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Abstract: Similarity search in general metric spaces is a key aspect in many applica-
tion fields. Metric space indexing provides a flexible indexing paradigm and is solely
based on the use of a distance metric. No assumption is made about the representation
of the database objects.

Nowadays, ever-increasing data volumes require large-scale distributed retrieval
architectures. Here, local and global indexing schemes are distinguished. In the local
indexing approach, every resource administers a set of documents and indexes them
locally. Resource descriptions providing the basis for resource selection can be dis-
seminated to avoid all resources being contacted when answering a query. On the other
hand, global indexing schemes are based on a single index which is distributed so that
every resource is responsible for a certain part of the index.

For local indexing, only few exact approaches have been proposed which support
general metric space indexing. In this paper, we introduce RS4MI—an exact resource
selection approach for general metric space indexing. We compare RS4MI with ap-
proaches presented in literature based on a peer-to-peer scenario when searching for
similar images by image content. RS4MI can outperform two exact general metric
space resource selection schemes in case of range queries. Fewer resources are con-
tacted by RS4MI with—at the same time—more space efficient resource descriptions.

1 Introduction

The efficient processing of similarity queries (e.g. range queries searching for all da-

tabase objects within a given search radius from the query object) is a key aspect in

many domains and application fields such as multimedia and 3D object retrieval, sim-

ilarity search on business process models, data compression, pattern recognition, ma-

chine learning, bioinformatics, statistical data analysis, malware detection, and data min-

ing [ZADB05, HCS09, KW11, BKSS07]. Hereby, many similarity search problems are

modeled in general metric spaces where no assumption is made about the representation

of the database/feature objects. The only assumption is that distances between feature

objects can be measured by a distance metric.

Furthermore, in many search scenarios, centralized architectures are no longer sufficient

and large-scale solutions are necessary. Here, as a particular technique for distributed
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query processing, resource selection techniques provide a valuable solution. They are

for example applicable in dynamic environments such as peer-to-peer (P2P) information

retrieval (IR) systems with data sources joining and leaving frequently.

In the P2P IR domain, it can become infeasible to solely apply global indexing schemes,

i.e. distributed indexing structures with every peer being responsible for a certain range of

the feature space and peers transferring their indexing data to remote peers according to

their “region(s) of interest”. Peers entering the system and updating indexing data might

induce a high network load the system can hardly cope with [LLOS07].

Summary-based resource selection approaches and thus local indexing schemes such as

the ones discussed and evaluated in this work are one possibility to deal with this problem.

Here, every peer indexes the data it administers and describes it in form of data summaries

which are transfered to remote peers. During search, promising peers are selected based

on the resource descriptions and the query is sent to them. In summary-based P2P IR

systems, peers leaving the network ungracefully do not take indexing data of other peers’

documents with them. Furthermore, leaving peers do not take documents with them for

which indexing data is still present in the network and the documents thus still can be

found. Peer autonomy is better respected compared to distributed index structures. On

the other hand, many distributed index structures offer query processing with logarithmic

cost [DVNV10] which is hard to guarantee for local indexing schemes.

The work in this paper focuses on space efficient resource description and corresponding

selection techniques which allow for efficient distributed query processing in general met-

ric spaces. As a proof-of-concept and application scenario being assumed, the resource

description and selection techniques are designed for the use within a particular P2P IR

scenario. However, they can also be applied for traditional resource selection in distributed

IR and within other variants of P2P IR systems. Furthermore, there is a range of possible

application fields beyond P2P IR systems, such as (visual) sensor [ERO+09] and ad-hoc

networks [LLOS07], to name only a few.

As the contribution of this paper, we present RS4MI (Resource Selection for Metric In-

dexing), a new exact resource description and selection technique applicable for similarity

search in general metric spaces. Its design is motivated by application scenarios where

space efficient resource descriptions are required. As a rule of thumb, the average size

of a resource description in our scenario should be below 1 kB. However, the presented

techniques are by no means limited to this scenario. We review related work in the field

of resource selection and identify techniques applicable in general metric spaces. The

only exact technique presented in literature so far is compared against RS4MI. In addition,

another baseline technique relying on local k-medoid clustering is included in the analysis.

The remainder of this paper is organized as follows. In Sect. 2, we briefly recapitulate

main concepts of similarity search in metric space. Sect. 3 discusses further related work

by presenting existing solutions to the resource description and selection problem in gen-

eral metric spaces. RS4MI and the two competing approaches are in detail outlined and

evaluated in Sect. 4. The paper concludes with an outlook on future work in Sect. 5.
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2 Metric Space Indexing

Multi-dimensional (spatial) access methods (SAMs; for an overview cf. [Sam06]) are de-

signed for vector spaces whereas metric access methods (MAMs) can be applied in any

metric space. An overview on MAMs is for example given in [CNBYM01, ZADB05].

A metric space M is defined as a pair M = (D, d). D represents the domain of objects

o ∈ O with O ⊂ D and d : D × D → R corresponds to a metric distance function which

satisfies the metric postulates ∀x, y, z ∈ D [ZADB05]:

d(x, y) = 0 ⇐⇒ x = y identity

d(x, y) > 0 ⇐⇒ x 4= y non-negativity

d(x, y) = d(y, x) symmetry

d(x, y) + d(y, z) ≥ d(x, z) triangle inequality

Many MAMs rely on a set C = {ci|1 ≤ i ≤ n} of reference objects (also called pivots or

centers) in order to structure the feature space. There are different ways of how to partition

the feature space. Within ball partitioning methods [ZADB05], the feature space is parti-

tioned by often multiple hyper-spheres. In contrast, many structures relying on hyperplane

partitioning conceptually rely on a list Lo, ordering the pivot IDs i by increasing d(ci, o).
In case of generalized hyperplane partitioning [ZADB05], o is assigned to the cluster (i.e.

a region of the feature space induced by the space partitioning) with ID Lo[1] of the clos-

est reference object c∗ = argminci∈C d(ci, o). In other cases, the list Lo truncated after

position l with l ∈ {2, . . . , n} identifies the cluster where o lies in (cf. [NBZ11]).

