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Abstract: Architecture Stratification is a technique for describing and developing
complex software systems on multiple levels of abstractions. In this paper we present
an approach and a corresponding implementation—in the form of a Fujaba plugin—
for refining models including their behavior. Our plugin enables Fujaba models to
be annotated with refinement directives and supports the definition of corresponding
refinement transformations with a combination of “Story-Driven-Modeling” and Java
code. In this paper we motivate architecture stratification, describe how to define and
use transformations, and present a case study.

1 Introduction

Today’s large software systems have reached such a level of complexity that a single ar-
chitectural view is not sufficient anymore to appropriately capture their high-level archi-
tecture, detailed design, and low-level realization. If a system is described from a bird’s
eye view—using a very high-level architecture description—many important details re-
garding performance, local extensibility, etc. remain hidden. If, however, one chooses a
view revealing much more detail so as to allow the above properties to be evaluated, the
complexity will become unwieldy and it is then difficult to see the wood for the trees.

Architecture stratification is an approach that connects multiple views on a single system
with refinement translations, so that each view completely describes the whole system on
a particular level of abstraction. This way, single levels do not only present an optimal
mix of overview and detail for various stakeholders, but they also separate and organize a
system’s extension points, patterns, and cross-cutting concerns [AKO03].

We subsequently describe how to use our Fujaba [NNZ00] plugin SPin for architecture
stratification (section 2) and present a corresponding case study (section 3). Finally, we
address related and future work (sections 4 & 5) and conclude in section 6.
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2 Architecture Stratification with SPin

Figure 1 illustrates the basic idea of Archi- most abstract stratum
tecture Stratification: The linear arrange- = e = =
ment of interconnected system descriptions I

at increasing levels of abstraction. While in 0
principle, both downward- (development)

and upward- (re-engineering) generation P\ = -~
directions are possible, in this paper we are 5 o ss stratified

focusing on the downward direction only. architecture

Note that the vertical dimension of Figure 1
does not represent a time line. All lev- ,,,os,co,,c,e,e T /

els coexist and are available for inspection
concurrently, at any time. Ultimately, our
goals are full traceability and both down-
ward and upward propagation of edits at
any level, however, our current technol-
ogy only supports downward propagation
of changes.

uﬂnu

Figure 1: Architecture Stratification

Our plugin does not only transform models (e.g., class diagrams) but also any associated
code (e.g., method implementations). We can therefore refine a very simple—but fully
functional—system at the top level, into a complex one that supports more functionality
and exhibits more non-functional properties (e.g., distribution). This most detailed system
description can then be used to create an executable system by virtue of the Fujaba code
generation engine.

2.1 Refinement Annotations

Which of the model elements in a stratum should be refined into a realization at the next
level below, is governed by so-called refinement annotations. In a refinement step these
then trigger corresponding transformation rules. As these rules typically need to consider
multiple model elements at a time and sometimes even need information that is not present
in the model, the annotations feature links to other model elements (e.g., enumerating the
observers for a given subject in the context of the Observer pattern [GHIV94]) and can be
parameterized using basic types (e.g., a string specifying the name of a class that will be
generated).

We chose a notation for refinement annotations similar to UML collaborations occurring
in UML class diagrams. Both notations share the need to specify which elements form a
structure and what role the referenced elements play. In our case, we need to designate
which element(s) should be involved in a single refinement transformation, which ele-
ment(s) are to be used as a parameter to the transformation, and what their corresponding
role is. Compared to stereotypes which are commonly used to guide transformations, our
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refinement annotations enable much more explicit control and a visual approach to speci-
fying transformation parameters. Our notation is obviously less space efficient than stereo-
types, but we support a “collapsed” presentation mode that is visually as non-intrusive as
stereotypes.
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Figure 2: Editing Refinement Annotations

SPin provides a dedicated annotation editor to support the introduction and parameter-
ization of annotations. Figure 2 shows a screenshot of the annotation editor displaying
the parameters of an “Observer” annotation. The annotation is parameterized with one
basic type “observerClassName” (see window ‘“Parameter Editor”), designating the name
of the to be generated Observer interface, and three links (see window “Annotation Edi-
tor”). The “concreteObserver” link picks the element that should play the role of the ob-
server, whereas “state” picks the subject’s attribute, that will provide the “to be observed”-
information. Finally “notifyLocation” specifies a method that should notify all observers
after a subject’s state changes.

