Do not use this gear with a switching lever!
Automotive industry experience with semantic guides

Jiirgen Angele', Hans-Peter Schnurr!

! ontoprise GmbH, Amalienbadstr. 36, 76227 Karlsruhe, Germany
{schnurr, angele}@ontoprise.de
http://www.ontoprise.de

Abstract: One major trend may be observed in the automotive industry: built-to-
order. This means reducing the mass production of cars to a limited-lot-production.
Emphasis for optimization issues moves then from the production step to earlier
steps as the collaboration of suppliers and manufacturer in development and
delivering. Thus knowledge has to be shared between different organizations and
departments in early development processes. In this paper we describe a project in
the automotive industry where ontologies have two main purposes: (i) representing
and sharing knowledge to optimize business processes for the testing of cars and
(ii) integration of life data into this optimization process. A test car configuration
assistant (semantic guide) is built on top of an inference engine equipped with an
ontology containing information about parts and configuration rules. The ontology
is attached to the legacy systems of the manufacturer and thus accesses and
integrates up-to-date information. This semantic guide accelerates the
configuration of test cars and thus reduces time to market.

1 Introduction

The scenario for this process was given by the business processes in the automotive
industry around the testing of cars in the technical development department. To ensure
quality improvement and innovation, a car manufacturer develops test cars. These test
cars are continuously reconfigured and then tested with this new configuration.
Reconfiguration means changing the engine, changing the gear, changing the electric,
i.e. changing all kinds of parts. For changing parts a lot of dependencies between these
parts have to be taken into account. In many cases these dependencies are only known by
certain human experts and thus require a lot of communication effort between different
departments of the manufacturer and between suppliers. Very often test cars have been
configured which did not work. So making such dependencies exploitable by computers
allows for reducing the error rate in configuring test cars with a lower communication
effort. The information about car parts is stored in a considerable amount of databases.
These databases have to be accessed during query-time to ensure actuality of data.
During this project, an ontology has been developed which serves as a communication
medium between engineers, serves as a knowledge model representing these complex
dependencies and serves as an integration model for different data sources. In the
following the last aspect is described in detail.

48

2 The Ontology

The base ontology very strongly relies on parts which are arranged in a part-of hierarchy
and their properties. The instances, i.e. concrete values are most often gained from parts
list in the legacy systems. Our ontologies are represented in F-Logic [KL95]. Basic
concepts in the specific are represented as concepts in F-Logic and are arranged in an is-
a-hierarchy. Concepts may be described by attributes and relationships to other concepts.

//schema
component:: DEFAULT ROOT_CONCEPT.
component[has_part=>>component; is_part=>> component; horsepower=>INTEGER].
// instances and relations
tdi_engine:component. valve2:component. pump3:component.
tdi_engine[has_part->>valve2; has_part->>pump3; horsepower->340].
//rules
FORALL X,Y Y[is_part->>X] <- X [has_part->>Y].
//queries
FORALL X <- X:component.

In this example we have defined a component as a basic concept. A component has a
relationship has_part to another component and an attribute horsepower. Then we create
an instantiation of a component #di_engine being a specific engine. Concrete instances
valve2, pump3 are given for concept component. A rule is used to describe the inversity
of has_part and is_part. With a query we ask for all components in the model.

el

£ —

-

|

]—,-i

Fig. 1: An excerpt of the automotive ontology represented in OntoStudio

OntoBroker, our reasoning system, provides means for efficient reasoning in F-Logic
[De99]. OntoBroker performs a mixture of forward and backward chaining based on the
dynamic filtering algorithm [KL86] to compute (the smallest possible) subset of the
model for answering the query. During forward chaining not only single tuples of
variable instantiations but sets of such tuples are processed. It is well-known that set-
oriented evaluation strategies are much more efficient than tuple oriented ones. The
semantics for a set of F-Logic statements is then defined by a transformation process of
F-Logic into normal logic (Horn logic with negation) and well-founded semantics
[GRS91] for the resulting set of facts and rules and axioms in normal logic. In figure 1,
an excerpt of that ontology is shown in a part-of view in our tool OntoStudio. It shows
that e.g. a gear is part of a car and the switching lever is a part of the gear. For motor
some attributes like maximum power, type etc. are shown.