The distance between feature objects is frequently used to model the similarity between

them. Usually, it is assumed that the smaller the distance the higher the similarity. In this

context, range queries are a popular type of similarity queries [Sko06, p. 4].

A range query R(q, r) with query object q ∈ D and search radius r ∈ R
+ retrieves all

database objects from O ⊂ D which are within distance r from q, i.e. {o ∈ O | d(q, o) ≤
r}. The subspace V ⊂ D for which ∀v ∈ V : d(q, v) ≤ r and ∀v′ ∈ D\V : d(q, v′) > r is

called the query ball [SB11].

For the space partitioning methods outlined above as well as hybrid combinations, various

pruning criteria can be applied. They are in the following described in the context of range

queries following the notation of [ZADB05].

Pruning criteria in metric spaces

When only per-cluster information (in contrast to per-object information) is stored in the

resource descriptions, range query processing can be summarized as follows. The data

descriptions of the resources are iteratively analyzed. If all populated database clusters of a

resource can be pruned, i.e. no populated cluster intersects the query ball, the very resource

can be discarded from search. Remaining resources have to be contacted. Criteria capable

of cluster and hence resource pruning are outlined in the following, similarly to [NBZ11].
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If a query lies in the cell of center c∗ (i.e. reference object c∗ is the closest center out of the

set C of all available reference objects according to a given query object q), by exploiting

the triangle inequality, any cluster [ci] can be pruned if d(ci, q) − d(c∗, q) > 2r, where r
corresponds to the search radius (double-pivot distance constraint).

If a maximum cluster radius rmax
i for a cluster [ci] is given, i.e. the maximum distance of

any object o in the cluster from its center ci, the very cluster can be pruned if d(ci, q)−r >
rmax
i (range-pivot distance constraint). A similar condition can be applied according to

the minimum cluster radius rmin
i , i.e. the minimum distance of any object o within the

cluster from its center ci. Cluster [ci] can be pruned if d(ci, q) + r < rmin
i .

The range-pivot distance constraint can also be used in an inter-cluster way. To this end,

two matrices MAX and MIN are applied to store maximum and minimum cluster radii

rmax
i,j and rmin

i,j respectively for i, j ∈ {1, . . . , n}, where rmax
i,j represents the maximum

distance of any object from cluster [ci] to cluster center cj , and rmin
i,j represents the mini-

mum distance of any object from cluster [ci] to cluster center cj . Elements rmax
i,i and rmin

i,i

on the diagonal of the matrices MAX and MIN thus capture the maximum cluster radius

rmax
i and the minimum cluster radius rmin

i of cluster [ci], respectively, as described above.

Cluster [ci] can be pruned if there exists a cluster [cj ] for which d(cj , q) + r < rmin
i,j or

d(cj , q)− r > rmax
i,j [Woj02].

  !"

Figure 1: Cluster pruning example.

Fig. 1 visualizes a search situa-

tion in case of a range query with

search radius r where cluster [c1]
can be pruned successfully. By

solely using the double-pivot dis-

tance constraint, cluster [c1] can-

not be pruned, since the query

ball V intersects cluster [c1]. If,

for every cluster, we administer

only the minimum and the max-

imum cluster radius of objects in

the cluster (shown by the hyper-

ring H1,1 around cluster center c1
in Fig. 1), cluster [c1] can still not

be pruned. The matrices MIN and

MAX are thus necessary to suc-

cessfully prune cluster [c1]. If

we also apply the radii rmin
1,2 and

rmax
1,2 , i.e. the minimum and the maximum distance of feature objects in cluster [c1] from

c2, it can be determined that there are no relevant feature objects in the intersection area of

the query ball V and the hyper-ring H1,1. The region of possible feature objects is limited

to the two dark gray shaded intersection areas of H1,1 and H1,2, and since the query ball V

does not intersect any of these regions, cluster [c1] does not contain any database objects

relevant to the query.

A further pruning constraint can be applied on an object level rather than a cluster level.

The application of this constraint in a resource selection scenario requires per-object in-
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formation to be stored in the resource descriptions—either solely or in addition to storing

per-cluster information. Contacting a resource can be avoided by storing distance values

d(ci, o) in the summaries. If |d(ci, q) − d(ci, o)| > r, object o can be pruned without

computing d(q, o). This is called the object-pivot distance constraint.

In order to enhance the pruning power for complete resources, d(ci, o) values can be

stored for multiple cluster centers ci. Hence, contacting a resource is not necessary if

maxci |d(ci, q) − d(ci, o)| > r is fulfilled for all database objects of a resource. This

so called pivot filtering is a direct application of the object-pivot distance constraint. Al-

though appearing impracticable at first glance due to the space requirements, per-object

information might be useful in hybrid approaches for peers with few objects. This will be

considered in Sect. 4.4.

3 Related Work on Resource Selection in General Metric Spaces

There is plenty of work on the description and selection of text databases in distributed IR

(cf. [SS11]). In addition, some resource description and selection schemes have emerged

in the context of content-based multimedia IR such as in content-based image retrieval

(CBIR). Our work addresses local indexing approaches and in particular the ones which

consider the resource selection task as a geometric problem. Here, certain properties of the

feature space or distance information are used in order to prune resources which cannot

contribute database objects to the search result. The remaining resources can be ranked by

the “proximity” of their feature objects and the query object (which can be beneficial when

e.g. performing k-nearest neighbor (k-NN) queries). We will discuss these approaches in

the following. Probabilistic (cf. e.g. [NF03, EBMH08]) as well as geometric resource

selection techniques only applicable in vector spaces (cf. e.g. [KLC02]) are out of the

scope of our present work. We also do not consider database selection approaches based

on one-dimensional numeric values (e.g. [YSMQ01]).

