release and post-release defects
telecommunication switching altogether: defects reported during function,
system system and site tests, as well as during the

first moths in operation®'

[KK96] 5 consecutive releases of a 38-80 pre-release and post-release defects
commercial altogether: defects reported as “Failure
telecommunications system Reports” reported from validation teams and

from customers

[FOO00] Two releases of a major 20-60 pre-release and post-release defects
commercial system developed altogether: defects reported during function
at Ericsson Telecom AB test and system test by testers

10 — 100 1% release post-release defects: defects reported during
10 — 80 2™ release operation®!

[MK92] Two distinct data sets: 20-65 pre-release and post-release defects
command and control altogether: defects recorded during system
communication system, integration and test phases and for the first
medical imaging system year of program deployment

[OW02] Thirteen releases of a large 10 - 68 pre-release and post-release defects
industrial inventory tracking 10 -100 (for the last four altogether: all kinds of defects recorded in
system releases)’. one of these phases: development, unit

testing, integration testing, system testing,
beta release, controlled release, and general
release.

pre-release, 36 — 80, 3 — 80 separate analysis for pre-release and post-

(in later releases), post- release defects.

release 1/2 - 80

[KZ+08] | Seven open source programs 10 — 73%-95% pre-release and post-release defects

altogether

Table 3: Pareto analyses in literature

Similarly to the results of this paper, there is little evidence for the Pareto distribution
of defects in code reported in literature. The strongest concentration of defects on a
small part of a system’s code size is reported in [OWO02]. 10% of the files that account
for a range of 68% - 100% of defects (depending on the analysed release) contain about
35% of the system’s code. But the percentage of the code contained in the most fault-
prone files always exceeded the percentage of the files that contained the defects. The
results reported in [FO00], [AR07], and [KK96] do not provide evidence for the Pareto
distribution of defects in code as well. This is the case for both pre-release and post-
release defects as reported in [AR07]. The only study analysing the Pareto distribution of
defects in code across several releases is reported in [OWO02]. In contrast to a decreasing
concentration of defects on a small part of files from release to release, the
corresponding percentage of code (contained in those fault-prone files) does not show
such a trend. 10% of the most fault-prone files that account for the most of the system’s

81t is not clear, whether post-release defects include the defects reported by the test team only or by the
customers, t0o.
Concentration of defects on a small number of files gets increases as system matures.

159



defects make up about 35% of the code mass. This result is similar to the results
obtained in this paper.

The authors in [NZ+07] aim at predicting vulnerable components. In their case study,
they report on the distribution of vulnerabilities across the Mozilla code base with the
result that 4% of the components are involved in security fixes. There are several other
studies that focus on predicting the defect count of a software entity using several
indicators. Amongst others, in [GK+00], [AB06], [KA+98], [OWBO05], [BOWO06],
[SCO06], history characteristics (e.g. a file’s age or previous defects) and product
characteristics (e.g. a file’s code complexity) are combined in order to predict the defect
count. In [ZNZ08], indicators like complexity, problem domain, evolution and the
development process are evaluated with respect to their ability to predict defects. A huge
amount of research papers analyse the influence of other metrics of a software entity and
its defect count, amongst others in [DP02], [NBZ06], [ZPZ07] and [GFS05]. In contrast
to our study, the aim of these studies is defect prediction. Our main goal is to analyse the
Pareto Principle on a large data set in order to increase the empirical body of knowledge
in this area. If confirmed, the Pareto Principle can be used as basis for defect prediction
as presented in [KZ+08].

6 Summary and Conclusions

In this paper, we presented the results of an empirical study on the distribution of defects
in software.In contrast to most of the studies considering a small number of commercial
systems, we analysed the fault distribution in a wide range of open source projects across
several releases. From the research point of view, this study increases the empirical body
of knowledge. Replication of studies is advocated in order to gain confidence in the
results instead of relying on single studies with specific context [Pf05], [BL99].

Two of our initial hypotheses could be confirmed: A small number of files accounts for
the majority of the defects (Hypothesis I). This is true even across several releases of
software (Hypothesis 2). The results widely correspond to the findings reported in
literature.