49

An ontology without rules describes only simple relationships between concepts like a
part is a part of another part, a part is connected to another part etc. More complex
relationships have to be described by rules and constraints.

3 Data Source Integration

Besides serving as a common communication language and representing expert
knowledge in our scenario ontologies serve as an integration means of different legacy
systems. The ontology is used to reinterpret given information sources in a common
language and thus to provide a single view to different data sources. In our scenario the
components data and the configuration data is already handled widespread in different
departments and in different information sources like CAD-, CAE- or CAT-systems or
ERP/PPS-applications, databases etc. All these IT systems accompany the whole PLM-
process [Be90], beginning with the product design and ending with the product release.
Our test configuration system, and thus our ontology system must access this live
information to be up-to-date, to avoid inconsistent data. The ontology could now catch
up these different sources and integrate them in a common logical model. This goes
much beyond building just connectors [Kr99] between applications. The goal of
integration is to consolidate distributed information intelligently, free of redundancy and
providing users and applications a simple access to information without considering the
underlying data structure or system. In our case we already have such a commonly
accepted logical model: the automotive ontology. This ontology describes schema
information and is not yet populated by instances. This means e.g. that there exists a
concept motor with attributes name, cylinders, type etc. But there is no information about
concrete motors like TDI V6, 6 cylinders, fuel type super etc. available. This is achieved
by attaching the ontology to one or more of the existing information sources. In the
following we exemplify the mapping to a relational database.

3.1 Database schema import

The first step to connect an ontology to a database is importing the database schema and
visualize it in our ontology management environment OntoStudio, the successor version
of the ontology engineering environment OntoEdit [Su02]. Beneath relational database
schemas, OntoEdit has also import filters for other schemas like RDF [St01] or OWL. In
our example we will show the attachment of a database table motor to our ontology. The
database table is given in figure 2. It contains information about motors like fuel type,
power etc.

i Zilaten in Tabelle “engine’ in ‘demo” auf *WALLDORF-NEU®
B s BEHwmm| &) P25 KE| B

|abrsolute power | Fuel el Flaw |engine type |
176 uper 124 ¥
x] diese! 105 W
Ts diesel 1ol v
32 narmal 80 boxer
450 normel 240 shern

Fig. 2: Database table engine

50

3.2 Database mappings

After having imported the database schema, the ontology and the schema have to be
connected appropriately. OntoMap — a mapping tool included in OntoStudio — supports
the fundamental mapping types (i) table-to-concept mapping, (ii) attribute-to-attribute
mapping and (iii) attribute-to-concept mapping. In fig. 3 a table-to-concept mapping
connects the table engine to the concept motor and additionally an attribute-to-attribute
mapping from id in the database to name in the ontology. This means that every row in
the database corresponds to one object in the ontology. OntoStudio automatically creates
a connection to the database by the dbaccessuserid-connector (there are various
connectors to information sources available). This built-in automatically creates a unique
object ID. It is used in a rule which defines the access and the mapping to our ontology:

FORALL X, NAME, MAXIMUM_POWER, VOLUME_FLOW, FUEL_TYPE
X:Motor[name->>NAME; maximum_power->>MAXIMUM POWER;

volume_flow->>VOLUME_FLOW; fuel_type->>FUEL_TYPE]
<
dbaccessuserid ("engine",
X, F ("id", NAME, "absolute power", MAXIMUM POWER,
"volume_flow", VOLUME_FLOW, "fuel", FUEL_TYPE),

"o

"mssqlserver2000","database_motor","server motordata:1433").