In the following, two approaches applicable in general metric spaces are described. The

approach by Berretti et al. [BDP04] is the only approach which represents an exact re-

source selection scheme, the latter approach is an approximate technique. However, it is

presented here, because RS4MI can be considered as an extension of this approach w.r.t.

exact query processing.

Berretti et al. [BDP04] applies a special form of hierarchical clustering based on the M-

tree [CPZ97] to a resource’s set of feature objects to generate a resource description. A

cluster radius threshold θ is used for determining the cluster centers which are included in

the resource description. Every path in the clustering tree built for the local collection is

descended as long as the cluster radius of a node is bigger than the predefined threshold θ.

The centers of the nodes where the search stops are included in the resource description. In

addition, per cluster, the maximum cluster radius, i.e. the maximum distance of a database

object from its cluster center as well as the number of objects within the cluster are stored

in the resource description (the latter may be beneficial for ranking peers when performing

k-NN queries). By varying θ, the granularity and size of the resource descriptions can be
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adjusted. It is suggested in [BDP04] to set θ to the maximum possible distance value if

the distance metric has an upper bound. The block size of the M-tree nodes is the second

tuning parameter of this approach. When it comes to resource selection, a resource cannot

be pruned from search if the query ball intersects any cluster ball of the resource.

Eisenhardt et al. [EMH+06] extends the cluster histogram technique initially proposed

in Müller et al. [MEH05a]. To compute a cluster histogram as resource description, a set

with a moderate number of reference objects ci is applied: C = {ci|1 ≤ i ≤ n} with e.g.

n = 256. Every feature object of a resource’s collection is assigned to the closest refer-

ence object and a histogram captures how many objects have been assigned to a certain

reference object. Eisenhardt et al. [EMH+06] shows that a random selection of reference

objects might replace distributed clustering. Resource selection performance slightly de-

creases, but network load can be reduced because distributed clustering becomes obsolete.

For performing k-NN queries, during peer ranking a list Lq of reference object IDs i is

sorted in ascending order according to d(q, ci), i.e. the distance from the query object q to

a cluster center ci. The first element of Lq corresponds to the ID of the cluster center being

closest to q. A peer with more documents in the corresponding cluster—indicated by the

summary—is ranked higher than a peer with fewer documents in the very cluster. If two

peers pa and pb administer the same amount of documents in the analyzed cluster, the next

element out of Lq is chosen and—based on the indicated number of documents within the

very cluster—it is tried to rank peer pa before peer pb or vice versa. When the end of the

list Lq is reached, a random decision is made. The resource descriptions of this approach

are further improved in [BEMH07, BH10]. They are binarized and the number of used

reference objects is increased to e.g. n = 8192 or even more. Compression techniques are

applied to prevent a huge increase in average summary sizes.

4 Exact Resource Selection Approaches for Metric Space Indexing

In the following, we describe and compare three different resource description and selec-

tion schemes for metric space indexing. The experimental setup is outlined in Sect. 4.1.

In Sect. 4.2, the technique introduced in Berretti et al. [BDP04] (cf. Sect. 3) is analyzed.

Another approach—based on k-medoid clustering and used as second comparison base-

line for RS4MI—is presented in Sect. 4.3. RS4MI is explained and analyzed in Sect. 4.4.

Finally, Sect. 4.5 subsumes the main results of the experimental comparison.

4.1 Experimental setup

We analyze a scenario where every peer knows the resource description of every other

peer. Of course, such an approach would not scale. However, this scenario is for example

typical in a subnet of a scalable Rumorama-based P2P IR network. Rumorama [MEH05b]

can cope with multiple subnets and thus scale to much higher workloads than the ones

analyzed in this work.
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Figure 2: Distribution of peer sizes, i.e. the number of
images per peer.

As underlying data collection, 233827

images crawled from Flickr are used

(cf. [BH10]). They are assigned to

peers based on the Flickr user ID in

order to reflect a realistic scenario, i.e.

distribution to resources. Hence, we

assume that every Flickr user operates

a peer of its own. In this way, the im-

ages are mapped to 10601 peers/users.

Fig. 2 shows the distribution of peer

sizes, i.e. the number of images which

are maintained per peer. The general

characteristic is typical for P2P file

sharing applications, with few peers

managing large amounts of the im-

ages and many peers administering only few images [SKG02].

Pivots for summary creation and peer ranking in case of RS4MI are randomly chosen from

a secondary data collection consisting of 45931 Flickr images. This reflects a scenario

where the reference objects are transfered to the resources with updates of the P2P software

in order to reduce network load. All resources administer the same set of pivots. The

external (secondary) collection is disjoint from the underlying collection according to the

unique Flickr image and user IDs. However, there is some minor natural overlap amongst

collections according to image content; 24 of the 233827 images also appear in the external

collection because some images are uploaded independently by multiple users on Flickr.

In the experiments, query objects are randomly chosen from the underlying data collection.

This seems reasonable in case of range queries relying on the query-by-example paradigm.

Retrieval performance is measured by analyzing peer selectivity, i.e. the fraction of peers

which must be contacted to retrieve all images with feature objects lying within distance r
from q. In addition to search efficiency, the size of the resource descriptions is analyzed.

If not mentioned otherwise, summaries are compressed with gzip1.