Once a model is completely annotated, the user may use the context menu of an annotation
to initiate the corresponding transformation process. SPin, however, also supports the
automatic transformation of all annotations of the same kind within a stratum. Further
automation, such as a persistent selection of a set of annotations for a stratum and/or the
recursive unfolding of strata until the most detailed level has been reached, is planned for
future versions of SPin.
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2.2 Refinement Rules

Refinement rules, triggered by an unfolding of an annotation, are completely user defined.
SPin only provides the machinery for rule authors to create rules and stratum designers
to use the rules. The rules themselves are part of a rule library, which can be extended
dynamically while the Fujaba environment is being used.

Rules are specified using either Java code or Story Driven Modeling (SDM) [NNZ00]
diagrams, which results in a maximum of flexibility but also limits the automatic support
(e.g., regarding tracebility) the system may provide (see also section 5).

SPin equips the Fujaba UML
class diagram editor with a  RRSingleton::apply (element: ASGElement): Boolean

“create rule”-action, which y

invokes a “new rule” dialog.

After entering the rule name annotation := (RAnnotatior) element \ [ failure ]

and further data, SPin auto- name == this.getName() @
matically generates the body false

guccess ]

of an apply method. This
method’s pattern matChing ( UMLFactory umlFactory = UMLFactory.get() ;nn;)t;tion @
part—the one that checks y \:j—

whether the rule is applica- rue
ble or not—is specified us-
ing Fujaba’s SDM capabli-
ties, resulting in a semi-graphical implementation which is more self-explanatory and eas-
ier to maintain than Java code. In Figure 3, the first check makes sure that the model
element to be transformed indeed has the correct annotation (“Singleton” in this case). If
s0, a reference to a UMLFactory is created, so that the rule author may easily create new
UML elements within the core transformation part (not yet specified in Figure 3). Finally
the annotation is removed from the diagram, since at this point in time the annotation has
served its purpose. The rule author may still change any part of the above matching pat-
tern, but it is provided automatically as a default, since this is how the basic structure of
most refinement rules looks like.

Figure 3: Generated apply-method

In our example, the rule’s precondition has to be enhanced to check whether the annotation
is bound to a UML class. The transformation code itself then adds an attribute holding
the singleton-instance, a private constructor and a get-method that returns the singleton-
instance. Once finished, the rule can be exported to the rule library, so that it may be used
to transform a UML class into a “singleton”.

Note that while our discussion and examples discuss classes and class diagrams only, SPin
may be used to transform any element of a model based on Fujabas ASG-metamodel.
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3 Case Study

We now demonstrate the utility of SPin by considering an example system that simulates
a quality control assembly line. In order to keep the example small, it only involves the
application of three design-patterns: “Singleton”, “Observer”, and “Visitor” [GHIV94]. In
general, Architecture Stratification is about more than mere “pattern application” [AKO03].

3.1 System Description

Figure 4 shows a high-level view on the system’s structure. The system has a main quality
control unit (QualityControl) that must be accessible as a singleton instance (hence the
corresponding annotation). It controls an assembly line that consists of a variable number
of control stations (ControlStation). These stations check items (abstract class Item) passed
to them by the assembly line. Our example features one concrete item type only (Screw).

/ - S \‘ ControlStation ItemTest
| Singleton i
N 9 " controlStations | ¢ |p : String - collapsed =
S - 0.* ; ;
i - . = notifyLocation collapsed [+
QualityControl | | has {ordered} @ process (item:ltem ) : Boolean y p
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concreteObserver — - has
tester|0..1 state
¥ processes ) item
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& ID : Strin, - abstractVisitor ’ P
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% testitem (item:ltem ) : Void |- % weight : Float -
A KickOffVisitor _ clement
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\
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Figure 4: Case Study: Most Abstract Stratum

Control stations feature a tester which checks the current item. For each observed item a
test report (ItemTest) is created. Testers come in two kinds: manual testers (here, Human)
that are able to perform very complex tests, and automatic testers, e.g., industry-robots
that are specialized for testing a single property of an item (here, Scale).