Similarly to the results reported in literature, we did not find evidence for our initial
hypotheses concerning the distribution of defects in code (Hypothesis 3). Defects
concentrate on a small part of the files but they do not concentrate on a small part of the
code. One reason for this could be that a considerable part of an application’s logic is
concentrated on few files that are error-prone and not well understood. These files are
candidates for refactoring and should be considered by maintainers. In addition, for
fault-prone parts of the code, the unit test coverage criteria should be intensified. These
files should also be higher prioritized during regression testing.

One of the goals of the study has been to analyse the Pareto Distribution of defects. If
confirmed, we expected to be able to give advices to testers on which parts of the
software under test to concentrate their limited resources. Despite of the confirmation of
the Pareto Distribution for files, defects are not concentrated on a small part of code.

160



Consequently, detecting which 20% of the files account for most of the defects is useful
for testers, but not enough to prioritize testing activities because these 20% of the files
possibly account for a high part of the code and hence of an application’s logic. For this
purpose, additional indicators, e.g. a file’s age or its complexity should be used in
combination with a Pareto analysis in order to give reliable advices to testers on which
parts of the software testing activities should be focused. Algorithms like those presented
in [KZ+08] that determine the most fault-prone files are also only useful when
considering the amount of code covered by these files. The Pareto analysis is useful for
maintainers too. The parts of code responsible for a high amount of software’s defects
are candidates for refactoring.

Acknowledgements

We thank the anonymous referees for their valuable comments.

References

[ABO6] Arisholm, E.; Briand, L. C.: Predicting fault-prone components in a java legacy
system. In Proceedings of the 2006 ACM/IEEE international Symposium on
Empirical Software Engineering, ISESE '06. ACM, New York, NY, 2006, 8-17.

[ARO7] Andersson, C.; Runeson, P.. A Replicated Quantitative Analysis of Fault Distributions
in Complex Software Systems. IEEE Trans. Softw. Eng. 33, 5, May. 2007.

[BL99] Basili, V. R.; Lanubile, F.: Building Knowledge through Families of Experiments.
IEEE Transactions of Software Engineering, Vol 25, Issue 4, 1999, 456-473.

[BOWO06] Bell, R. M.; Ostrand, T. J.; Weyuker, E. J.: Looking for bugs in all the right places. In
Proceedings of the 2006 international Symposium on Software Testing and Analysis
(ISSTA '06). ACM, New York, 2006, 61-72.

[CMO03] Cubranic, D.; Murphy, G.C.: Hipikat: Recommending pertinent software development
artefacts. 25™ International Conference on Software Engineering (ICSE 2003),
Portland, Oregon, 2003, 408-418.

[DP02] Denaro, G. and Pezze, M.: An empirical evaluation of fault-proneness models. In
Proceedings of the International Conference on Software Engineering (ICSE),
Orlando, Florida, USA, 2002, 241-251.

[En79] Endres, A.: An analysis of errors and their causes in system programs. SIGPLAN Not.
10, 6 (Jun. 1975), 1975, 327-336.

[FOO00] Fenton, N. E.; Ohlsson, N.: Quantitative Analysis of Faults and Failures in a Complex
Software System. IEEE Trans. Softw. Eng. 26, 8 (Aug. 2000), 2000, 797-814.

[FPG02]  Fischer, M.; Pinzger, M., Gall, H.: Populating a release history database from version
control and bug tracking systems. Proceedings of the International Conference on
Software Engineering (ICSE 2002), Orlando, Florida, USA, 2002, 241-251.

[GFS05]  Gyimothy, T.; Ferenc, R.; Siket, I.: Empirical Validation of Object-Oriented Metrics
on Open Source Software for Fault Prediction. IEEE Trans. Softw. Eng. 31, 10, 2005,
897-910.

[GK+00] Graves, T. L.; Karr, A. F.; Marron, J. S.; Siy, H.: Predicting fault incidence using
software change history. IEEE Transactions on Software Engineering, vol. 26, 2000.

[Ha08] Hatton, L.: The role of empiricism in improving the reliability of future software,
Keynote Talk at TAIC PART 2008, http://www.leshatton.org/Documents/TAIC2008-
29-08-2008.pdf, last visited October 2008.