As feature descriptor, we use the unquantized version of the CEDD descriptor2 (144-

dimensional vector of 4 byte floats and thus in total 576 byte per descriptor). CEDD

has the potential to outperform the MPEG-7 features for CBIR [CZBP10]. The Hellinger

metric d(q, o) = dH(q, o) = (2 · dSC (q, o))
1

2 = (2 ·∑i(
√
q[i]−√

o[i])2)
1

2 (cf. [DD09])

is applied converting the non-metric squared chord distance dSC into a metric. It is shown

in [LSR+08] that dSC provides good retrieval results in case of CBIR. Internal studies with

two collections of groundtruth images reveal that the Hellinger metric in combination with

CEDD features offers promising retrieval results, outperforming many other distance mea-

sures. However, our analysis does not focus on search effectiveness in CBIR and thus the

choice of an effective feature descriptor in combination with a distance metric is not the

1The time requirements for building the resource descriptions are not analyzed in this work. This task is

parallelized in a real-world scenario with every peer computing its resource description and hereby all promising

approaches subsumed in Sect. 4.5 are suitably fast.
2Features were extracted using the Lire library obtained from http://www.semanticmetadata.net/ lire/ .
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min q25 median mean q75 max

database objects 1 4 21.5 126.7 94.3 2028

peers 1 3 18 72.0 76.3 654

Table 1: Statistics of the number of relevant database objects and the number of peers administering
relevant documents for the 200 range queries with search radius r = 0.5.

main focus of our work. Our general setting offers an intrinsic dimensionality (as defined

in [CNBYM01, p. 303]) of almost 10 and thus represents a rather hard indexing task.

We evaluate 200 range queries with search radius r = 0.5 for every parameter setting.

Tab. 1 shows statistics of the number of database objects lying within the search radius.

Relevant documents are on average found at 72 peers. An optimal resource selection would

thus on average only contact 72

10601
≈ 0.7% of the peers to retrieve the relevant documents.

4.2 M-tree based local clustering

To our knowledge, the approach by Berretti et al. [BDP04] is the only exact approach

which has so far been proposed for general metric space indexing. Thus, we apply this

technique as a comparison baseline for RS4MI. In order to do so, we use revision 27 of

the M-tree library from http://mufin.fi.muni.cz/ trac/mtree/ (last visit of all URLs in this

paper on 27.09.12) and acknowledge its contributors. The approach mainly depends on

two parameters. A cluster radius threshold θ and the block/node size of the M-tree are

the keys for trading-off the granularity of the resource descriptions (cf. Sect. 3) versus

their selectivity. The influences and interactions when varying these two parameters are

evaluated in the following.

The insertion of all database objects of a resource into an M-tree and the threshold-based

search algorithm for generating the resource description leads to a partitioning of the fea-

ture space based on multiple hyper-spheres. A reference object mi together with the cluster

radius rmax
i , both maintained in a node entry of the M-tree, has to be stored in the resource

description for every cluster (i.e. hyper-sphere) to be able to perform exact range queries.

With this information, the range-pivot distance constraint (cf. Sect. 2) testing the overlap

of the query ball with any cluster ball can then be applied during search in order to prune

irrelevant peers, i.e. peers with no relevant documents.

Analysis of M-tree based local clustering

In the upper left quadrant of Fig. 3, the selectivity of the summaries of the M-tree based

local clustering approach is shown. The lower left quadrant depicts the corresponding

summary sizes. To understand this figure, the following aspects have to be considered:

(1) A block size of 576 byte corresponds to leaf nodes containing one object each. In

this case, the M-tree implementation assures that inner nodes (including the root node) are

bigger and the degree of each inner node is two. In general, a block size of sb means that
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Figure 3: M-tree based local clustering (left) with special treatment of single node trees (right).

a leaf node contains at most sb/576 objects. Hence, e.g. a node size of 18432 corresponds

to leaf nodes containing at most 32 objects. (2) A cluster radius threshold of 0.01 has

the consequence that the summary roughly contains clusters describing exactly the leaf

nodes. At the other extreme, a cluster radius threshold of 16384 would yield a summary

containing only one cluster representing the root node of the M-tree and in consequence

the complete set of objects on the peer3.

With the above information in mind, we can interpret the left side of Fig. 3. If we consider

the average summary size in dependence of the cluster radius threshold (lower left quad-

rant) it becomes obvious that the summary sizes decrease for higher threshold values. The

reason is that for higher threshold values the clusters for the summaries are taken from

higher levels of the M-tree. Obviously, this effect is only given for small block sizes (blue,

orange and yellow bars), because for higher block sizes (e.g. dark red bars) the height of

the M-trees is extremely low anyway.

The upper left quadrant of Fig. 3 shows the selectivity of the summaries measured by the

fraction of peers seen. Let us first consider the fraction of peers seen in dependence of the

cluster radius threshold. As a special case, the block size of 576 together with a cluster

radius threshold of 0.01 has to be considered. In this situation, each leaf node contains

3Please note that all object distances are at most 2. However, due to heuristic upper bound approximation of

the cluster radii in the inner nodes of the M-tree, values bigger than 2 exist in the tree.
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only a single item and because of the low threshold value, the clusters describing the leaf

nodes are included in the summaries. Consequently, the summaries exactly represent the

objects on each peer. Based on this information, a querying peer can exactly determine

the peers containing objects in the query ball and therefore, the fraction of peers seen

corresponds to the theoretical optimum of 0.7%. However, this result is achieved by a

complete replication of all objects within the network on all peers. Unfortunately, these

parameter settings are not realistic for huge networks. Neither a threshold value yielding

only leaf nodes nor a node size storing only one object per node are practical.