Let’s have a closer look at the Visitor-annotation: It features link “element”, specifying
which class(es) is/are the element(s) to be visited, and link “abstractVisitor”, specifying,
which class is the superclass of all concrete visitors. The latter are referred to by the two
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“concreteVisitor’ links and designate methods that need to receive an implementation in a
lower stratum. Additionally link “kickOffVisitor” defines the method that shall invoke the
visitor.

3.2 Refining the System

Unfolding the “Singleton” annotation requires no further work—any required additional
artifacts, including code snippets, are automatically generated. In contrast, the generated
Observer and Visitor realizations are, of course, not complete on their own. For instance,
subjects of the Observer pattern (here, ControlStation) need to send out notification mes-
sages to all their observers. In our example, method process (item:Item) of class
ControlStation is extended with a corresponding not i fyObservers-call (see link “no-
tifyLocation”). In previous versions of SPin this had to be done manually and the extra
code did not survive re-generation steps. A better solution is to provide the extra code
as a parameter to the “Observer”-annotation. Due to space constraints we cannot further
discuss this alternative and other options.
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Figure 5: Case Study: Most Detailed Stratum

3.3 Generating the System

Now that the most detailed stratum has been generated, Fujaba’s codegenerator may be
used to generate executable code from it, i.e., convert all model-related constructs, such as
associations, etc. into plain Java code and combine it with the code that has been accumu-
lated by all strata refinements.
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Note that a complete code generation is possible only because of three properties of our
approach: First, the most abstract stratum already contains code that defines the behavior
for a simple system at this high level of abstraction. Second, subsequent transformations,
affect both model elements and associated code. Third, any code that cannot be automati-
cally created by transformations rules is supplied by the stratum designer at the appropriate
stratum, i.e., appropriate level of abstraction. In other words, both the structure and the
behavior of the system are modified and extended in a stepwise and synchronized manner.

4 Related Work

Together Architect! provides an extendable template-based mechanism for defining pat-
terns, which can then be applied to class diagram elements. In contrast to SPin, however,
these transformations are executed in a step by step fashion, whereas SPin automates the
transformation of all annotations of one kind and will eventually support a fully automated
application of all applicable transformations from top to bottom.

OptimalJ? from Compuware is a Java-oriented model driven development environment
specialized to generate J2EE applications. Although model-to-model transformations are
supported, true multi-level modeling in the style of Architecture Stratification is not avail-
able. Optimall] imposes a rather guided development process on its users, which first have
to select a type of application and then have to complete the model templates created by
OptimalJ. The transformation process then generates the code and other needed artifacts.
This approach is useful, if the needed application types are supported by Optimall, but
fails if requirements dictate alternative solutions.

The model transformation framework Mercator [WJ04], which, similar to SPin, also uses
UML class diagrams and corresponding model annotations to control transformations, fol-
lows the UML standard for profiles, and hence uses UML stereotypes for annotations.
Our notation, similar to UML collaborations, is more expressive, directly indicating all
involved elements in a visual fashion.

The “Bidirectional Object-Oriented Transformation Language” (BOTL) [MBO03] also uses
stereotypes as annotations. The pattern matching process in the source model is similar
to ours whereas the generation of elements in the target model is always specified visu-
ally. Although this is also possible with SPin using Fujaba’s SDM graph transformation
scheme, our practice has shown that Java code often enables a more direct and concise
definition of transformations. Automatic code generation within BOTL is planned but not
implemented yet.

The MDA tool ArcStyler? follows the MDA approach where a platform independent model
(PIM) is completely parameterized and then transformed to a new platform specific model
(PSM). If this approach is used in a staged, incremental manner, it very much resembles
the abstraction level stratification approach of SPin. ArcStyler defines transformations us-

'http: //www.borland.com/us/products/together/
2http://www.compuware.com/products/optimalij/
3http: //www.interactive-objects.com/
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ing “cartridges” and UML stereotypes may be used to guide the transformation process.
In addition so called marks are used to allow further parameterization of the model. Trans-
formations are defined using the script language JPython, which is similar to our Java code
definitions, however, less than the SDM capabilities that are available in Fujaba and SPin.