Another important mapping type is the mapping of attributes to concepts. This has the
consequence that the attribute value is used as unique ID for an ontology instance. E.g.
mapping the ID of engine to the concept motor creates an object for every different ID in
the database. By that way information about one and the same object which is spread in
different rows and is always identified by the same ID can be linked together. This was
the case in our project for part lists.

3 Schema - engine - OntoStudio

Ble Edt Window teb

Ies-l e | &3] qyschems
ropetes PPN et v XA
-2 D oo NewOnto2. o9 a

{
i

CECGC%
&

E;oeee
J |

9 00C¢
i
)

oceceeo
iig

%
'S

Fig. 3: Database mapping
3.3 Querying the integration ontology

Mappings as described in section 3.2 can be defined to different RDBMS and
additionally to web services at the same time. A query to the integration ontology is thus
at real-time translated (via the mapping rules) into calls for appropriate access builtins
which in turn access the data sources (in case of an RDBMS via SQL queries) and
translate the answers back into F-Logic. Thus a user or an application on top of the

51

ontology needs only this single ontology view and with it single vocabulary to retrieve
all necessary information. In our scenario different information sources contribute to the
same ontology. E.g. information about electronic parts is stored in other databases than
information about mechanical parts. Thus, an engineer configuring a new test car is
supported by the semantic guide in retrieving suitable and valid parts and configurations
via a single and common view to distributed data sources.

4 Conclusion

In a real-life industrial project, viz. in the automotive industry at a car manufacturer, we
have shown that ontologies may very well be used to enhance business processes and to
integrate different information sources. In our case the ontology represents knowledge
about relationships between different parts which may automatically be exploited in
configuring test cars. This reduces the communication effort between the mechanical
engineers, and reduces the error rate in configuring test cars. For this task the ontology is
attached to the legacy systems of the manufacturer and thus accesses up-to-date
information about parts and configurations. We have shown that our ontology
engineering environment OntoStudio supports not only the comfortable development of
ontologies but with the integrated mapping tool OntoMap also an easy to learn tool to
attach ontologies to different information sources. Our semantic guide is based on our
ontology run-time environment and inference engine OntoBroker. This semantic guide
accelerates the configuration of test cars at our customer and thus accelerates the
development of new cars as well. This reduces time-to-market in the end.

Literaturverzeichnis

[KLWI5IM. Kifer, G. Lausen, and J.Wu. Logical foundations of object-oriented and framebased
languages. Journal of the ACM, 42; (1995) 741-843.

[GRS91] A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38(3); July (1991) 620650

[De99] S. Decker, M. Erdmann, D. Fensel, and R. Studer. OntoBroker™: Ontology based access
to distributed and semi-structured information. In R. Meersman et al., editor, Database
Semantics: Semantic Issues in Multimedia Systems. Kluwer Academic, (1999)

[KL86] M. Kifer and E. Lozinskii. A framework for an efficient implementation of deductive
databases. In Proceedings of the 6th Advanced Database Symp., Tokyo, (1986) 109-116

[MUSO03]A. Maier, M. Ullrich, and H.-P. Schnurr. Ontology-based Information Integration in the
Automotive Industry. Technical report, ontoprise whitepaper series, (2003)

[Su02] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit:
Collaborative ontology development for the semantic web. In Horrocks and Hendler
[HHO02], (2002) 221-235

[Be90] T. Bernold. Product life: from design to disposal : life-cycle engineering: the key to risk
management, safer products and industrial environmental strategies. In International
Conference on Industrial Risk Management, Elsevier,.Ziirich, (1990)

[Kr99] D. Kreuz. Formale Semantik von Konnektoren. PhD thesis, Technische Universitaet
Hamburg (1999)

[St01] S.Staab, M.Erdmann, A.Midche, S.Decker. An extensible approach for Modeling
Ontologies in RDF(S). In Knowledge Media in Healthcare: Opportunities and
Challenges. Rolf Griitter (ed.). Idea Group Publishing, Hershey USA / UK. (2001)

52