Despite from these special cases, the fraction of peers seen is roughly between 70% and

80%. It is also interesting to consider the effect of the block sizes e.g. for a cluster radius

threshold of 8. With this threshold, only in very rare cases the clusters used in the summary

are taken from lower levels of the tree. With the block size of 576 byte, peers with only one

image are represented by one cluster in the summary and peers with 2 or more images are

(with some exceptions) represented by two clusters, since the fan-out of the root node is 2

in this case. With the block size of 1152 byte, peers with one or two images are represented

by one cluster in the summary and peers with 3 or more images are (with few exceptions)

represented by two clusters. The less precise representation of peers with 2 images results

in an increase of the peers which have to be considered from 75.8% to 81.8% and at the

same time reduces the average summary size drastically. With the block size of 2304 byte,

peers with one to four images are represented by one cluster in the summary and peers

with 5 or more images are (with few exceptions again) represented by two to four clusters.

Hence, the summaries of small peers become less accurate but the summaries of bigger

peers become more accurate, since the root node of the M-tree now has up to 4 successors.

Obviously, these considerations can be continued for bigger block sizes.

The above results achieved for the originally proposed M-tree based local clustering ap-

proach inspired us to change the approach marginally in order to exploit the long-tail dis-

tribution of images on peers (cf. Fig. 2). Over 50% of the peers contain 7 or less images.

As a consequence: If the summaries of these small peers would contain the exact objects,

only the peers out of these 50% which really contribute to the result of the range query

must be visited. With such a technique we can easily outperform the approaches presented

above which have to address 70% to 80% of the peers.

To integrate this idea into the M-tree based local clustering approach we use a special

treatment for situations where the M-tree consists of only one (leaf) node—which is typical

for small peers. In this case the summary now contains one cluster with radius zero for

each object in this leaf node instead of one single cluster with a huge radius describing the

whole node. As a consequence e.g. at a block size of 18432 byte a peer maintaining 32

objects fitting into one single leaf node is now represented by a summary containing these

32 objects as single clusters with the objects as centers and radius zero.

The effect of this variation can be seen on the right hand side of Fig. 3. Let us—again at

a cluster radius threshold of 8—consider the green bars representing a node size of 4608

byte, resp., at most 8 objects. In this case 5643 (= 53%) of all peers are represented exactly

in the summaries. This allows to reduce the number of peers to be contacted during query

processing to 45.3%. The avg. summary size is 1531 byte (compared to 1010 byte without

the special treatment of small peers).
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Although, the improvements achieved with this variation are impressive, it remains a bit

problematic that we have such indirect and hard to handle parameters; the threshold value

θ, the block size of the M-tree and the special treatment of trees comprising only one node.

According to the threshold value θ, Fig. 3 shows that the heuristic of setting θ = 2, i.e.

the maximum possible distance value, might not be a suitable solution in all cases. In

fact, it might be much easier to use an explicit clustering approach with more intuitive

parameters. This directly leads us to the k-medoid clustering.

4.3 Local k-medoid clustering

Some approximate resource selection approaches for the use in vector spaces apply k-

means clustering to cluster the database objects of a peer (cf. e.g. [EBMH08]). However, k-

means, due to the mean calculation, is not applicable in general metric spaces. When using

k-medoid clustering instead (or any other suitable algorithm applicable in general metric

spaces), an additional baseline technique for the comparison with RS4MI can be designed.

In this case, each peer clusters its local data collection and stores cluster centers mi and

maximum cluster radii rmax
i in its resource description. This results in a similar data

space partitioning and similar resource descriptions as the approach proposed in Berretti

et al. [BDP04] (cf. Sect. 4.2). The resource description of a peer in case of range queries

thus consists of a list of cluster center and corresponding maximum cluster radius pairs.

There are two general options for determining k, i.e. the number of clusters of a peer

needed as an input parameter to k-medoid clustering. As one alternative, the maximum

number of allowed clusters per peer k can be set as a global threshold being identical for

all peers. Of course, peers with less than k distinct database objects directly transfer these

and do not apply clustering. On the other hand, algorithms which automatically detect an

appropriate number of clusters can be used. Multiple of these algorithms are presented in

literature (for references see e.g. [TWH01]). Our choice of algorithms in the following is

by no means exhaustive. It is our intention to evaluate different techniques which return a

range of average numbers of clusters per peer when applied to our scenario.

Rule of thumb (r.o.t.): A coarse rule of thumb is presented in [MKB79, p. 365]. It is

suggested to calculate the number of clusters of a data set of size |O| as k ≈ √|O|/2.

Thus, we use k = 8√|O|/2 3.

This rule of thumb directly calculates the number of desired clusters. In contrast, the

techniques presented in the following are applied in an iterative process. A single key

figure results for a specific value of k. Various values of k are thus to be tested to select the

best k minimizing/maximizing the key figure. To reduce runtime performance, even when

applying the rule of thumb, an adaptation of the original k-medoid clustering algorithm

is used. The FAMES extension to k-medoid clustering uses pivots in order to speed-up

k-medoid clustering [PNT11]. FAMES avoids the calculation of all pair-wise distances

when computing the medoid of a certain cluster. In addition to improving efficiency, it

is shown in [PNT11] that FAMES can also increase the effectiveness of the clustering

since the efficiency gain is not due to the consideration of a random sample of database
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objects as medoid candidates—which is the approach of some traditional algorithms. For

determining the initial candidate set of medoids, we minimize in 10 runs the sum over all

clusters of within-cluster object-to-medoid distances.

Besides the rule of thumb, we apply three variants of the well-known GAP statistic. The

GAP statistic [TWH01] is frequently used and offers the property that—in contrast to

many alternative approaches—it can also detect the presence of only a single cluster.

GAP: The GAP statistic as originally defined in [TWH01] is based on a sampling process

which is not directly applicable in all metric spaces. However, as suggested in [TWH01],

when only distance information is available, a specific mapping technique such as mul-

tidimensional scaling can be used to obtain feature vectors in a low dimensional space,

which provide the basis for the sampling process. In our experiments, we directly apply

ten sampling steps on the feature vectors without the use of an additional mapping tech-

nique in order to obtain a best case comparison baseline against which we can compare

our approach RS4MI.