Microsoft’s vision for model driven development is based on domain specific languages
(DSLs) instead of UML. So called Software Factories, detailed in [GS03], are presented
as an extension to integrated development environments and add support for DSLs and
model transformations. Both techniques share the ability to define customization points.
However, Software Factory’s so called “variability points” only add to the domain specific
behavior of frameworks, which need to (pre-)exist. Software Factories are supposed to
support advanced ways of performing multi-level modeling with a grid of models in the
future, but many of the details and the implementation status remain unclear.

Czarnecki et al. propose the novel concept of “staged configuration” for feature model-
ing [CHEO4]. This multi-layered modeling approach exhibits some similarities to strati-
fication. The annotations within a stratum can be compared to the features which can be
selected in staged configurations. While annotations allow more flexibility, staged config-
urations are easier to create and use as the features are limited to a defined set and less
complex than arbitrary refinement transformations.

Almeida et al. approach system design through multiple levels of abstraction, not dissimi-
lar to Architecture Stratification [ADPT05]. They present a number of “design operations”
for describing the transformations between abstraction levels. They, however, are not con-
cerned with an automated transformation process, as the selection of elements plus the
invocation of transformations are performed manually.

5 Future Work

The current version of SPin offers a limited set of transformation rules only. Although
these are user extensible, the utility of SPin would be increased if it already came with
a rich set of ready-to-use rules. We plan to apply Architecture Stratification to much
bigger and more complex examples and correspondingly expect to identify and implement
a richer library of SPin transformation rules.

Employing stratification in its intended form with SPin is currently hindered by the fact
that only manual, stepwise initiations of transformations are supported. In order to fully
automate the generation of a complex system from a simple system, it is necessary to
automate the process of unfolding annotations. This also includes the specification of the
order in which annotations are to be unfolded. This ordering, however, is neither difficult
to work out, nor should it be part of an automated process. Annotations exhibit natural
dependencies and lend themselves to generate levels of system concerns [AKO3]. It is
therefore the task of the system architect to select which of the annotations are addressed
at each specific abstraction level. As a result, future versions of SPin should provide
a configuration system, allowing users to specify and store their annotation processing
orders.
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The current release of SPin specifies transformation rules with imperative instructions, in-
cluding unconstrained Java code. This implies that there is no easy way to automate trace-
ability, e.g., for forward updates or backward-navigation. We are therefore investigating
the usage of graph rewriting approaches [K6n05], e.g., Triple Graph Grammars [Sch94].
In addition to providing a way to automatically maintain consistency links, such bi-direct-
ional transformation rules would also represent an attractive facility for reverse engineer-
ing, i.e., starting from a complex system and simplifying the system by either using refine-
ment rules in the “reverse” direction and/or creating and applying dedicated “abstraction
rules”.

SPin will significantly benefit from the new features of Fujaba 5. For instance, the then
available support for multiple projects will enable developers to create rules in one project
and immediately apply them in another. Moreover, users will then be able to more easily
navigate back and forth between different strata.

6 Conclusion

In this paper we have presented the Fujaba plugin SPin as developed at the department for
“Metamodeling and its Application” at the Darmstadt University of Technology. We have
documented our progress in providing tool support for Architecture Stratification, present-
ing a prototype—drawing on Fujaba features such as Story-Driven-Modeling—that pro-
vides promising development prospects. Since SPin is able to dynamically integrate new
rules, the development of the main system model and corresponding rules, can proceed in
an interleaved and very interactive manner.

Of particular value is our approach of transforming both model elements and associated
code in sync with each other. We can thus obtain a fully specified, complex system by start-
ing from a simple system and applying a succession of refinement steps. Refinement rules
are user-definable, typically using a convenient mix of SDM (for pattern matching) and
Java (for an unconstrained definition of transformations). Their usage is indicated by us-
ing a concise—collaboration-like—notation for refinement annotations that enables trans-
formation parameters to be specified both visually (through labeled links to any modeling
element, including attributes and methods) and non-visually (through primitive parameter
types entered into corresponding dialogs).

Despite the limitations of the current Fujaba version, i.e., the lack of support for multiple
projects (strata) and, consequently, missing support for maintaining consistency between
model contents (strata elements), we have managed to draw on its fine parts, e.g., Story-
Driven-Modeling for pattern matching and an adaptable UML metamodel for supporting
refinement annotations, to create a prototype supporting Architecture Stratification.
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