161



[1S07]

[JG88]
[KA+98]

[KK96]

[KZ+08]

[MK92]

[NBZ06]

[NZ+07]

[0A96]

[OW02]

[OWB05]

[Pf05]

[Re05]

[Sc06]

[SZZ05]

[WR+00]

[ZNZ08]

[ZPZ07]

Standard glossary of terms used in Software Testing Version 2.0 (December, 2nd
2007), Produced by the ‘Glossary Working Party’ International Software Testing
Qualifications Board, http://www.istqb.org/downloads/glossary-current.pdf

Juran, J.M.; Gryna, Jr.F.M.: Quality Control Handbook (4th edition), McGraw Hill,
1988.

Khoshgoftaar, T. M.; Allen, E. B.; Halstead, R.; Trio, G. P.; Flass, R. M.: Using
Process History to Predict Software Quality. Computer 31, 4, 1998, 66-72.

Kaaniche, M.; Kanoun, K.: Reliability of a commercial telecommunications system.
In Proceedings of the the Seventh international Symposium on Software Reliability
Engineering (ISSRE '96), IEEE Computer Society, Washington, DC, 207, 1996.

Kim, S.; Zimmermann, T.; Whitehead, E. J.; Zeller, A.: Predicting faults from cached
history. Proceedings of the 1st Conference on India Software Engineering Conference
ISEC, Hyderabad, India, 15-16, ACM, New York, 2008.

Munson, J. C.; Khoshgoftaar, T. M.: The Detection of Fault-Prone Programs. /EEE
Trans. Softw. Eng. 18, 5 (May. 1992), 1992, 423-433.

Nagappan, N.; Ball, T.; Zeller, A.: Mining metrics to predict component failures. In
Proceedings of the 28th international Conference on Software Engineering ICSE '06.
ACM, New York, NY, 2006, 452-461.

Neuhaus, S.; Zimmermann, T.; Holler, C.; Zeller, A.: Predicting vulnerable software
components. In Proceedings of the 14th ACM Conference on Computer and
Communications Security, Alexandria, Virginia, USA, ACM, New York, NY, 2007,
529-540.

Ohlsson, N.; Alberg, H.: Predicting Fault-Prone Software Modules in Telephone
Switches. IEEE Trans. Softw. Eng. 22, 12 (Dec. 1996), 886-894, 1996.

Ostrand, T. J.; Weyuker, E. J.: The distribution of faults in a large industrial
software system. SIGSOFT Softw. Eng. Notes 27, 4 (Jul. 2002), 2002, 55-64.
Ostrand, T. J.; Weyuker, E. J.; Bell, R. M.: Predicting the location and
number of faults in large software systems. IEEE Trans. Software Eng., vol.
31, 2005, 340-355.

Pfleeger, S. L.: Soup or Art? The Role of Evidential Force in Empirical
Software Engineering. IEEE Softw. 22, 1 (Jan. 2005), 2005, 66-73.

Reh, J.F.: Pareto's Principle - The 80-20 Rule, How the 80/20 rule can help you be
more effective, about.com Management,
http://management.about.com/cs/generalmanagement/a/Pareto081202_2.htm, last
visited, December 2008.

Schréter, A.; Zimmermann,T.; Premraj, R.; Zeller, A.: If Your Bug Database Could
Talk. Proceedings of the 5th International Symposium on Empirical Software
Engineering, Volume II: Short Papers and Posters, 2006, 18-20.

Sliwersky, J.; Zimmermann, T.; Zeller; A.: When do changes induce fixes? On
Fridays. Proceedings of the International Workshop on Mining Software Repositories
(MSR 2005), St. Louis, Missouri, USA, 2005.

Wohlin, C.; Runeson, P.; Host, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A.:
Experimentation in Software Engineering: An Introduction. Kluwer
Academic Publishers, 2000.

Zimmermann, T.; Nagappan, N.; Zeller, A.: Predicting Bugs from History. In
Software Evolution, 2008, 69-88.

Zimmermann, T.; Premraj, R.; Zeller, A.: Predicting Defects for Eclipse. Proceedings
of the Third International Workshop on Predictor Models in Software Engineering
(PROMISE), Minneapolis, USA, 2007.

162