GAPw, introduced in [YY07], modifies the weighting scheme of the GAP statistic.

GAPn represents another slight modification of the GAP statistic, where all logarithms

used in the formulae of the GAP statistic are removed [MES10].

Sil1 and Sil2: The Silhouette technique [Rou87] is also adapted as a means for calculating

the desired number of clusters of a peer. It is only applicable in case of k > 1. Thus, two

alternatives are used in our experiments. If two is indicated as optimum cluster number,

we set k = 1 in case of Sil1; k = 2 is used in case of Sil2. Peers with only a single

database object—of course—only encode a single cluster in the resource description.

To determine an appropriate value for k, the above mentioned approaches based on the

GAP statistic and the Silhouette technique are iteratively tested on every peer till k =
(min(2

√
nDocs, nDocs)2 with nDocs denoting the number of documents/images of a peer.

Analysis of local k-medoid clustering

Tab. 2 (top) shows the average fraction of visited peers, the average number of clusters

per peer, as well as average summary sizes in case of local k-medoid clustering when

automatically determining the number of clusters of a peer. The rule of thumb (r.o.t.)

leads to decent retrieval performance at the cost of comparatively large summaries. Better

peer selectivity is achievable by the SIL2 approach with more space efficient resource

descriptions.

Using the GAP statistic for determining the number of clusters of a peer results in average

summary sizes of approximately 1 kB and 73.7% of peers being contacted for retrieving

all relevant documents. GAPw and GAPn lead to fewer numbers of clusters per peer and

thus more space efficient resource descriptions. However, both perform worse than GAP.

SIL1 leads to similar average summary sizes as GAP. The average number of clusters

per peer is in both cases approximately 2.3, but GAP offers better peer selectivity. SIL1

always assumes one cluster when there might be two (which GAP might detect). SIL2

shows better peer selectivity than the other competing approaches (even better than the
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r.o.t. GAP GAPw GAPn SIL1 SIL2

visited peers 67.4% 73.7% 75.3% 76.4% 76.4% 65.7%

clusters per peer 3.1 2.3 1.9 1.5 2.3 2.8

summary size 1350.3 B 1048.4 B 880.7 B 722.9 B 1029.5 B 1232.2 B

k = 1 k = 2 k = 4 k = 8 k = 32 k = 128

peers seen 79.9% 68.7% 54.4% 37.7% 13.1% 2.7%

clusters per peer 1.0 1.9 3.4 5.6 12.2 18.2

summary size 525.0 B 867.2 B 1.4 kB 2.3 kB 4.9 kB 7.3 kB

Table 2: Results for local k-medoid clustering with automatic determination of the number of clus-
ters k (top) and all peers using the same global k (bottom).

rule of thumb which identifies on average 3.1 clusters per peer) at the cost of storing on

average 2.8 clusters per peer in the summaries. Overall, GAPn and GAPw seem promising

approaches with average summary sizes clearly below 1 kB.

A main drawback of the k-medoid approaches analyzed in this section so far is that the

summary sizes cannot be influenced by any kind of design parameter of the approach. An

alternative in this respect is to globally specify k, the maximum allowed number of clusters

per peer. In this case, peers with nDocs ≤ k store all feature objects in their summary.

Since for some peers the number of feature objects is smaller than k, the average number

of clusters per peer becomes smaller than k as well. This scenario which is thus similar to

the special treatment of single node trees in Sect. 4.2 is evaluated in Tab. 2 (bottom).

The explicit definition of an upper bound for the number of clusters allows for a direct and

accurate adjustment of summary sizes and selectivity. This gives a clear advantage over

the M-tree based approach and also over the approaches which automatically determine a

suitable number of clusters per peer. However, if very small summaries are necessary, the

flexibility is restricted by the discrete values of k.

It can be observed from Tab. 2 (bottom) that only in cases where the maximum desired

number of clusters per peer is set to k = 1 or k = 2, average summary sizes with less than

1 kB can be achieved. If a maximum of two clusters is allowed, 68.7% of the resources are

visited with an average summary size of 867 byte. In order to further reduce this figure,

only a single cluster per peer can be allowed. However, almost 80% of peers are contacted

in this case with an average summary size of 525 byte.

4.4 RS4MI: Resource Selection for Metric Indexing

RS4MI can make use of all pruning criteria mentioned in Sect. 2. A set of n reference

objects C—globally unique for all resources—is applied in order to assign a database

object o of a resource to the closest cluster center c∗ = argminci∈C d(ci, o). The set of

reference objects is transfered to remote peers together with updates of the P2P software,
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so that no additional network load is imposed during the operating phase of the P2P IR

system. Such an approach is for example proposed in [BEMH07].

Different variants of RS4MI resource descriptions are evaluated in the following to find

the best alternative. These variants can make use of different pruning criteria and thus

result in different peer selectivity and average summary sizes.

RS4MI1xxxx: Here, only a single bit is stored per cluster in order to indicate if any database

objects lie in the very cluster or not. This results in a bit vector of size n and thus resource

descriptions with O(n) space complexity. The double-pivot distance constraint outlined

in Sect. 2 is the only pruning constraint which can be used in this case to prune peers from

search.

RS4MIx??xx: Resource descriptions offering O(n) space complexity can also be designed

by storing the minimum and/or maximum cluster radii. By doing so, the range-pivot dis-

tance constraint can be applied on an intra-cluster level (cf. Sect. 2). In addition to storing

both minimum and maximum cluster radii for the n clusters (i.e. RS4MIx11xx), we test pa-

rameter settings of RS4MIx1xxx and RS4MIxx1xx where only minimum or maximum cluster

radii are stored respectively. A single distance value is always represented as a four byte

float.

Of course, the double-pivot distance constraint can also be applied in this case. If no

minimum/maximum cluster radius is set for a particular cluster, it is indicated by the sum-

mary that the corresponding peer does not administer any database objects within the very

cluster. So, the double-pivot distance constraint is used by all of the following resource

selection schemes whenever applicable.

RS4MIxxx??: If all criteria for cluster pruning described in Sect. 2 should be applied, two

matrices MIN and MAX have to be administered by every database as resource description

(RS4MIxxx11). This requires O(n2) space per resource. As before, a single matrix cell

requires four byte in order to store radius information. Both matrices are sent as resource

description and used for the pruning of resources without querying them. We also test

parameter settings where only a single matrix MIN (RS4MIxxx1x) or MAX (RS4MIxxxx1) is

used.

Two further combinations are included in the analysis. RS4MIx1xx1 stores minimum clus-

ter radii and the matrix MAX as resource description. In opposition, RS4MIxx11x applies

maximum cluster radii and the MIN matrix to prune peers during search.

We also evaluate a hybrid resource selection scheme where either per-cluster or per-object

information is stored in the resource description of a peer.

Analysis of RS4MI

In the following, different ways of how to best design summaries in case of RS4MI are

evaluated. First, summaries storing only per-cluster information are analyzed. Later, hy-

brid summaries are evaluated. We should note here that hybrid in case of RS4MI means

storing per-cluster or per-object information. RS4MI can of course, similar to the ap-
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Figure 4: Results of RS4MI for summaries with space complexity O(n) (left) and O(n2) (right).

proaches evaluated in Sect. 4.2 and Sect. 4.3, be extended to store feature objects for peers

with few images directly in the summaries. An analysis is part of future work.

RS4MI approaches storing per-cluster information: Fig. 4 (top left) visualizes retrie-

val performance for resource descriptions with O(n) space complexity. It can be observed

that RS4MI1xxxx and thus only applying the double-pivot distance constraint does not lead

to an acceptable peer selectivity. RS4MI1xxxx with a bit-vector as underlying data structure

however results in very space efficient resource descriptions, even in case of larger values

of n (e.g. n = 1024 in Fig. 4 (bottom left)).

Comparing RS4MIx1xxx with RS4MIxx1xx, it can be observed that although both approaches

have similar average summary sizes, RS4MIxx1xx can prune clearly more peers than

RS4MIx1xxx. Even RS4MIx11xx cannot noticeably improve peer selectivity. RS4MIxx1xx

with a very large number of reference objects being used (e.g. n = 8192 or even more)

seems the best choice amongst the approaches considered in the left part of Fig. 4.

In addition, resource descriptions with O(n2) space complexity are analyzed. For these

approaches a binning technique is applied in order to reduce summary sizes. Every four

byte distance value is quantized into a single byte. The minimum and maximum distance

value from the database objects of the external collection to every cluster center ci is

determined. The range between these two boundaries per reference object ci is uniformly

quantized into 253 intervals. From the remaining three values, two are used to represent

distance values below and above the boundaries. The third remaining value is used to

indicate an empty cluster with no entry. Here, it is again assumed that the minimum and
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gzip bzip2 lzma png paq8o8 webpll

summary size 867.0 B 1020.1 B 863.4 B 880.4 B 803.1 B 777.7 B

Table 3: Average summary sizes for RS4MIxxx11 with n = 64.

maximum distances from feature objects of the external collection to the cluster centers ci
are known to all peers in advance and transfered to them by updates of the P2P software so

that all peers can correctly estimate the true distance from the quantized values. However,

this information is also small enough to be transfered to participating peers during the

operation phase of the P2P IR system.

Fig. 4 (bottom right) shows that the average summary sizes in case of RS4MIxxx1x,

RS4MIxxxx1, RS4MIx1xx1, and RS4MIxx11x are very similar. According to retrieval per-

formance (cf. Fig. 4 (top right)) RS4MIxx11x applying the MIN matrix and an array of

length n with maximum cluster radii clearly outperforms the other three approaches. Also

RS4MIxxx11 encoding the quantized MIN and MAX matrices with a small value of n is

promising (e.g. n = 64). For the feature set being indexed, RS4MIxxx11 with n being

small or RS4MIxx1xx with n being big seem to be the most promising RS4MI approaches.

To further reduce the summary sizes of RS4MIxx1xx with n = 8192, alternative compres-

sion algorithms might be suitable. When changing the compression algorithm to bzip2,

summary sizes are reduced on average from 253.2 (gzip) to 222.1 byte and to 234.2 byte

in case of lzma. Thus, a reduction of approximately 10% seems easily possible4.

Summary sizes for RS4MIxxx11 with n = 64 can also be reduced. The bzip2 implementa-

tion seems to be inappropriate with average summary size noticeably increasing, and also

lzma does not lead to a significant reduction (cf. Tab. 3). Thus, in addition to gzip, bzip2,

and lzma, three image compression algorithms are tested, where the concatenation of the

quantized MIN and MAX matrices is interpreted as a 2-dimensional 256 bit gray-scale im-

age of size 64×128 pixels. Tab. 3 shows the results. Standard png compression provides

some overhead, but paq8o85 and especially webp6 lossless image compression provide

more space efficient resource descriptions; webp in particular by significantly improving

the memory requirements of the summaries of the peers with images in few clusters.

Hybrid RS4MI approaches storing per-object information: The RS4MI approaches

presented so far solely rely on cluster pruning principles. Object pruning and thus the en-

coding of per-object information in the resource descriptions is not considered. However,

the distribution of peer sizes (cf. Fig. 2) indicates many peers with few documents. Thus,

at least for peers with very few documents it might be beneficial to encode per-object

summary information and apply pivot filtering (cf. Sect. 2).

4Additional compression results are based on the at4j library (http://at4j.sourceforge.net/ ). We acknowledge

the contributors of at4j and of contributing libraries such as 7-zip (http://www.7-zip.org/ ) and apache commons

compress (http://commons.apache.org/compress/ ).
5cf. http://mattmahoney.net/dc/#paq
6cf. https://developers.google.com/speed/webp/
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n = 1 n = 2 n = 4 n = 8 n = 12 n = 16

peers seen 97.3% 95.5% 90.9% 82.5% 75.8% 73.5%

summary size 136.5 B 216.9 B 372.5 B 676.2 B 976.1 B 1274.6 B

Table 4: Results when purely applying pivot filtering.

sd = 100 sd = 200 sd = 400 sd = 600 sd = 800 sd = 1000

(8439) (9612) (10202) (10385) (10459) (10503)

n = 512
81.1% 76.0% 69.9% 66.0% 63.4% 61.4%

174.9 B 251.9 B 426.9 B 585.1 B 759.6 B 919.2 B

n = 4096
80.3% 75.7% 69.8% 65.9% 63.4% 61.4%

214.8 B 277.8 B 443.0 B 596.8 B 768.9 B 926.8 B

Table 5: Results for hybrid summaries. Table cells show the fraction of contacted peers (top) and
the avg. summary size (bottom). The number of peers applying pivot filtering is given in brackets.

First, we analyze settings where only object-pivot distances (and thus no per-cluster in-

formation) are used in the resource descriptions. Tab. 4 shows the results for different

numbers of reference objects. Such an undifferentiated approach is inappropriate and re-

sults in very big summary sizes for peers with many documents. When using 16 reference

objects and thus encoding 16 object-to-pivot distance values per database object, 73.5% of

peers are contacted with resource descriptions of 1.3 kB on average.

We also analyze a hybrid resource description scheme with peers choosing between ei-

ther per-object or per-cluster summarization, depending on nDocs, the number of images

a peer administers. In order to very roughly estimate the number of possible reference

objects per database object for which object-pivot-distances are stored in the summary,

the formula nRefsPerObject = ( sd
4·nDocs

2 is applied. The parameter sd hereby denotes the

desired average summary size in byte and a factor of four in the denominator is used since

a single distance value is represented as a four byte float. From Tab. 5, it can be seen that

this estimate of the average summary size roughly holds. If nRefsPerObject > 0, pivot

filtering is applied on the basis of per-object resource descriptions. Otherwise, per-cluster

summaries RS4MIxx1xx are applied as before.

Table 5 visualizes results of the hybrid resource selection scheme when varying sd and n.

The number of peers applying pivot filtering is denoted in brackets. If these results are

compared with the ones applying only per-cluster information, several approaches can be

outperformed; for example a parameter settings with n = 512 and sd = 600 seems promis-

ing. However, peer selectivity of RS4MIxx1xx(n = 8192) can only be achieved with much

bigger average summary sizes, since compression techniques in case of RS4MIxx1xx(n =
8192) can dramatically reduce the summary size of peers with documents in only few

clusters.
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4.5 Brief comparison of approaches

In Sects. 4.2 and 4.3, we saw that techniques yielding an exact representation of small

peers, either applying a special treatment for single node M-trees or defining a desired

value for k, are promising in situations with a long-tail distribution of the objects over the

peers. Of course, such techniques can also be applied for RS4MI—a consideration of this

approach is planned for the near future. To assess the potential in large scale networks, let

us concentrate on the summary sizes and the selectivity of the basic techniques here.

peers seen avg. summary size

M-tree(576;16384) 75.8% 813.2 byte

2-medoid 68.7% 867.7 byte

RS4MIxx1xx(n = 8192) 62.2% 253.0 byte

RS4MIxxx11(n = 64) 57.2% 880.7 byte

Table 6: Comparison of the different approaches with results
averaged over ten runs.

Table 6 gives a brief overview of

different approaches discussed in

Sect. 4.2, Sect. 4.3, and Sect. 4.4.

All of them result in average sum-

mary sizes below 1 kB. Concep-

tually, the source selection tech-

niques based on M-tree and k-

medoid clustering are similar to

each other both applying local

clustering and transferring medoids and cluster radii. The parametrization of the tech-

niques is crucial for both approaches. In this regard, the k-medoid based local clustering

approach with its easy to interpret design parameter k is more handy than M-tree based

clustering and also retrieval performance (as briefly summarized in Tab. 6 and in more

detail outlined in Sect. 4.2 and Sect. 4.3) does not give a clear evidence for using the ap-

proach based on the M-tree. RS4MIxx1xx(n = 8192) leads to better retrieval results with

significantly smaller average resource description sizes. The number of contacted peers is

further reduced by RS4MIxxx11(n = 64) at the cost of larger summaries, comparable with

those of 2-medoid. Of course, it is also possible to use different RS4MI summary types

within a single P2P IR system. We will analyze this in future work.

5 Conclusion and Outlook

We presented RS4MI—an exact resource selection scheme for general metric spaces and

showed how the processing of range queries can be performed. RS4MI can outperform an

M-tree based exact resource selection scheme and a selection scheme based on k-medoid

clustering w.r.t. the number of peers which are contacted and w.r.t. memory requirements.

In case of range queries, RS4MI is especially beneficial in scenarios when the memory

requirements of the database objects are huge since RS4MI does not store them in the

summaries. Furthermore, with large numbers of reference objects fine-grained adaptations

are possible w.r.t. the avg. summary size. Peer(s) monitoring the network can adaptively

adjust summary sizes since every peer per se knows the summary size of all other peers.

In future work, we will also analyze the processing of k-NN queries and strategies for

determining the reference objects. In addition, we will derive approximate extensions pro-

viding a good compromise between runtime performance and adequate retrieval quality.
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